rk_spi.c revision 1.3.2.2 1 1.3.2.2 martin /* $NetBSD: rk_spi.c,v 1.3.2.2 2019/11/20 16:49:58 martin Exp $ */
2 1.3.2.2 martin
3 1.3.2.2 martin /*
4 1.3.2.2 martin * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 1.3.2.2 martin * All rights reserved.
6 1.3.2.2 martin *
7 1.3.2.2 martin * This code is derived from software contributed to The NetBSD Foundation
8 1.3.2.2 martin * by Tobias Nygren.
9 1.3.2.2 martin *
10 1.3.2.2 martin * Redistribution and use in source and binary forms, with or without
11 1.3.2.2 martin * modification, are permitted provided that the following conditions
12 1.3.2.2 martin * are met:
13 1.3.2.2 martin * 1. Redistributions of source code must retain the above copyright
14 1.3.2.2 martin * notice, this list of conditions and the following disclaimer.
15 1.3.2.2 martin * 2. Redistributions in binary form must reproduce the above copyright
16 1.3.2.2 martin * notice, this list of conditions and the following disclaimer in the
17 1.3.2.2 martin * documentation and/or other materials provided with the distribution.
18 1.3.2.2 martin *
19 1.3.2.2 martin * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.3.2.2 martin * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.3.2.2 martin * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.3.2.2 martin * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.3.2.2 martin * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.3.2.2 martin * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.3.2.2 martin * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.3.2.2 martin * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.3.2.2 martin * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.3.2.2 martin * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.3.2.2 martin * POSSIBILITY OF SUCH DAMAGE.
30 1.3.2.2 martin */
31 1.3.2.2 martin
32 1.3.2.2 martin #include <sys/cdefs.h>
33 1.3.2.2 martin __KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.3.2.2 2019/11/20 16:49:58 martin Exp $");
34 1.3.2.2 martin
35 1.3.2.2 martin #include <sys/param.h>
36 1.3.2.2 martin #include <sys/device.h>
37 1.3.2.2 martin #include <sys/systm.h>
38 1.3.2.2 martin #include <sys/bus.h>
39 1.3.2.2 martin #include <sys/intr.h>
40 1.3.2.2 martin #include <sys/kernel.h>
41 1.3.2.2 martin #include <sys/bitops.h>
42 1.3.2.2 martin #include <dev/spi/spivar.h>
43 1.3.2.2 martin #include <dev/fdt/fdtvar.h>
44 1.3.2.2 martin #include <arm/fdt/arm_fdtvar.h>
45 1.3.2.2 martin
46 1.3.2.2 martin #define SPI_CTRLR0 0x00
47 1.3.2.2 martin #define SPI_CTRLR0_MTM __BIT(21)
48 1.3.2.2 martin #define SPI_CTRLR0_OPM __BIT(20)
49 1.3.2.2 martin #define SPI_CTRLR0_XFM __BITS(19, 18)
50 1.3.2.2 martin #define SPI_CTRLR0_FRF __BITS(17, 16)
51 1.3.2.2 martin #define SPI_CTRLR0_RSD __BITS(15, 14)
52 1.3.2.2 martin #define SPI_CTRLR0_BHT __BIT(13)
53 1.3.2.2 martin #define SPI_CTRLR0_FBM __BIT(12)
54 1.3.2.2 martin #define SPI_CTRLR0_EM __BIT(11)
55 1.3.2.2 martin #define SPI_CTRLR0_RW __BIT(10)
56 1.3.2.2 martin #define SPI_CTRLR0_CSM __BITS(9, 8)
57 1.3.2.2 martin #define SPI_CTRLR0_SCPOL __BIT(7)
58 1.3.2.2 martin #define SPI_CTRLR0_SCPH __BIT(6)
59 1.3.2.2 martin #define SPI_CTRLR0_CFS __BITS(5, 2)
60 1.3.2.2 martin #define SPI_CTRLR0_DFS __BITS(1, 0)
61 1.3.2.2 martin #define SPI_CTRLR0_DFS_4BIT 0x0
62 1.3.2.2 martin #define SPI_CTRLR0_DFS_8BIT 0x1
63 1.3.2.2 martin #define SPI_CTRLR0_DFS_16BIT 0x2
64 1.3.2.2 martin
65 1.3.2.2 martin #define SPI_CTRLR1 0x04
66 1.3.2.2 martin #define SPI_CTRLR1_NDM __BITS(15, 0)
67 1.3.2.2 martin
68 1.3.2.2 martin #define SPI_ENR 0x08
69 1.3.2.2 martin #define SPI_ENR_ENR __BIT(0)
70 1.3.2.2 martin
71 1.3.2.2 martin #define SPI_SER 0x0c
72 1.3.2.2 martin #define SPI_SER_SER1 __BIT(1)
73 1.3.2.2 martin #define SPI_SER_SER0 __BIT(0)
74 1.3.2.2 martin
75 1.3.2.2 martin #define SPI_BAUDR 0x10
76 1.3.2.2 martin #define SPI_BAUDR_BAUDR __BITS(15, 0)
77 1.3.2.2 martin
78 1.3.2.2 martin #define SPI_TXFTLR 0x14
79 1.3.2.2 martin #define SPI_TXFTLR_TXFLTR __BITS(4, 0)
80 1.3.2.2 martin
81 1.3.2.2 martin #define SPI_RXFTLR 0x18
82 1.3.2.2 martin #define SPI_RXFLTR_RXFLTR __BITS(4, 0)
83 1.3.2.2 martin
84 1.3.2.2 martin #define SPI_TXFLR 0x1c
85 1.3.2.2 martin #define SPI_TXFLR_TXFLR __BITS(5, 0)
86 1.3.2.2 martin
87 1.3.2.2 martin #define SPI_RXFLR 0x20
88 1.3.2.2 martin #define SPI_RXFLR_RXFLR __BITS(5, 0)
89 1.3.2.2 martin
90 1.3.2.2 martin #define SPI_SR 0x24
91 1.3.2.2 martin #define SPI_SR_RFF __BIT(4)
92 1.3.2.2 martin #define SPI_SR_RFE __BIT(3)
93 1.3.2.2 martin #define SPI_SR_TFE __BIT(2)
94 1.3.2.2 martin #define SPI_SR_TFF __BIT(1)
95 1.3.2.2 martin #define SPI_SR_BSF __BIT(0)
96 1.3.2.2 martin
97 1.3.2.2 martin #define SPI_IPR 0x28
98 1.3.2.2 martin #define SPI_IPR_IPR __BIT(0)
99 1.3.2.2 martin
100 1.3.2.2 martin #define SPI_IMR 0x2c
101 1.3.2.2 martin #define SPI_IMR_RFFIM __BIT(4)
102 1.3.2.2 martin #define SPI_IMR_RFOIM __BIT(3)
103 1.3.2.2 martin #define SPI_IMR_RFUIM __BIT(2)
104 1.3.2.2 martin #define SPI_IMR_TFOIM __BIT(1)
105 1.3.2.2 martin #define SPI_IMR_TFEIM __BIT(0)
106 1.3.2.2 martin
107 1.3.2.2 martin #define SPI_ISR 0x30
108 1.3.2.2 martin #define SPI_ISR_RFFIS __BIT(4)
109 1.3.2.2 martin #define SPI_ISR_RFOIS __BIT(3)
110 1.3.2.2 martin #define SPI_ISR_RFUIS __BIT(2)
111 1.3.2.2 martin #define SPI_ISR_TFOIS __BIT(1)
112 1.3.2.2 martin #define SPI_ISR_TFEIS __BIT(0)
113 1.3.2.2 martin
114 1.3.2.2 martin #define SPI_RISR 0x34
115 1.3.2.2 martin #define SPI_RISR_RFFRIS __BIT(4)
116 1.3.2.2 martin #define SPI_RISR_RFORIS __BIT(3)
117 1.3.2.2 martin #define SPI_RISR_RFURIS __BIT(2)
118 1.3.2.2 martin #define SPI_RISR_TFORIS __BIT(1)
119 1.3.2.2 martin #define SPI_RISR_TFERIS __BIT(0)
120 1.3.2.2 martin
121 1.3.2.2 martin #define SPI_ICR 0x38
122 1.3.2.2 martin #define SPI_ICR_CTFOI __BIT(3)
123 1.3.2.2 martin #define SPI_ICR_CRFOI __BIT(2)
124 1.3.2.2 martin #define SPI_ICR_CRFUI __BIT(1)
125 1.3.2.2 martin #define SPI_ICR_CCI __BIT(0)
126 1.3.2.2 martin #define SPI_ICR_ALL __BITS(3, 0)
127 1.3.2.2 martin
128 1.3.2.2 martin #define SPI_DMACR 0x3c
129 1.3.2.2 martin #define SPI_DMACR_TDE __BIT(1)
130 1.3.2.2 martin #define SPI_DMACR_RDE __BIT(0)
131 1.3.2.2 martin
132 1.3.2.2 martin #define SPI_DMATDLR 0x40
133 1.3.2.2 martin #define SPI_DMATDLR_TDL __BITS(4, 0)
134 1.3.2.2 martin
135 1.3.2.2 martin #define SPI_DMARDLR 0x44
136 1.3.2.2 martin #define SPI_DMARDLR_RDL __BITS(4, 0)
137 1.3.2.2 martin
138 1.3.2.2 martin #define SPI_TXDR 0x400
139 1.3.2.2 martin #define SPI_TXDR_TXDR __BITS(15, 0)
140 1.3.2.2 martin
141 1.3.2.2 martin #define SPI_RXDR 0x800
142 1.3.2.2 martin #define SPI_RXDR_RXDR __BITS(15, 0)
143 1.3.2.2 martin
144 1.3.2.2 martin #define SPI_FIFOLEN 32
145 1.3.2.2 martin
146 1.3.2.2 martin static const char * const compatible[] = {
147 1.3.2.2 martin #if 0 /* should work on RK3328 but untested */
148 1.3.2.2 martin "rockchip,rk3066-spi",
149 1.3.2.2 martin "rockchip,rk3328-spi",
150 1.3.2.2 martin #endif
151 1.3.2.2 martin "rockchip,rk3399-spi",
152 1.3.2.2 martin NULL
153 1.3.2.2 martin };
154 1.3.2.2 martin
155 1.3.2.2 martin struct rk_spi_softc {
156 1.3.2.2 martin device_t sc_dev;
157 1.3.2.2 martin bus_space_tag_t sc_bst;
158 1.3.2.2 martin bus_space_handle_t sc_bsh;
159 1.3.2.2 martin void *sc_ih;
160 1.3.2.2 martin u_int sc_spi_freq;
161 1.3.2.2 martin struct spi_controller sc_spi;
162 1.3.2.2 martin SIMPLEQ_HEAD(,spi_transfer) sc_q;
163 1.3.2.2 martin struct spi_transfer *sc_transfer;
164 1.3.2.2 martin struct spi_chunk *sc_rchunk, *sc_wchunk;
165 1.3.2.2 martin volatile bool sc_running;
166 1.3.2.2 martin };
167 1.3.2.2 martin
168 1.3.2.2 martin #define SPIREG_READ(sc, reg) \
169 1.3.2.2 martin bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
170 1.3.2.2 martin #define SPIREG_WRITE(sc, reg, val) \
171 1.3.2.2 martin bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
172 1.3.2.2 martin
173 1.3.2.2 martin static int rk_spi_match(device_t, cfdata_t, void *);
174 1.3.2.2 martin static void rk_spi_attach(device_t, device_t, void *);
175 1.3.2.2 martin
176 1.3.2.2 martin static int rk_spi_configure(void *, int, int, int);
177 1.3.2.2 martin static int rk_spi_transfer(void *, struct spi_transfer *);
178 1.3.2.2 martin
179 1.3.2.2 martin static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t);
180 1.3.2.2 martin static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t);
181 1.3.2.2 martin static void rk_spi_rxtx(struct rk_spi_softc * const);
182 1.3.2.2 martin static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const);
183 1.3.2.2 martin static void rk_spi_start(struct rk_spi_softc * const);
184 1.3.2.2 martin static int rk_spi_intr(void *);
185 1.3.2.2 martin
186 1.3.2.2 martin CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc),
187 1.3.2.2 martin rk_spi_match, rk_spi_attach, NULL, NULL);
188 1.3.2.2 martin
189 1.3.2.2 martin static int
190 1.3.2.2 martin rk_spi_match(device_t parent, cfdata_t cf, void *aux)
191 1.3.2.2 martin {
192 1.3.2.2 martin struct fdt_attach_args * const faa = aux;
193 1.3.2.2 martin
194 1.3.2.2 martin return of_match_compatible(faa->faa_phandle, compatible);
195 1.3.2.2 martin }
196 1.3.2.2 martin
197 1.3.2.2 martin static void
198 1.3.2.2 martin rk_spi_attach(device_t parent, device_t self, void *aux)
199 1.3.2.2 martin {
200 1.3.2.2 martin struct rk_spi_softc * const sc = device_private(self);
201 1.3.2.2 martin struct fdt_attach_args * const faa = aux;
202 1.3.2.2 martin const int phandle = faa->faa_phandle;
203 1.3.2.2 martin bus_addr_t addr;
204 1.3.2.2 martin bus_size_t size;
205 1.3.2.2 martin struct clk *sclk, *pclk;
206 1.3.2.2 martin char intrstr[128];
207 1.3.2.2 martin struct spibus_attach_args sba;
208 1.3.2.2 martin
209 1.3.2.2 martin sc->sc_dev = self;
210 1.3.2.2 martin sc->sc_bst = faa->faa_bst;
211 1.3.2.2 martin SIMPLEQ_INIT(&sc->sc_q);
212 1.3.2.2 martin
213 1.3.2.2 martin if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL
214 1.3.2.2 martin || clk_enable(sclk) != 0) {
215 1.3.2.2 martin aprint_error(": couldn't enable sclk\n");
216 1.3.2.2 martin return;
217 1.3.2.2 martin }
218 1.3.2.2 martin
219 1.3.2.2 martin if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL
220 1.3.2.2 martin || clk_enable(pclk) != 0) {
221 1.3.2.2 martin aprint_error(": couldn't enable pclk\n");
222 1.3.2.2 martin return;
223 1.3.2.2 martin }
224 1.3.2.2 martin
225 1.3.2.2 martin sc->sc_spi_freq = clk_get_rate(sclk);
226 1.3.2.2 martin
227 1.3.2.2 martin if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
228 1.3.2.2 martin || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
229 1.3.2.2 martin aprint_error(": couldn't map registers\n");
230 1.3.2.2 martin return;
231 1.3.2.2 martin }
232 1.3.2.2 martin
233 1.3.2.2 martin SPIREG_WRITE(sc, SPI_ENR, 0);
234 1.3.2.2 martin SPIREG_WRITE(sc, SPI_IMR, 0);
235 1.3.2.2 martin
236 1.3.2.2 martin if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
237 1.3.2.2 martin aprint_error(": failed to decode interrupt\n");
238 1.3.2.2 martin return;
239 1.3.2.2 martin }
240 1.3.2.2 martin
241 1.3.2.2 martin sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_VM, 0, rk_spi_intr, sc);
242 1.3.2.2 martin if (sc->sc_ih == NULL) {
243 1.3.2.2 martin aprint_error(": unable to establish interrupt\n");
244 1.3.2.2 martin return;
245 1.3.2.2 martin }
246 1.3.2.2 martin
247 1.3.2.2 martin aprint_naive("\n");
248 1.3.2.2 martin aprint_normal(": SPI\n");
249 1.3.2.2 martin aprint_normal_dev(self, "interrupting on %s\n", intrstr);
250 1.3.2.2 martin
251 1.3.2.2 martin sc->sc_spi.sct_cookie = sc;
252 1.3.2.2 martin sc->sc_spi.sct_configure = rk_spi_configure;
253 1.3.2.2 martin sc->sc_spi.sct_transfer = rk_spi_transfer;
254 1.3.2.2 martin sc->sc_spi.sct_nslaves = 2;
255 1.3.2.2 martin
256 1.3.2.2 martin sba.sba_controller = &sc->sc_spi;
257 1.3.2.2 martin
258 1.3.2.2 martin (void) config_found_ia(self, "spibus", &sba, spibus_print);
259 1.3.2.2 martin }
260 1.3.2.2 martin
261 1.3.2.2 martin static int
262 1.3.2.2 martin rk_spi_configure(void *cookie, int slave, int mode, int speed)
263 1.3.2.2 martin {
264 1.3.2.2 martin struct rk_spi_softc * const sc = cookie;
265 1.3.2.2 martin uint32_t ctrlr0;
266 1.3.2.2 martin uint16_t divider;
267 1.3.2.2 martin
268 1.3.2.2 martin divider = (sc->sc_spi_freq / speed) & ~1;
269 1.3.2.2 martin if (divider < 2)
270 1.3.2.2 martin return EINVAL;
271 1.3.2.2 martin
272 1.3.2.2 martin if (slave >= sc->sc_spi.sct_nslaves)
273 1.3.2.2 martin return EINVAL;
274 1.3.2.2 martin
275 1.3.2.2 martin ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS);
276 1.3.2.2 martin
277 1.3.2.2 martin switch (mode) {
278 1.3.2.2 martin case SPI_MODE_0:
279 1.3.2.2 martin ctrlr0 |= 0;
280 1.3.2.2 martin break;
281 1.3.2.2 martin case SPI_MODE_1:
282 1.3.2.2 martin ctrlr0 |= SPI_CTRLR0_SCPH;
283 1.3.2.2 martin break;
284 1.3.2.2 martin case SPI_MODE_2:
285 1.3.2.2 martin ctrlr0 |= SPI_CTRLR0_SCPOL;
286 1.3.2.2 martin break;
287 1.3.2.2 martin case SPI_MODE_3:
288 1.3.2.2 martin ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL;
289 1.3.2.2 martin break;
290 1.3.2.2 martin default:
291 1.3.2.2 martin return EINVAL;
292 1.3.2.2 martin }
293 1.3.2.2 martin
294 1.3.2.2 martin SPIREG_WRITE(sc, SPI_ENR, 0);
295 1.3.2.2 martin SPIREG_WRITE(sc, SPI_SER, 0);
296 1.3.2.2 martin SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0);
297 1.3.2.2 martin SPIREG_WRITE(sc, SPI_BAUDR, divider);
298 1.3.2.2 martin
299 1.3.2.2 martin SPIREG_WRITE(sc, SPI_DMACR, 0);
300 1.3.2.2 martin SPIREG_WRITE(sc, SPI_DMATDLR, 0);
301 1.3.2.2 martin SPIREG_WRITE(sc, SPI_DMARDLR, 0);
302 1.3.2.2 martin
303 1.3.2.2 martin SPIREG_WRITE(sc, SPI_IPR, 0);
304 1.3.2.2 martin SPIREG_WRITE(sc, SPI_IMR, 0);
305 1.3.2.2 martin SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL);
306 1.3.2.2 martin
307 1.3.2.2 martin SPIREG_WRITE(sc, SPI_ENR, 1);
308 1.3.2.2 martin
309 1.3.2.2 martin return 0;
310 1.3.2.2 martin }
311 1.3.2.2 martin
312 1.3.2.2 martin static int
313 1.3.2.2 martin rk_spi_transfer(void *cookie, struct spi_transfer *st)
314 1.3.2.2 martin {
315 1.3.2.2 martin struct rk_spi_softc * const sc = cookie;
316 1.3.2.2 martin int s;
317 1.3.2.2 martin
318 1.3.2.2 martin s = splbio();
319 1.3.2.2 martin spi_transq_enqueue(&sc->sc_q, st);
320 1.3.2.2 martin if (sc->sc_running == false) {
321 1.3.2.2 martin rk_spi_start(sc);
322 1.3.2.2 martin }
323 1.3.2.2 martin splx(s);
324 1.3.2.2 martin
325 1.3.2.2 martin return 0;
326 1.3.2.2 martin }
327 1.3.2.2 martin
328 1.3.2.2 martin static void
329 1.3.2.2 martin rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen)
330 1.3.2.2 martin {
331 1.3.2.2 martin struct spi_chunk *chunk = sc->sc_wchunk;
332 1.3.2.2 martin size_t len;
333 1.3.2.2 martin uint8_t b;
334 1.3.2.2 martin
335 1.3.2.2 martin if (chunk == NULL)
336 1.3.2.2 martin return;
337 1.3.2.2 martin
338 1.3.2.2 martin len = MIN(maxlen, chunk->chunk_wresid);
339 1.3.2.2 martin chunk->chunk_wresid -= len;
340 1.3.2.2 martin while (len--) {
341 1.3.2.2 martin if (chunk->chunk_wptr) {
342 1.3.2.2 martin b = *chunk->chunk_wptr++;
343 1.3.2.2 martin } else {
344 1.3.2.2 martin b = 0;
345 1.3.2.2 martin }
346 1.3.2.2 martin bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b);
347 1.3.2.2 martin }
348 1.3.2.2 martin if (sc->sc_wchunk->chunk_wresid == 0) {
349 1.3.2.2 martin sc->sc_wchunk = sc->sc_wchunk->chunk_next;
350 1.3.2.2 martin }
351 1.3.2.2 martin }
352 1.3.2.2 martin
353 1.3.2.2 martin static void
354 1.3.2.2 martin rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen)
355 1.3.2.2 martin {
356 1.3.2.2 martin struct spi_chunk *chunk = sc->sc_rchunk;
357 1.3.2.2 martin size_t len;
358 1.3.2.2 martin uint8_t b;
359 1.3.2.2 martin
360 1.3.2.2 martin if (chunk == NULL)
361 1.3.2.2 martin return;
362 1.3.2.2 martin
363 1.3.2.2 martin len = MIN(maxlen, chunk->chunk_rresid);
364 1.3.2.2 martin chunk->chunk_rresid -= len;
365 1.3.2.2 martin
366 1.3.2.2 martin while (len--) {
367 1.3.2.2 martin b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR);
368 1.3.2.2 martin if (chunk->chunk_rptr) {
369 1.3.2.2 martin *chunk->chunk_rptr++ = b;
370 1.3.2.2 martin }
371 1.3.2.2 martin }
372 1.3.2.2 martin if (sc->sc_rchunk->chunk_rresid == 0) {
373 1.3.2.2 martin sc->sc_rchunk = sc->sc_rchunk->chunk_next;
374 1.3.2.2 martin }
375 1.3.2.2 martin }
376 1.3.2.2 martin
377 1.3.2.2 martin static void
378 1.3.2.2 martin rk_spi_rxtx(struct rk_spi_softc * const sc)
379 1.3.2.2 martin {
380 1.3.2.2 martin bool again;
381 1.3.2.2 martin uint32_t reg;
382 1.3.2.2 martin size_t avail;
383 1.3.2.2 martin
384 1.3.2.2 martin /* Service both FIFOs until no more progress can be made. */
385 1.3.2.2 martin again = true;
386 1.3.2.2 martin while (again) {
387 1.3.2.2 martin again = false;
388 1.3.2.2 martin reg = SPIREG_READ(sc, SPI_RXFLR);
389 1.3.2.2 martin avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR);
390 1.3.2.2 martin if (avail > 0) {
391 1.3.2.2 martin KASSERT(sc->sc_rchunk != NULL);
392 1.3.2.2 martin rk_spi_rxfifo_drain(sc, avail);
393 1.3.2.2 martin again = true;
394 1.3.2.2 martin }
395 1.3.2.2 martin reg = SPIREG_READ(sc, SPI_TXFLR);
396 1.3.2.2 martin avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR);
397 1.3.2.2 martin if (avail > 0 && sc->sc_wchunk != NULL) {
398 1.3.2.2 martin rk_spi_txfifo_fill(sc, avail);
399 1.3.2.2 martin again = true;
400 1.3.2.2 martin }
401 1.3.2.2 martin }
402 1.3.2.2 martin }
403 1.3.2.2 martin
404 1.3.2.2 martin static void
405 1.3.2.2 martin rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc)
406 1.3.2.2 martin {
407 1.3.2.2 martin uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM;
408 1.3.2.2 martin int len;
409 1.3.2.2 martin
410 1.3.2.2 martin /*
411 1.3.2.2 martin * Delay rx interrupts until the FIFO has the # of bytes we'd
412 1.3.2.2 martin * ideally like to receive, or FIFO is half full.
413 1.3.2.2 martin */
414 1.3.2.2 martin len = sc->sc_rchunk != NULL
415 1.3.2.2 martin ? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0;
416 1.3.2.2 martin if (len > 0) {
417 1.3.2.2 martin SPIREG_WRITE(sc, SPI_RXFTLR, len - 1);
418 1.3.2.2 martin imr |= SPI_IMR_RFFIM;
419 1.3.2.2 martin }
420 1.3.2.2 martin
421 1.3.2.2 martin /*
422 1.3.2.2 martin * Delay tx interrupts until the FIFO can accept the # of bytes we'd
423 1.3.2.2 martin * ideally like to transmit, or the FIFO is half empty.
424 1.3.2.2 martin */
425 1.3.2.2 martin len = sc->sc_wchunk != NULL
426 1.3.2.2 martin ? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0;
427 1.3.2.2 martin if (len > 0) {
428 1.3.2.2 martin SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len);
429 1.3.2.2 martin imr |= SPI_IMR_TFEIM;
430 1.3.2.2 martin }
431 1.3.2.2 martin
432 1.3.2.2 martin /* If xfer is done, then interrupt as soon as the tx fifo is empty. */
433 1.3.2.2 martin if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) {
434 1.3.2.2 martin SPIREG_WRITE(sc, SPI_TXFTLR, 0);
435 1.3.2.2 martin imr |= SPI_IMR_TFEIM;
436 1.3.2.2 martin }
437 1.3.2.2 martin
438 1.3.2.2 martin SPIREG_WRITE(sc, SPI_IMR, imr);
439 1.3.2.2 martin }
440 1.3.2.2 martin
441 1.3.2.2 martin static void
442 1.3.2.2 martin rk_spi_start(struct rk_spi_softc * const sc)
443 1.3.2.2 martin {
444 1.3.2.2 martin struct spi_transfer *st;
445 1.3.2.2 martin
446 1.3.2.2 martin while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
447 1.3.2.2 martin spi_transq_dequeue(&sc->sc_q);
448 1.3.2.2 martin KASSERT(sc->sc_transfer == NULL);
449 1.3.2.2 martin sc->sc_transfer = st;
450 1.3.2.2 martin sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
451 1.3.2.2 martin sc->sc_running = true;
452 1.3.2.2 martin
453 1.3.2.2 martin KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
454 1.3.2.2 martin SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave);
455 1.3.2.2 martin
456 1.3.2.2 martin rk_spi_rxtx(sc);
457 1.3.2.2 martin rk_spi_set_interrupt_mask(sc);
458 1.3.2.2 martin
459 1.3.2.2 martin if (!cold)
460 1.3.2.2 martin return;
461 1.3.2.2 martin
462 1.3.2.2 martin for (;;) {
463 1.3.2.2 martin (void) rk_spi_intr(sc);
464 1.3.2.2 martin if (ISSET(st->st_flags, SPI_F_DONE))
465 1.3.2.2 martin break;
466 1.3.2.2 martin }
467 1.3.2.2 martin }
468 1.3.2.2 martin sc->sc_running = false;
469 1.3.2.2 martin }
470 1.3.2.2 martin
471 1.3.2.2 martin static int
472 1.3.2.2 martin rk_spi_intr(void *cookie)
473 1.3.2.2 martin {
474 1.3.2.2 martin struct rk_spi_softc * const sc = cookie;
475 1.3.2.2 martin struct spi_transfer *st;
476 1.3.2.2 martin uint32_t isr;
477 1.3.2.2 martin uint32_t sr;
478 1.3.2.2 martin uint32_t icr = SPI_ICR_CCI;
479 1.3.2.2 martin
480 1.3.2.2 martin isr = SPIREG_READ(sc, SPI_ISR);
481 1.3.2.2 martin if (!isr)
482 1.3.2.2 martin return 0;
483 1.3.2.2 martin
484 1.3.2.2 martin if (ISSET(isr, SPI_ISR_RFOIS)) {
485 1.3.2.2 martin device_printf(sc->sc_dev, "RXFIFO overflow\n");
486 1.3.2.2 martin icr |= SPI_ICR_CRFOI;
487 1.3.2.2 martin }
488 1.3.2.2 martin if (ISSET(isr, SPI_ISR_RFUIS)) {
489 1.3.2.2 martin device_printf(sc->sc_dev, "RXFIFO underflow\n");
490 1.3.2.2 martin icr |= SPI_ICR_CRFUI;
491 1.3.2.2 martin }
492 1.3.2.2 martin if (ISSET(isr, SPI_ISR_TFOIS)) {
493 1.3.2.2 martin device_printf(sc->sc_dev, "TXFIFO overflow\n");
494 1.3.2.2 martin icr |= SPI_ICR_CTFOI;
495 1.3.2.2 martin }
496 1.3.2.2 martin
497 1.3.2.2 martin rk_spi_rxtx(sc);
498 1.3.2.2 martin
499 1.3.2.2 martin if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) {
500 1.3.2.2 martin do {
501 1.3.2.2 martin sr = SPIREG_READ(sc, SPI_SR);
502 1.3.2.2 martin } while (ISSET(sr, SPI_SR_BSF));
503 1.3.2.2 martin SPIREG_WRITE(sc, SPI_IMR, 0);
504 1.3.2.2 martin SPIREG_WRITE(sc, SPI_SER, 0);
505 1.3.2.2 martin st = sc->sc_transfer;
506 1.3.2.2 martin sc->sc_transfer = NULL;
507 1.3.2.2 martin KASSERT(st != NULL);
508 1.3.2.2 martin spi_done(st, 0);
509 1.3.2.2 martin sc->sc_running = false;
510 1.3.2.2 martin } else {
511 1.3.2.2 martin rk_spi_set_interrupt_mask(sc);
512 1.3.2.2 martin }
513 1.3.2.2 martin
514 1.3.2.2 martin SPIREG_WRITE(sc, SPI_ICR, icr);
515 1.3.2.2 martin
516 1.3.2.2 martin return 1;
517 1.3.2.2 martin }
518