Home | History | Annotate | Line # | Download | only in rockchip
rk_spi.c revision 1.11
      1 /*	$NetBSD: rk_spi.c,v 1.11 2025/09/10 04:17:19 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tobias Nygren.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.11 2025/09/10 04:17:19 thorpej Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/device.h>
     37 #include <sys/systm.h>
     38 #include <sys/bus.h>
     39 #include <sys/intr.h>
     40 #include <sys/kernel.h>
     41 #include <sys/bitops.h>
     42 #include <dev/spi/spivar.h>
     43 #include <dev/fdt/fdtvar.h>
     44 #include <arm/fdt/arm_fdtvar.h>
     45 
     46 #define SPI_CTRLR0		0x00
     47 #define SPI_CTRLR0_MTM		__BIT(21)
     48 #define SPI_CTRLR0_OPM		__BIT(20)
     49 #define SPI_CTRLR0_XFM		__BITS(19, 18)
     50 #define SPI_CTRLR0_FRF		__BITS(17, 16)
     51 #define SPI_CTRLR0_RSD		__BITS(15, 14)
     52 #define SPI_CTRLR0_BHT		__BIT(13)
     53 #define SPI_CTRLR0_FBM		__BIT(12)
     54 #define SPI_CTRLR0_EM		__BIT(11)
     55 #define SPI_CTRLR0_RW		__BIT(10)
     56 #define SPI_CTRLR0_CSM		__BITS(9, 8)
     57 #define SPI_CTRLR0_SCPOL	__BIT(7)
     58 #define SPI_CTRLR0_SCPH		__BIT(6)
     59 #define SPI_CTRLR0_CFS		__BITS(5, 2)
     60 #define SPI_CTRLR0_DFS		__BITS(1, 0)
     61 #define SPI_CTRLR0_DFS_4BIT	0x0
     62 #define SPI_CTRLR0_DFS_8BIT	0x1
     63 #define SPI_CTRLR0_DFS_16BIT	0x2
     64 
     65 #define SPI_CTRLR1		0x04
     66 #define SPI_CTRLR1_NDM		__BITS(15, 0)
     67 
     68 #define SPI_ENR			0x08
     69 #define SPI_ENR_ENR		__BIT(0)
     70 
     71 #define SPI_SER			0x0c
     72 #define SPI_SER_SER1		__BIT(1)
     73 #define SPI_SER_SER0		__BIT(0)
     74 
     75 #define SPI_BAUDR		0x10
     76 #define SPI_BAUDR_BAUDR		__BITS(15, 0)
     77 
     78 #define SPI_TXFTLR		0x14
     79 #define SPI_TXFTLR_TXFLTR	__BITS(4, 0)
     80 
     81 #define SPI_RXFTLR		0x18
     82 #define SPI_RXFLTR_RXFLTR	__BITS(4, 0)
     83 
     84 #define SPI_TXFLR		0x1c
     85 #define SPI_TXFLR_TXFLR		__BITS(5, 0)
     86 
     87 #define SPI_RXFLR		0x20
     88 #define SPI_RXFLR_RXFLR		__BITS(5, 0)
     89 
     90 #define SPI_SR			0x24
     91 #define SPI_SR_RFF		__BIT(4)
     92 #define SPI_SR_RFE		__BIT(3)
     93 #define SPI_SR_TFE		__BIT(2)
     94 #define SPI_SR_TFF		__BIT(1)
     95 #define SPI_SR_BSF		__BIT(0)
     96 
     97 #define SPI_IPR			0x28
     98 #define SPI_IPR_IPR		__BIT(0)
     99 
    100 #define SPI_IMR			0x2c
    101 #define SPI_IMR_RFFIM		__BIT(4)
    102 #define SPI_IMR_RFOIM		__BIT(3)
    103 #define SPI_IMR_RFUIM		__BIT(2)
    104 #define SPI_IMR_TFOIM		__BIT(1)
    105 #define SPI_IMR_TFEIM		__BIT(0)
    106 
    107 #define SPI_ISR			0x30
    108 #define SPI_ISR_RFFIS		__BIT(4)
    109 #define SPI_ISR_RFOIS		__BIT(3)
    110 #define SPI_ISR_RFUIS		__BIT(2)
    111 #define SPI_ISR_TFOIS		__BIT(1)
    112 #define SPI_ISR_TFEIS		__BIT(0)
    113 
    114 #define SPI_RISR		0x34
    115 #define SPI_RISR_RFFRIS		__BIT(4)
    116 #define SPI_RISR_RFORIS		__BIT(3)
    117 #define SPI_RISR_RFURIS		__BIT(2)
    118 #define SPI_RISR_TFORIS		__BIT(1)
    119 #define SPI_RISR_TFERIS		__BIT(0)
    120 
    121 #define SPI_ICR			0x38
    122 #define SPI_ICR_CTFOI		__BIT(3)
    123 #define SPI_ICR_CRFOI		__BIT(2)
    124 #define SPI_ICR_CRFUI		__BIT(1)
    125 #define SPI_ICR_CCI		__BIT(0)
    126 #define SPI_ICR_ALL		__BITS(3, 0)
    127 
    128 #define SPI_DMACR		0x3c
    129 #define SPI_DMACR_TDE		__BIT(1)
    130 #define SPI_DMACR_RDE		__BIT(0)
    131 
    132 #define SPI_DMATDLR		0x40
    133 #define SPI_DMATDLR_TDL		__BITS(4, 0)
    134 
    135 #define SPI_DMARDLR		0x44
    136 #define SPI_DMARDLR_RDL		__BITS(4, 0)
    137 
    138 #define SPI_TXDR		0x400
    139 #define SPI_TXDR_TXDR		__BITS(15, 0)
    140 
    141 #define SPI_RXDR		0x800
    142 #define SPI_RXDR_RXDR		__BITS(15, 0)
    143 
    144 #define SPI_FIFOLEN		32
    145 
    146 static const struct device_compatible_entry compat_data[] = {
    147 	{ .compat = "rockchip,rk3066-spi" },
    148 	{ .compat = "rockchip,rk3328-spi" },
    149 	{ .compat = "rockchip,rk3399-spi" },
    150 	DEVICE_COMPAT_EOL
    151 };
    152 
    153 struct rk_spi_softc {
    154 	device_t		sc_dev;
    155 	bus_space_tag_t		sc_bst;
    156 	bus_space_handle_t	sc_bsh;
    157 	void			*sc_ih;
    158 	u_int			sc_spi_freq;
    159 	struct spi_controller	sc_spi;
    160 	SIMPLEQ_HEAD(,spi_transfer) sc_q;
    161 	struct spi_transfer	*sc_transfer;
    162 	struct spi_chunk	*sc_rchunk, *sc_wchunk;
    163 	volatile bool		sc_running;
    164 };
    165 
    166 #define SPIREG_READ(sc, reg) \
    167     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
    168 #define SPIREG_WRITE(sc, reg, val) \
    169     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    170 
    171 static int rk_spi_match(device_t, cfdata_t, void *);
    172 static void rk_spi_attach(device_t, device_t, void *);
    173 
    174 static int rk_spi_configure(void *, int, int, int);
    175 static int rk_spi_transfer(void *, struct spi_transfer *);
    176 
    177 static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t);
    178 static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t);
    179 static void rk_spi_rxtx(struct rk_spi_softc * const);
    180 static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const);
    181 static void rk_spi_start(struct rk_spi_softc * const);
    182 static int rk_spi_intr(void *);
    183 
    184 CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc),
    185     rk_spi_match, rk_spi_attach, NULL, NULL);
    186 
    187 static int
    188 rk_spi_match(device_t parent, cfdata_t cf, void *aux)
    189 {
    190 	struct fdt_attach_args * const faa = aux;
    191 
    192 	return of_compatible_match(faa->faa_phandle, compat_data);
    193 }
    194 
    195 static void
    196 rk_spi_attach(device_t parent, device_t self, void *aux)
    197 {
    198 	struct rk_spi_softc * const sc = device_private(self);
    199 	struct fdt_attach_args * const faa = aux;
    200 	const int phandle = faa->faa_phandle;
    201 	bus_addr_t addr;
    202 	bus_size_t size;
    203 	struct clk *sclk, *pclk;
    204 	char intrstr[128];
    205 
    206 	sc->sc_dev = self;
    207 	sc->sc_bst = faa->faa_bst;
    208 	SIMPLEQ_INIT(&sc->sc_q);
    209 
    210 	if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL
    211 	    || clk_enable(sclk) != 0) {
    212 		aprint_error(": couldn't enable sclk\n");
    213 		return;
    214 	}
    215 
    216 	if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL
    217 	    || clk_enable(pclk) != 0) {
    218 		aprint_error(": couldn't enable pclk\n");
    219 		return;
    220 	}
    221 
    222 	sc->sc_spi_freq = clk_get_rate(sclk);
    223 
    224 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
    225 	    || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
    226 		aprint_error(": couldn't map registers\n");
    227 		return;
    228 	}
    229 
    230 	SPIREG_WRITE(sc, SPI_ENR, 0);
    231 	SPIREG_WRITE(sc, SPI_IMR, 0);
    232 
    233 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
    234 		aprint_error(": failed to decode interrupt\n");
    235 		return;
    236 	}
    237 
    238 	sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
    239 	    rk_spi_intr, sc, device_xname(self));
    240 	if (sc->sc_ih == NULL) {
    241 		aprint_error(": unable to establish interrupt\n");
    242 		return;
    243 	}
    244 
    245 	aprint_naive("\n");
    246 	aprint_normal(": SPI\n");
    247 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
    248 
    249 	sc->sc_spi.sct_cookie = sc;
    250 	sc->sc_spi.sct_configure = rk_spi_configure;
    251 	sc->sc_spi.sct_transfer = rk_spi_transfer;
    252 	sc->sc_spi.sct_nslaves = 2;
    253 
    254 	spibus_attach(self, &sc->sc_spi);
    255 }
    256 
    257 static int
    258 rk_spi_configure(void *cookie, int slave, int mode, int speed)
    259 {
    260 	struct rk_spi_softc * const sc = cookie;
    261 	uint32_t ctrlr0;
    262 	uint16_t divider;
    263 
    264 	divider = (sc->sc_spi_freq / speed) & ~1;
    265 	if (divider < 2) {
    266 		aprint_error_dev(sc->sc_dev,
    267 		    "spi_clk %u is too low for speed %u, using speed %u\n",
    268 		     sc->sc_spi_freq, speed, sc->sc_spi_freq / 2);
    269 		divider = 2;
    270 	}
    271 
    272 	if (slave >= sc->sc_spi.sct_nslaves)
    273 		return EINVAL;
    274 
    275 	ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS);
    276 
    277 	switch (mode) {
    278 	case SPI_MODE_0:
    279 		ctrlr0 |= 0;
    280 		break;
    281 	case SPI_MODE_1:
    282 		ctrlr0 |= SPI_CTRLR0_SCPH;
    283 		break;
    284 	case SPI_MODE_2:
    285 		ctrlr0 |= SPI_CTRLR0_SCPOL;
    286 		break;
    287 	case SPI_MODE_3:
    288 		ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL;
    289 		break;
    290 	default:
    291 		return EINVAL;
    292 	}
    293 
    294 	SPIREG_WRITE(sc, SPI_ENR, 0);
    295 	SPIREG_WRITE(sc, SPI_SER, 0);
    296 	SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0);
    297 	SPIREG_WRITE(sc, SPI_BAUDR, divider);
    298 
    299 	SPIREG_WRITE(sc, SPI_DMACR, 0);
    300 	SPIREG_WRITE(sc, SPI_DMATDLR, 0);
    301 	SPIREG_WRITE(sc, SPI_DMARDLR, 0);
    302 
    303 	SPIREG_WRITE(sc, SPI_IPR, 0);
    304 	SPIREG_WRITE(sc, SPI_IMR, 0);
    305 	SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL);
    306 
    307 	SPIREG_WRITE(sc, SPI_ENR, 1);
    308 
    309 	return 0;
    310 }
    311 
    312 static int
    313 rk_spi_transfer(void *cookie, struct spi_transfer *st)
    314 {
    315 	struct rk_spi_softc * const sc = cookie;
    316 	int s;
    317 
    318 	s = splbio();
    319 	spi_transq_enqueue(&sc->sc_q, st);
    320 	if (sc->sc_running == false) {
    321 		rk_spi_start(sc);
    322 	}
    323 	splx(s);
    324 
    325 	return 0;
    326 }
    327 
    328 static void
    329 rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen)
    330 {
    331 	struct spi_chunk *chunk = sc->sc_wchunk;
    332 	size_t len;
    333 	uint8_t b;
    334 
    335 	if (chunk == NULL)
    336 		return;
    337 
    338 	len = MIN(maxlen, chunk->chunk_wresid);
    339 	chunk->chunk_wresid -= len;
    340 	while (len--) {
    341 		if (chunk->chunk_wptr) {
    342 			b = *chunk->chunk_wptr++;
    343 		} else {
    344 			b = 0;
    345 		}
    346 		bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b);
    347 	}
    348 	if (sc->sc_wchunk->chunk_wresid == 0) {
    349 		sc->sc_wchunk = sc->sc_wchunk->chunk_next;
    350 	}
    351 }
    352 
    353 static void
    354 rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen)
    355 {
    356 	struct spi_chunk *chunk = sc->sc_rchunk;
    357 	size_t len;
    358 	uint8_t b;
    359 
    360 	if (chunk == NULL)
    361 		return;
    362 
    363 	len = MIN(maxlen, chunk->chunk_rresid);
    364 	chunk->chunk_rresid -= len;
    365 
    366 	while (len--) {
    367 		b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR);
    368 		if (chunk->chunk_rptr) {
    369 			*chunk->chunk_rptr++ = b;
    370 		}
    371 	}
    372 	if (sc->sc_rchunk->chunk_rresid == 0) {
    373 		sc->sc_rchunk = sc->sc_rchunk->chunk_next;
    374 	}
    375 }
    376 
    377 static void
    378 rk_spi_rxtx(struct rk_spi_softc * const sc)
    379 {
    380 	bool again;
    381 	uint32_t reg;
    382 	size_t avail;
    383 
    384 	/* Service both FIFOs until no more progress can be made. */
    385 	again = true;
    386 	while (again) {
    387 		again = false;
    388 		reg = SPIREG_READ(sc, SPI_RXFLR);
    389 		avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR);
    390 		if (avail > 0) {
    391 			KASSERT(sc->sc_rchunk != NULL);
    392 			rk_spi_rxfifo_drain(sc, avail);
    393 			again = true;
    394 		}
    395 		reg = SPIREG_READ(sc, SPI_TXFLR);
    396 		avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR);
    397 		if (avail > 0 && sc->sc_wchunk != NULL) {
    398 			rk_spi_txfifo_fill(sc, avail);
    399 			again = true;
    400 		}
    401 	}
    402 }
    403 
    404 static void
    405 rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc)
    406 {
    407 	uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM;
    408 	int len;
    409 
    410 	/*
    411 	 * Delay rx interrupts until the FIFO has the # of bytes we'd
    412 	 * ideally like to receive, or FIFO is half full.
    413 	 */
    414 	len = sc->sc_rchunk != NULL
    415 	    ? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0;
    416 	if (len > 0) {
    417 		SPIREG_WRITE(sc, SPI_RXFTLR, len - 1);
    418 		imr |= SPI_IMR_RFFIM;
    419 	}
    420 
    421 	/*
    422 	 * Delay tx interrupts until the FIFO can accept the # of bytes we'd
    423 	 * ideally like to transmit, or the FIFO is half empty.
    424 	 */
    425 	len = sc->sc_wchunk != NULL
    426 	    ? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0;
    427 	if (len > 0) {
    428 		SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len);
    429 		imr |= SPI_IMR_TFEIM;
    430 	}
    431 
    432 	/* If xfer is done, then interrupt as soon as the tx fifo is empty. */
    433 	if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) {
    434 		SPIREG_WRITE(sc, SPI_TXFTLR, 0);
    435 		imr |= SPI_IMR_TFEIM;
    436 	}
    437 
    438 	SPIREG_WRITE(sc, SPI_IMR, imr);
    439 }
    440 
    441 static void
    442 rk_spi_start(struct rk_spi_softc * const sc)
    443 {
    444 	struct spi_transfer *st;
    445 
    446 	while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
    447 		spi_transq_dequeue(&sc->sc_q);
    448 		KASSERT(sc->sc_transfer == NULL);
    449 		sc->sc_transfer = st;
    450 		sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
    451 		sc->sc_running = true;
    452 
    453 		KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
    454 		SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave);
    455 
    456 		rk_spi_rxtx(sc);
    457 		rk_spi_set_interrupt_mask(sc);
    458 
    459 		if (!cold)
    460 			return;
    461 
    462 		for (;;) {
    463 			(void) rk_spi_intr(sc);
    464 			if (ISSET(st->st_flags, SPI_F_DONE))
    465 				break;
    466 		}
    467 	}
    468 	sc->sc_running = false;
    469 }
    470 
    471 static int
    472 rk_spi_intr(void *cookie)
    473 {
    474 	struct rk_spi_softc * const sc = cookie;
    475 	struct spi_transfer *st;
    476 	uint32_t isr;
    477 	uint32_t sr;
    478 	uint32_t icr = SPI_ICR_CCI;
    479 
    480 	isr = SPIREG_READ(sc, SPI_ISR);
    481 	if (!isr)
    482 		return 0;
    483 
    484 	if (ISSET(isr, SPI_ISR_RFOIS)) {
    485 		device_printf(sc->sc_dev, "RXFIFO overflow\n");
    486 		icr |= SPI_ICR_CRFOI;
    487 	}
    488 	if (ISSET(isr, SPI_ISR_RFUIS)) {
    489 		device_printf(sc->sc_dev, "RXFIFO underflow\n");
    490 		icr |= SPI_ICR_CRFUI;
    491 	}
    492 	if (ISSET(isr, SPI_ISR_TFOIS)) {
    493 		device_printf(sc->sc_dev, "TXFIFO overflow\n");
    494 		icr |= SPI_ICR_CTFOI;
    495 	}
    496 
    497 	rk_spi_rxtx(sc);
    498 
    499 	if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) {
    500 		do {
    501 			sr = SPIREG_READ(sc, SPI_SR);
    502 		} while (ISSET(sr, SPI_SR_BSF));
    503 		SPIREG_WRITE(sc, SPI_IMR, 0);
    504 		SPIREG_WRITE(sc, SPI_SER, 0);
    505 		st = sc->sc_transfer;
    506 		sc->sc_transfer = NULL;
    507 		KASSERT(st != NULL);
    508 		spi_done(st, 0);
    509 		sc->sc_running = false;
    510 	} else {
    511 		rk_spi_set_interrupt_mask(sc);
    512 	}
    513 
    514 	SPIREG_WRITE(sc, SPI_ICR, icr);
    515 
    516 	return 1;
    517 }
    518