rk_spi.c revision 1.4 1 /* $NetBSD: rk_spi.c,v 1.4 2020/04/01 20:37:32 tnn Exp $ */
2
3 /*
4 * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tobias Nygren.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.4 2020/04/01 20:37:32 tnn Exp $");
34
35 #include <sys/param.h>
36 #include <sys/device.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/intr.h>
40 #include <sys/kernel.h>
41 #include <sys/bitops.h>
42 #include <dev/spi/spivar.h>
43 #include <dev/fdt/fdtvar.h>
44 #include <arm/fdt/arm_fdtvar.h>
45
46 #define SPI_CTRLR0 0x00
47 #define SPI_CTRLR0_MTM __BIT(21)
48 #define SPI_CTRLR0_OPM __BIT(20)
49 #define SPI_CTRLR0_XFM __BITS(19, 18)
50 #define SPI_CTRLR0_FRF __BITS(17, 16)
51 #define SPI_CTRLR0_RSD __BITS(15, 14)
52 #define SPI_CTRLR0_BHT __BIT(13)
53 #define SPI_CTRLR0_FBM __BIT(12)
54 #define SPI_CTRLR0_EM __BIT(11)
55 #define SPI_CTRLR0_RW __BIT(10)
56 #define SPI_CTRLR0_CSM __BITS(9, 8)
57 #define SPI_CTRLR0_SCPOL __BIT(7)
58 #define SPI_CTRLR0_SCPH __BIT(6)
59 #define SPI_CTRLR0_CFS __BITS(5, 2)
60 #define SPI_CTRLR0_DFS __BITS(1, 0)
61 #define SPI_CTRLR0_DFS_4BIT 0x0
62 #define SPI_CTRLR0_DFS_8BIT 0x1
63 #define SPI_CTRLR0_DFS_16BIT 0x2
64
65 #define SPI_CTRLR1 0x04
66 #define SPI_CTRLR1_NDM __BITS(15, 0)
67
68 #define SPI_ENR 0x08
69 #define SPI_ENR_ENR __BIT(0)
70
71 #define SPI_SER 0x0c
72 #define SPI_SER_SER1 __BIT(1)
73 #define SPI_SER_SER0 __BIT(0)
74
75 #define SPI_BAUDR 0x10
76 #define SPI_BAUDR_BAUDR __BITS(15, 0)
77
78 #define SPI_TXFTLR 0x14
79 #define SPI_TXFTLR_TXFLTR __BITS(4, 0)
80
81 #define SPI_RXFTLR 0x18
82 #define SPI_RXFLTR_RXFLTR __BITS(4, 0)
83
84 #define SPI_TXFLR 0x1c
85 #define SPI_TXFLR_TXFLR __BITS(5, 0)
86
87 #define SPI_RXFLR 0x20
88 #define SPI_RXFLR_RXFLR __BITS(5, 0)
89
90 #define SPI_SR 0x24
91 #define SPI_SR_RFF __BIT(4)
92 #define SPI_SR_RFE __BIT(3)
93 #define SPI_SR_TFE __BIT(2)
94 #define SPI_SR_TFF __BIT(1)
95 #define SPI_SR_BSF __BIT(0)
96
97 #define SPI_IPR 0x28
98 #define SPI_IPR_IPR __BIT(0)
99
100 #define SPI_IMR 0x2c
101 #define SPI_IMR_RFFIM __BIT(4)
102 #define SPI_IMR_RFOIM __BIT(3)
103 #define SPI_IMR_RFUIM __BIT(2)
104 #define SPI_IMR_TFOIM __BIT(1)
105 #define SPI_IMR_TFEIM __BIT(0)
106
107 #define SPI_ISR 0x30
108 #define SPI_ISR_RFFIS __BIT(4)
109 #define SPI_ISR_RFOIS __BIT(3)
110 #define SPI_ISR_RFUIS __BIT(2)
111 #define SPI_ISR_TFOIS __BIT(1)
112 #define SPI_ISR_TFEIS __BIT(0)
113
114 #define SPI_RISR 0x34
115 #define SPI_RISR_RFFRIS __BIT(4)
116 #define SPI_RISR_RFORIS __BIT(3)
117 #define SPI_RISR_RFURIS __BIT(2)
118 #define SPI_RISR_TFORIS __BIT(1)
119 #define SPI_RISR_TFERIS __BIT(0)
120
121 #define SPI_ICR 0x38
122 #define SPI_ICR_CTFOI __BIT(3)
123 #define SPI_ICR_CRFOI __BIT(2)
124 #define SPI_ICR_CRFUI __BIT(1)
125 #define SPI_ICR_CCI __BIT(0)
126 #define SPI_ICR_ALL __BITS(3, 0)
127
128 #define SPI_DMACR 0x3c
129 #define SPI_DMACR_TDE __BIT(1)
130 #define SPI_DMACR_RDE __BIT(0)
131
132 #define SPI_DMATDLR 0x40
133 #define SPI_DMATDLR_TDL __BITS(4, 0)
134
135 #define SPI_DMARDLR 0x44
136 #define SPI_DMARDLR_RDL __BITS(4, 0)
137
138 #define SPI_TXDR 0x400
139 #define SPI_TXDR_TXDR __BITS(15, 0)
140
141 #define SPI_RXDR 0x800
142 #define SPI_RXDR_RXDR __BITS(15, 0)
143
144 #define SPI_FIFOLEN 32
145
146 static const char * const compatible[] = {
147 #if 0 /* should work on RK3328 but untested */
148 "rockchip,rk3066-spi",
149 "rockchip,rk3328-spi",
150 #endif
151 "rockchip,rk3399-spi",
152 NULL
153 };
154
155 struct rk_spi_softc {
156 device_t sc_dev;
157 bus_space_tag_t sc_bst;
158 bus_space_handle_t sc_bsh;
159 void *sc_ih;
160 u_int sc_spi_freq;
161 struct spi_controller sc_spi;
162 SIMPLEQ_HEAD(,spi_transfer) sc_q;
163 struct spi_transfer *sc_transfer;
164 struct spi_chunk *sc_rchunk, *sc_wchunk;
165 volatile bool sc_running;
166 };
167
168 #define SPIREG_READ(sc, reg) \
169 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
170 #define SPIREG_WRITE(sc, reg, val) \
171 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
172
173 static struct spi_controller *rk_spi_get_controller(device_t);
174 static int rk_spi_match(device_t, cfdata_t, void *);
175 static void rk_spi_attach(device_t, device_t, void *);
176
177 static int rk_spi_configure(void *, int, int, int);
178 static int rk_spi_transfer(void *, struct spi_transfer *);
179
180 static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t);
181 static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t);
182 static void rk_spi_rxtx(struct rk_spi_softc * const);
183 static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const);
184 static void rk_spi_start(struct rk_spi_softc * const);
185 static int rk_spi_intr(void *);
186
187 CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc),
188 rk_spi_match, rk_spi_attach, NULL, NULL);
189
190 static const struct fdtbus_spi_controller_func rk_spi_funcs = {
191 .get_controller = rk_spi_get_controller
192 };
193
194 static struct spi_controller *
195 rk_spi_get_controller(device_t dev)
196 {
197 struct rk_spi_softc * const sc = device_private(dev);
198
199 return &sc->sc_spi;
200 }
201
202 static int
203 rk_spi_match(device_t parent, cfdata_t cf, void *aux)
204 {
205 struct fdt_attach_args * const faa = aux;
206
207 return of_match_compatible(faa->faa_phandle, compatible);
208 }
209
210 static void
211 rk_spi_attach(device_t parent, device_t self, void *aux)
212 {
213 struct rk_spi_softc * const sc = device_private(self);
214 struct fdt_attach_args * const faa = aux;
215 const int phandle = faa->faa_phandle;
216 bus_addr_t addr;
217 bus_size_t size;
218 struct clk *sclk, *pclk;
219 char intrstr[128];
220
221 sc->sc_dev = self;
222 sc->sc_bst = faa->faa_bst;
223 SIMPLEQ_INIT(&sc->sc_q);
224
225 if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL
226 || clk_enable(sclk) != 0) {
227 aprint_error(": couldn't enable sclk\n");
228 return;
229 }
230
231 if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL
232 || clk_enable(pclk) != 0) {
233 aprint_error(": couldn't enable pclk\n");
234 return;
235 }
236
237 sc->sc_spi_freq = clk_get_rate(sclk);
238
239 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
240 || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
241 aprint_error(": couldn't map registers\n");
242 return;
243 }
244
245 SPIREG_WRITE(sc, SPI_ENR, 0);
246 SPIREG_WRITE(sc, SPI_IMR, 0);
247
248 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
249 aprint_error(": failed to decode interrupt\n");
250 return;
251 }
252
253 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_VM, 0, rk_spi_intr, sc);
254 if (sc->sc_ih == NULL) {
255 aprint_error(": unable to establish interrupt\n");
256 return;
257 }
258
259 aprint_naive("\n");
260 aprint_normal(": SPI\n");
261 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
262
263 sc->sc_spi.sct_cookie = sc;
264 sc->sc_spi.sct_configure = rk_spi_configure;
265 sc->sc_spi.sct_transfer = rk_spi_transfer;
266 sc->sc_spi.sct_nslaves = 2;
267
268 fdtbus_register_spi_controller(self, phandle, &rk_spi_funcs);
269 (void) fdtbus_attach_spibus(self, phandle, spibus_print);
270 }
271
272 static int
273 rk_spi_configure(void *cookie, int slave, int mode, int speed)
274 {
275 struct rk_spi_softc * const sc = cookie;
276 uint32_t ctrlr0;
277 uint16_t divider;
278
279 divider = (sc->sc_spi_freq / speed) & ~1;
280 if (divider < 2) {
281 aprint_error_dev(sc->sc_dev,
282 "spi_clk %u is too low for speed %u, using speed %u\n",
283 sc->sc_spi_freq, speed, sc->sc_spi_freq / 2);
284 divider = 2;
285 }
286
287 if (slave >= sc->sc_spi.sct_nslaves)
288 return EINVAL;
289
290 ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS);
291
292 switch (mode) {
293 case SPI_MODE_0:
294 ctrlr0 |= 0;
295 break;
296 case SPI_MODE_1:
297 ctrlr0 |= SPI_CTRLR0_SCPH;
298 break;
299 case SPI_MODE_2:
300 ctrlr0 |= SPI_CTRLR0_SCPOL;
301 break;
302 case SPI_MODE_3:
303 ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL;
304 break;
305 default:
306 return EINVAL;
307 }
308
309 SPIREG_WRITE(sc, SPI_ENR, 0);
310 SPIREG_WRITE(sc, SPI_SER, 0);
311 SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0);
312 SPIREG_WRITE(sc, SPI_BAUDR, divider);
313
314 SPIREG_WRITE(sc, SPI_DMACR, 0);
315 SPIREG_WRITE(sc, SPI_DMATDLR, 0);
316 SPIREG_WRITE(sc, SPI_DMARDLR, 0);
317
318 SPIREG_WRITE(sc, SPI_IPR, 0);
319 SPIREG_WRITE(sc, SPI_IMR, 0);
320 SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL);
321
322 SPIREG_WRITE(sc, SPI_ENR, 1);
323
324 return 0;
325 }
326
327 static int
328 rk_spi_transfer(void *cookie, struct spi_transfer *st)
329 {
330 struct rk_spi_softc * const sc = cookie;
331 int s;
332
333 s = splbio();
334 spi_transq_enqueue(&sc->sc_q, st);
335 if (sc->sc_running == false) {
336 rk_spi_start(sc);
337 }
338 splx(s);
339
340 return 0;
341 }
342
343 static void
344 rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen)
345 {
346 struct spi_chunk *chunk = sc->sc_wchunk;
347 size_t len;
348 uint8_t b;
349
350 if (chunk == NULL)
351 return;
352
353 len = MIN(maxlen, chunk->chunk_wresid);
354 chunk->chunk_wresid -= len;
355 while (len--) {
356 if (chunk->chunk_wptr) {
357 b = *chunk->chunk_wptr++;
358 } else {
359 b = 0;
360 }
361 bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b);
362 }
363 if (sc->sc_wchunk->chunk_wresid == 0) {
364 sc->sc_wchunk = sc->sc_wchunk->chunk_next;
365 }
366 }
367
368 static void
369 rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen)
370 {
371 struct spi_chunk *chunk = sc->sc_rchunk;
372 size_t len;
373 uint8_t b;
374
375 if (chunk == NULL)
376 return;
377
378 len = MIN(maxlen, chunk->chunk_rresid);
379 chunk->chunk_rresid -= len;
380
381 while (len--) {
382 b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR);
383 if (chunk->chunk_rptr) {
384 *chunk->chunk_rptr++ = b;
385 }
386 }
387 if (sc->sc_rchunk->chunk_rresid == 0) {
388 sc->sc_rchunk = sc->sc_rchunk->chunk_next;
389 }
390 }
391
392 static void
393 rk_spi_rxtx(struct rk_spi_softc * const sc)
394 {
395 bool again;
396 uint32_t reg;
397 size_t avail;
398
399 /* Service both FIFOs until no more progress can be made. */
400 again = true;
401 while (again) {
402 again = false;
403 reg = SPIREG_READ(sc, SPI_RXFLR);
404 avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR);
405 if (avail > 0) {
406 KASSERT(sc->sc_rchunk != NULL);
407 rk_spi_rxfifo_drain(sc, avail);
408 again = true;
409 }
410 reg = SPIREG_READ(sc, SPI_TXFLR);
411 avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR);
412 if (avail > 0 && sc->sc_wchunk != NULL) {
413 rk_spi_txfifo_fill(sc, avail);
414 again = true;
415 }
416 }
417 }
418
419 static void
420 rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc)
421 {
422 uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM;
423 int len;
424
425 /*
426 * Delay rx interrupts until the FIFO has the # of bytes we'd
427 * ideally like to receive, or FIFO is half full.
428 */
429 len = sc->sc_rchunk != NULL
430 ? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0;
431 if (len > 0) {
432 SPIREG_WRITE(sc, SPI_RXFTLR, len - 1);
433 imr |= SPI_IMR_RFFIM;
434 }
435
436 /*
437 * Delay tx interrupts until the FIFO can accept the # of bytes we'd
438 * ideally like to transmit, or the FIFO is half empty.
439 */
440 len = sc->sc_wchunk != NULL
441 ? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0;
442 if (len > 0) {
443 SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len);
444 imr |= SPI_IMR_TFEIM;
445 }
446
447 /* If xfer is done, then interrupt as soon as the tx fifo is empty. */
448 if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) {
449 SPIREG_WRITE(sc, SPI_TXFTLR, 0);
450 imr |= SPI_IMR_TFEIM;
451 }
452
453 SPIREG_WRITE(sc, SPI_IMR, imr);
454 }
455
456 static void
457 rk_spi_start(struct rk_spi_softc * const sc)
458 {
459 struct spi_transfer *st;
460
461 while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
462 spi_transq_dequeue(&sc->sc_q);
463 KASSERT(sc->sc_transfer == NULL);
464 sc->sc_transfer = st;
465 sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
466 sc->sc_running = true;
467
468 KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
469 SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave);
470
471 rk_spi_rxtx(sc);
472 rk_spi_set_interrupt_mask(sc);
473
474 if (!cold)
475 return;
476
477 for (;;) {
478 (void) rk_spi_intr(sc);
479 if (ISSET(st->st_flags, SPI_F_DONE))
480 break;
481 }
482 }
483 sc->sc_running = false;
484 }
485
486 static int
487 rk_spi_intr(void *cookie)
488 {
489 struct rk_spi_softc * const sc = cookie;
490 struct spi_transfer *st;
491 uint32_t isr;
492 uint32_t sr;
493 uint32_t icr = SPI_ICR_CCI;
494
495 isr = SPIREG_READ(sc, SPI_ISR);
496 if (!isr)
497 return 0;
498
499 if (ISSET(isr, SPI_ISR_RFOIS)) {
500 device_printf(sc->sc_dev, "RXFIFO overflow\n");
501 icr |= SPI_ICR_CRFOI;
502 }
503 if (ISSET(isr, SPI_ISR_RFUIS)) {
504 device_printf(sc->sc_dev, "RXFIFO underflow\n");
505 icr |= SPI_ICR_CRFUI;
506 }
507 if (ISSET(isr, SPI_ISR_TFOIS)) {
508 device_printf(sc->sc_dev, "TXFIFO overflow\n");
509 icr |= SPI_ICR_CTFOI;
510 }
511
512 rk_spi_rxtx(sc);
513
514 if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) {
515 do {
516 sr = SPIREG_READ(sc, SPI_SR);
517 } while (ISSET(sr, SPI_SR_BSF));
518 SPIREG_WRITE(sc, SPI_IMR, 0);
519 SPIREG_WRITE(sc, SPI_SER, 0);
520 st = sc->sc_transfer;
521 sc->sc_transfer = NULL;
522 KASSERT(st != NULL);
523 spi_done(st, 0);
524 sc->sc_running = false;
525 } else {
526 rk_spi_set_interrupt_mask(sc);
527 }
528
529 SPIREG_WRITE(sc, SPI_ICR, icr);
530
531 return 1;
532 }
533