1 1.11 thorpej /* $NetBSD: rk_spi.c,v 1.11 2025/09/10 04:17:19 thorpej Exp $ */ 2 1.1 tnn 3 1.1 tnn /* 4 1.1 tnn * Copyright (c) 2019 The NetBSD Foundation, Inc. 5 1.1 tnn * All rights reserved. 6 1.1 tnn * 7 1.1 tnn * This code is derived from software contributed to The NetBSD Foundation 8 1.1 tnn * by Tobias Nygren. 9 1.1 tnn * 10 1.1 tnn * Redistribution and use in source and binary forms, with or without 11 1.1 tnn * modification, are permitted provided that the following conditions 12 1.1 tnn * are met: 13 1.1 tnn * 1. Redistributions of source code must retain the above copyright 14 1.1 tnn * notice, this list of conditions and the following disclaimer. 15 1.1 tnn * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 tnn * notice, this list of conditions and the following disclaimer in the 17 1.1 tnn * documentation and/or other materials provided with the distribution. 18 1.1 tnn * 19 1.1 tnn * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 tnn * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 tnn * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 tnn * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 tnn * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 tnn * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 tnn * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 tnn * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 tnn * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 tnn * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 tnn * POSSIBILITY OF SUCH DAMAGE. 30 1.1 tnn */ 31 1.1 tnn 32 1.1 tnn #include <sys/cdefs.h> 33 1.11 thorpej __KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.11 2025/09/10 04:17:19 thorpej Exp $"); 34 1.1 tnn 35 1.1 tnn #include <sys/param.h> 36 1.1 tnn #include <sys/device.h> 37 1.1 tnn #include <sys/systm.h> 38 1.1 tnn #include <sys/bus.h> 39 1.1 tnn #include <sys/intr.h> 40 1.1 tnn #include <sys/kernel.h> 41 1.1 tnn #include <sys/bitops.h> 42 1.1 tnn #include <dev/spi/spivar.h> 43 1.1 tnn #include <dev/fdt/fdtvar.h> 44 1.1 tnn #include <arm/fdt/arm_fdtvar.h> 45 1.1 tnn 46 1.1 tnn #define SPI_CTRLR0 0x00 47 1.1 tnn #define SPI_CTRLR0_MTM __BIT(21) 48 1.1 tnn #define SPI_CTRLR0_OPM __BIT(20) 49 1.1 tnn #define SPI_CTRLR0_XFM __BITS(19, 18) 50 1.1 tnn #define SPI_CTRLR0_FRF __BITS(17, 16) 51 1.1 tnn #define SPI_CTRLR0_RSD __BITS(15, 14) 52 1.1 tnn #define SPI_CTRLR0_BHT __BIT(13) 53 1.1 tnn #define SPI_CTRLR0_FBM __BIT(12) 54 1.1 tnn #define SPI_CTRLR0_EM __BIT(11) 55 1.1 tnn #define SPI_CTRLR0_RW __BIT(10) 56 1.1 tnn #define SPI_CTRLR0_CSM __BITS(9, 8) 57 1.1 tnn #define SPI_CTRLR0_SCPOL __BIT(7) 58 1.1 tnn #define SPI_CTRLR0_SCPH __BIT(6) 59 1.1 tnn #define SPI_CTRLR0_CFS __BITS(5, 2) 60 1.1 tnn #define SPI_CTRLR0_DFS __BITS(1, 0) 61 1.1 tnn #define SPI_CTRLR0_DFS_4BIT 0x0 62 1.1 tnn #define SPI_CTRLR0_DFS_8BIT 0x1 63 1.1 tnn #define SPI_CTRLR0_DFS_16BIT 0x2 64 1.1 tnn 65 1.1 tnn #define SPI_CTRLR1 0x04 66 1.1 tnn #define SPI_CTRLR1_NDM __BITS(15, 0) 67 1.1 tnn 68 1.1 tnn #define SPI_ENR 0x08 69 1.1 tnn #define SPI_ENR_ENR __BIT(0) 70 1.1 tnn 71 1.1 tnn #define SPI_SER 0x0c 72 1.1 tnn #define SPI_SER_SER1 __BIT(1) 73 1.1 tnn #define SPI_SER_SER0 __BIT(0) 74 1.1 tnn 75 1.1 tnn #define SPI_BAUDR 0x10 76 1.1 tnn #define SPI_BAUDR_BAUDR __BITS(15, 0) 77 1.1 tnn 78 1.1 tnn #define SPI_TXFTLR 0x14 79 1.1 tnn #define SPI_TXFTLR_TXFLTR __BITS(4, 0) 80 1.1 tnn 81 1.1 tnn #define SPI_RXFTLR 0x18 82 1.1 tnn #define SPI_RXFLTR_RXFLTR __BITS(4, 0) 83 1.1 tnn 84 1.1 tnn #define SPI_TXFLR 0x1c 85 1.1 tnn #define SPI_TXFLR_TXFLR __BITS(5, 0) 86 1.1 tnn 87 1.1 tnn #define SPI_RXFLR 0x20 88 1.1 tnn #define SPI_RXFLR_RXFLR __BITS(5, 0) 89 1.1 tnn 90 1.1 tnn #define SPI_SR 0x24 91 1.1 tnn #define SPI_SR_RFF __BIT(4) 92 1.1 tnn #define SPI_SR_RFE __BIT(3) 93 1.1 tnn #define SPI_SR_TFE __BIT(2) 94 1.1 tnn #define SPI_SR_TFF __BIT(1) 95 1.1 tnn #define SPI_SR_BSF __BIT(0) 96 1.1 tnn 97 1.1 tnn #define SPI_IPR 0x28 98 1.1 tnn #define SPI_IPR_IPR __BIT(0) 99 1.1 tnn 100 1.1 tnn #define SPI_IMR 0x2c 101 1.1 tnn #define SPI_IMR_RFFIM __BIT(4) 102 1.1 tnn #define SPI_IMR_RFOIM __BIT(3) 103 1.1 tnn #define SPI_IMR_RFUIM __BIT(2) 104 1.1 tnn #define SPI_IMR_TFOIM __BIT(1) 105 1.1 tnn #define SPI_IMR_TFEIM __BIT(0) 106 1.1 tnn 107 1.1 tnn #define SPI_ISR 0x30 108 1.1 tnn #define SPI_ISR_RFFIS __BIT(4) 109 1.1 tnn #define SPI_ISR_RFOIS __BIT(3) 110 1.1 tnn #define SPI_ISR_RFUIS __BIT(2) 111 1.1 tnn #define SPI_ISR_TFOIS __BIT(1) 112 1.1 tnn #define SPI_ISR_TFEIS __BIT(0) 113 1.1 tnn 114 1.1 tnn #define SPI_RISR 0x34 115 1.1 tnn #define SPI_RISR_RFFRIS __BIT(4) 116 1.1 tnn #define SPI_RISR_RFORIS __BIT(3) 117 1.1 tnn #define SPI_RISR_RFURIS __BIT(2) 118 1.1 tnn #define SPI_RISR_TFORIS __BIT(1) 119 1.1 tnn #define SPI_RISR_TFERIS __BIT(0) 120 1.1 tnn 121 1.1 tnn #define SPI_ICR 0x38 122 1.1 tnn #define SPI_ICR_CTFOI __BIT(3) 123 1.1 tnn #define SPI_ICR_CRFOI __BIT(2) 124 1.1 tnn #define SPI_ICR_CRFUI __BIT(1) 125 1.1 tnn #define SPI_ICR_CCI __BIT(0) 126 1.1 tnn #define SPI_ICR_ALL __BITS(3, 0) 127 1.1 tnn 128 1.1 tnn #define SPI_DMACR 0x3c 129 1.1 tnn #define SPI_DMACR_TDE __BIT(1) 130 1.1 tnn #define SPI_DMACR_RDE __BIT(0) 131 1.1 tnn 132 1.1 tnn #define SPI_DMATDLR 0x40 133 1.1 tnn #define SPI_DMATDLR_TDL __BITS(4, 0) 134 1.1 tnn 135 1.1 tnn #define SPI_DMARDLR 0x44 136 1.1 tnn #define SPI_DMARDLR_RDL __BITS(4, 0) 137 1.1 tnn 138 1.1 tnn #define SPI_TXDR 0x400 139 1.1 tnn #define SPI_TXDR_TXDR __BITS(15, 0) 140 1.1 tnn 141 1.1 tnn #define SPI_RXDR 0x800 142 1.1 tnn #define SPI_RXDR_RXDR __BITS(15, 0) 143 1.1 tnn 144 1.1 tnn #define SPI_FIFOLEN 32 145 1.1 tnn 146 1.6 thorpej static const struct device_compatible_entry compat_data[] = { 147 1.6 thorpej { .compat = "rockchip,rk3066-spi" }, 148 1.6 thorpej { .compat = "rockchip,rk3328-spi" }, 149 1.6 thorpej { .compat = "rockchip,rk3399-spi" }, 150 1.6 thorpej DEVICE_COMPAT_EOL 151 1.1 tnn }; 152 1.1 tnn 153 1.1 tnn struct rk_spi_softc { 154 1.1 tnn device_t sc_dev; 155 1.1 tnn bus_space_tag_t sc_bst; 156 1.1 tnn bus_space_handle_t sc_bsh; 157 1.1 tnn void *sc_ih; 158 1.1 tnn u_int sc_spi_freq; 159 1.1 tnn struct spi_controller sc_spi; 160 1.1 tnn SIMPLEQ_HEAD(,spi_transfer) sc_q; 161 1.1 tnn struct spi_transfer *sc_transfer; 162 1.1 tnn struct spi_chunk *sc_rchunk, *sc_wchunk; 163 1.1 tnn volatile bool sc_running; 164 1.1 tnn }; 165 1.1 tnn 166 1.1 tnn #define SPIREG_READ(sc, reg) \ 167 1.1 tnn bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) 168 1.1 tnn #define SPIREG_WRITE(sc, reg, val) \ 169 1.1 tnn bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) 170 1.1 tnn 171 1.1 tnn static int rk_spi_match(device_t, cfdata_t, void *); 172 1.1 tnn static void rk_spi_attach(device_t, device_t, void *); 173 1.1 tnn 174 1.1 tnn static int rk_spi_configure(void *, int, int, int); 175 1.1 tnn static int rk_spi_transfer(void *, struct spi_transfer *); 176 1.1 tnn 177 1.1 tnn static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t); 178 1.1 tnn static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t); 179 1.1 tnn static void rk_spi_rxtx(struct rk_spi_softc * const); 180 1.1 tnn static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const); 181 1.1 tnn static void rk_spi_start(struct rk_spi_softc * const); 182 1.1 tnn static int rk_spi_intr(void *); 183 1.1 tnn 184 1.1 tnn CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc), 185 1.1 tnn rk_spi_match, rk_spi_attach, NULL, NULL); 186 1.1 tnn 187 1.1 tnn static int 188 1.1 tnn rk_spi_match(device_t parent, cfdata_t cf, void *aux) 189 1.1 tnn { 190 1.1 tnn struct fdt_attach_args * const faa = aux; 191 1.1 tnn 192 1.6 thorpej return of_compatible_match(faa->faa_phandle, compat_data); 193 1.1 tnn } 194 1.1 tnn 195 1.1 tnn static void 196 1.1 tnn rk_spi_attach(device_t parent, device_t self, void *aux) 197 1.1 tnn { 198 1.1 tnn struct rk_spi_softc * const sc = device_private(self); 199 1.1 tnn struct fdt_attach_args * const faa = aux; 200 1.1 tnn const int phandle = faa->faa_phandle; 201 1.1 tnn bus_addr_t addr; 202 1.1 tnn bus_size_t size; 203 1.1 tnn struct clk *sclk, *pclk; 204 1.1 tnn char intrstr[128]; 205 1.3 tnn 206 1.1 tnn sc->sc_dev = self; 207 1.1 tnn sc->sc_bst = faa->faa_bst; 208 1.1 tnn SIMPLEQ_INIT(&sc->sc_q); 209 1.1 tnn 210 1.1 tnn if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL 211 1.1 tnn || clk_enable(sclk) != 0) { 212 1.1 tnn aprint_error(": couldn't enable sclk\n"); 213 1.1 tnn return; 214 1.1 tnn } 215 1.1 tnn 216 1.1 tnn if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL 217 1.1 tnn || clk_enable(pclk) != 0) { 218 1.1 tnn aprint_error(": couldn't enable pclk\n"); 219 1.1 tnn return; 220 1.1 tnn } 221 1.1 tnn 222 1.1 tnn sc->sc_spi_freq = clk_get_rate(sclk); 223 1.1 tnn 224 1.1 tnn if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0 225 1.1 tnn || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { 226 1.1 tnn aprint_error(": couldn't map registers\n"); 227 1.1 tnn return; 228 1.1 tnn } 229 1.1 tnn 230 1.1 tnn SPIREG_WRITE(sc, SPI_ENR, 0); 231 1.1 tnn SPIREG_WRITE(sc, SPI_IMR, 0); 232 1.1 tnn 233 1.1 tnn if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { 234 1.1 tnn aprint_error(": failed to decode interrupt\n"); 235 1.1 tnn return; 236 1.1 tnn } 237 1.1 tnn 238 1.5 ryo sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0, 239 1.5 ryo rk_spi_intr, sc, device_xname(self)); 240 1.1 tnn if (sc->sc_ih == NULL) { 241 1.1 tnn aprint_error(": unable to establish interrupt\n"); 242 1.1 tnn return; 243 1.1 tnn } 244 1.1 tnn 245 1.1 tnn aprint_naive("\n"); 246 1.1 tnn aprint_normal(": SPI\n"); 247 1.1 tnn aprint_normal_dev(self, "interrupting on %s\n", intrstr); 248 1.1 tnn 249 1.1 tnn sc->sc_spi.sct_cookie = sc; 250 1.1 tnn sc->sc_spi.sct_configure = rk_spi_configure; 251 1.1 tnn sc->sc_spi.sct_transfer = rk_spi_transfer; 252 1.1 tnn sc->sc_spi.sct_nslaves = 2; 253 1.1 tnn 254 1.11 thorpej spibus_attach(self, &sc->sc_spi); 255 1.1 tnn } 256 1.1 tnn 257 1.1 tnn static int 258 1.1 tnn rk_spi_configure(void *cookie, int slave, int mode, int speed) 259 1.1 tnn { 260 1.1 tnn struct rk_spi_softc * const sc = cookie; 261 1.1 tnn uint32_t ctrlr0; 262 1.1 tnn uint16_t divider; 263 1.1 tnn 264 1.1 tnn divider = (sc->sc_spi_freq / speed) & ~1; 265 1.4 tnn if (divider < 2) { 266 1.4 tnn aprint_error_dev(sc->sc_dev, 267 1.4 tnn "spi_clk %u is too low for speed %u, using speed %u\n", 268 1.4 tnn sc->sc_spi_freq, speed, sc->sc_spi_freq / 2); 269 1.4 tnn divider = 2; 270 1.4 tnn } 271 1.1 tnn 272 1.1 tnn if (slave >= sc->sc_spi.sct_nslaves) 273 1.1 tnn return EINVAL; 274 1.1 tnn 275 1.1 tnn ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS); 276 1.1 tnn 277 1.1 tnn switch (mode) { 278 1.1 tnn case SPI_MODE_0: 279 1.1 tnn ctrlr0 |= 0; 280 1.1 tnn break; 281 1.1 tnn case SPI_MODE_1: 282 1.1 tnn ctrlr0 |= SPI_CTRLR0_SCPH; 283 1.1 tnn break; 284 1.1 tnn case SPI_MODE_2: 285 1.1 tnn ctrlr0 |= SPI_CTRLR0_SCPOL; 286 1.1 tnn break; 287 1.1 tnn case SPI_MODE_3: 288 1.1 tnn ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL; 289 1.1 tnn break; 290 1.1 tnn default: 291 1.1 tnn return EINVAL; 292 1.1 tnn } 293 1.1 tnn 294 1.1 tnn SPIREG_WRITE(sc, SPI_ENR, 0); 295 1.1 tnn SPIREG_WRITE(sc, SPI_SER, 0); 296 1.1 tnn SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0); 297 1.1 tnn SPIREG_WRITE(sc, SPI_BAUDR, divider); 298 1.1 tnn 299 1.1 tnn SPIREG_WRITE(sc, SPI_DMACR, 0); 300 1.1 tnn SPIREG_WRITE(sc, SPI_DMATDLR, 0); 301 1.1 tnn SPIREG_WRITE(sc, SPI_DMARDLR, 0); 302 1.1 tnn 303 1.1 tnn SPIREG_WRITE(sc, SPI_IPR, 0); 304 1.1 tnn SPIREG_WRITE(sc, SPI_IMR, 0); 305 1.1 tnn SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL); 306 1.1 tnn 307 1.1 tnn SPIREG_WRITE(sc, SPI_ENR, 1); 308 1.1 tnn 309 1.1 tnn return 0; 310 1.1 tnn } 311 1.1 tnn 312 1.1 tnn static int 313 1.1 tnn rk_spi_transfer(void *cookie, struct spi_transfer *st) 314 1.1 tnn { 315 1.1 tnn struct rk_spi_softc * const sc = cookie; 316 1.1 tnn int s; 317 1.1 tnn 318 1.1 tnn s = splbio(); 319 1.1 tnn spi_transq_enqueue(&sc->sc_q, st); 320 1.1 tnn if (sc->sc_running == false) { 321 1.1 tnn rk_spi_start(sc); 322 1.1 tnn } 323 1.1 tnn splx(s); 324 1.1 tnn 325 1.1 tnn return 0; 326 1.1 tnn } 327 1.1 tnn 328 1.1 tnn static void 329 1.1 tnn rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen) 330 1.1 tnn { 331 1.1 tnn struct spi_chunk *chunk = sc->sc_wchunk; 332 1.1 tnn size_t len; 333 1.1 tnn uint8_t b; 334 1.1 tnn 335 1.1 tnn if (chunk == NULL) 336 1.1 tnn return; 337 1.1 tnn 338 1.1 tnn len = MIN(maxlen, chunk->chunk_wresid); 339 1.1 tnn chunk->chunk_wresid -= len; 340 1.1 tnn while (len--) { 341 1.1 tnn if (chunk->chunk_wptr) { 342 1.1 tnn b = *chunk->chunk_wptr++; 343 1.1 tnn } else { 344 1.1 tnn b = 0; 345 1.1 tnn } 346 1.1 tnn bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b); 347 1.1 tnn } 348 1.1 tnn if (sc->sc_wchunk->chunk_wresid == 0) { 349 1.1 tnn sc->sc_wchunk = sc->sc_wchunk->chunk_next; 350 1.1 tnn } 351 1.1 tnn } 352 1.1 tnn 353 1.1 tnn static void 354 1.1 tnn rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen) 355 1.1 tnn { 356 1.1 tnn struct spi_chunk *chunk = sc->sc_rchunk; 357 1.1 tnn size_t len; 358 1.1 tnn uint8_t b; 359 1.1 tnn 360 1.1 tnn if (chunk == NULL) 361 1.1 tnn return; 362 1.1 tnn 363 1.1 tnn len = MIN(maxlen, chunk->chunk_rresid); 364 1.1 tnn chunk->chunk_rresid -= len; 365 1.1 tnn 366 1.1 tnn while (len--) { 367 1.1 tnn b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR); 368 1.1 tnn if (chunk->chunk_rptr) { 369 1.1 tnn *chunk->chunk_rptr++ = b; 370 1.1 tnn } 371 1.1 tnn } 372 1.1 tnn if (sc->sc_rchunk->chunk_rresid == 0) { 373 1.1 tnn sc->sc_rchunk = sc->sc_rchunk->chunk_next; 374 1.1 tnn } 375 1.1 tnn } 376 1.1 tnn 377 1.1 tnn static void 378 1.1 tnn rk_spi_rxtx(struct rk_spi_softc * const sc) 379 1.1 tnn { 380 1.1 tnn bool again; 381 1.1 tnn uint32_t reg; 382 1.1 tnn size_t avail; 383 1.1 tnn 384 1.1 tnn /* Service both FIFOs until no more progress can be made. */ 385 1.1 tnn again = true; 386 1.1 tnn while (again) { 387 1.1 tnn again = false; 388 1.1 tnn reg = SPIREG_READ(sc, SPI_RXFLR); 389 1.1 tnn avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR); 390 1.1 tnn if (avail > 0) { 391 1.1 tnn KASSERT(sc->sc_rchunk != NULL); 392 1.1 tnn rk_spi_rxfifo_drain(sc, avail); 393 1.1 tnn again = true; 394 1.1 tnn } 395 1.1 tnn reg = SPIREG_READ(sc, SPI_TXFLR); 396 1.1 tnn avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR); 397 1.1 tnn if (avail > 0 && sc->sc_wchunk != NULL) { 398 1.1 tnn rk_spi_txfifo_fill(sc, avail); 399 1.1 tnn again = true; 400 1.1 tnn } 401 1.1 tnn } 402 1.1 tnn } 403 1.1 tnn 404 1.1 tnn static void 405 1.1 tnn rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc) 406 1.1 tnn { 407 1.1 tnn uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM; 408 1.1 tnn int len; 409 1.1 tnn 410 1.1 tnn /* 411 1.1 tnn * Delay rx interrupts until the FIFO has the # of bytes we'd 412 1.1 tnn * ideally like to receive, or FIFO is half full. 413 1.1 tnn */ 414 1.1 tnn len = sc->sc_rchunk != NULL 415 1.1 tnn ? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0; 416 1.1 tnn if (len > 0) { 417 1.1 tnn SPIREG_WRITE(sc, SPI_RXFTLR, len - 1); 418 1.1 tnn imr |= SPI_IMR_RFFIM; 419 1.1 tnn } 420 1.1 tnn 421 1.1 tnn /* 422 1.1 tnn * Delay tx interrupts until the FIFO can accept the # of bytes we'd 423 1.1 tnn * ideally like to transmit, or the FIFO is half empty. 424 1.1 tnn */ 425 1.1 tnn len = sc->sc_wchunk != NULL 426 1.1 tnn ? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0; 427 1.1 tnn if (len > 0) { 428 1.1 tnn SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len); 429 1.1 tnn imr |= SPI_IMR_TFEIM; 430 1.1 tnn } 431 1.1 tnn 432 1.1 tnn /* If xfer is done, then interrupt as soon as the tx fifo is empty. */ 433 1.1 tnn if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) { 434 1.1 tnn SPIREG_WRITE(sc, SPI_TXFTLR, 0); 435 1.1 tnn imr |= SPI_IMR_TFEIM; 436 1.1 tnn } 437 1.1 tnn 438 1.1 tnn SPIREG_WRITE(sc, SPI_IMR, imr); 439 1.1 tnn } 440 1.1 tnn 441 1.1 tnn static void 442 1.1 tnn rk_spi_start(struct rk_spi_softc * const sc) 443 1.1 tnn { 444 1.1 tnn struct spi_transfer *st; 445 1.1 tnn 446 1.1 tnn while ((st = spi_transq_first(&sc->sc_q)) != NULL) { 447 1.1 tnn spi_transq_dequeue(&sc->sc_q); 448 1.1 tnn KASSERT(sc->sc_transfer == NULL); 449 1.1 tnn sc->sc_transfer = st; 450 1.1 tnn sc->sc_rchunk = sc->sc_wchunk = st->st_chunks; 451 1.1 tnn sc->sc_running = true; 452 1.1 tnn 453 1.1 tnn KASSERT(st->st_slave < sc->sc_spi.sct_nslaves); 454 1.1 tnn SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave); 455 1.1 tnn 456 1.1 tnn rk_spi_rxtx(sc); 457 1.1 tnn rk_spi_set_interrupt_mask(sc); 458 1.1 tnn 459 1.1 tnn if (!cold) 460 1.1 tnn return; 461 1.1 tnn 462 1.1 tnn for (;;) { 463 1.1 tnn (void) rk_spi_intr(sc); 464 1.1 tnn if (ISSET(st->st_flags, SPI_F_DONE)) 465 1.1 tnn break; 466 1.1 tnn } 467 1.1 tnn } 468 1.1 tnn sc->sc_running = false; 469 1.1 tnn } 470 1.1 tnn 471 1.1 tnn static int 472 1.1 tnn rk_spi_intr(void *cookie) 473 1.1 tnn { 474 1.1 tnn struct rk_spi_softc * const sc = cookie; 475 1.1 tnn struct spi_transfer *st; 476 1.1 tnn uint32_t isr; 477 1.1 tnn uint32_t sr; 478 1.1 tnn uint32_t icr = SPI_ICR_CCI; 479 1.1 tnn 480 1.1 tnn isr = SPIREG_READ(sc, SPI_ISR); 481 1.1 tnn if (!isr) 482 1.1 tnn return 0; 483 1.1 tnn 484 1.1 tnn if (ISSET(isr, SPI_ISR_RFOIS)) { 485 1.1 tnn device_printf(sc->sc_dev, "RXFIFO overflow\n"); 486 1.1 tnn icr |= SPI_ICR_CRFOI; 487 1.1 tnn } 488 1.1 tnn if (ISSET(isr, SPI_ISR_RFUIS)) { 489 1.1 tnn device_printf(sc->sc_dev, "RXFIFO underflow\n"); 490 1.1 tnn icr |= SPI_ICR_CRFUI; 491 1.1 tnn } 492 1.1 tnn if (ISSET(isr, SPI_ISR_TFOIS)) { 493 1.1 tnn device_printf(sc->sc_dev, "TXFIFO overflow\n"); 494 1.1 tnn icr |= SPI_ICR_CTFOI; 495 1.1 tnn } 496 1.1 tnn 497 1.1 tnn rk_spi_rxtx(sc); 498 1.1 tnn 499 1.1 tnn if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) { 500 1.1 tnn do { 501 1.1 tnn sr = SPIREG_READ(sc, SPI_SR); 502 1.1 tnn } while (ISSET(sr, SPI_SR_BSF)); 503 1.1 tnn SPIREG_WRITE(sc, SPI_IMR, 0); 504 1.1 tnn SPIREG_WRITE(sc, SPI_SER, 0); 505 1.1 tnn st = sc->sc_transfer; 506 1.1 tnn sc->sc_transfer = NULL; 507 1.1 tnn KASSERT(st != NULL); 508 1.1 tnn spi_done(st, 0); 509 1.1 tnn sc->sc_running = false; 510 1.1 tnn } else { 511 1.1 tnn rk_spi_set_interrupt_mask(sc); 512 1.1 tnn } 513 1.1 tnn 514 1.1 tnn SPIREG_WRITE(sc, SPI_ICR, icr); 515 1.1 tnn 516 1.1 tnn return 1; 517 1.1 tnn } 518