rk_spi.c revision 1.6 1 /* $NetBSD: rk_spi.c,v 1.6 2021/01/27 03:10:19 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tobias Nygren.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.6 2021/01/27 03:10:19 thorpej Exp $");
34
35 #include <sys/param.h>
36 #include <sys/device.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/intr.h>
40 #include <sys/kernel.h>
41 #include <sys/bitops.h>
42 #include <dev/spi/spivar.h>
43 #include <dev/fdt/fdtvar.h>
44 #include <arm/fdt/arm_fdtvar.h>
45
46 #define SPI_CTRLR0 0x00
47 #define SPI_CTRLR0_MTM __BIT(21)
48 #define SPI_CTRLR0_OPM __BIT(20)
49 #define SPI_CTRLR0_XFM __BITS(19, 18)
50 #define SPI_CTRLR0_FRF __BITS(17, 16)
51 #define SPI_CTRLR0_RSD __BITS(15, 14)
52 #define SPI_CTRLR0_BHT __BIT(13)
53 #define SPI_CTRLR0_FBM __BIT(12)
54 #define SPI_CTRLR0_EM __BIT(11)
55 #define SPI_CTRLR0_RW __BIT(10)
56 #define SPI_CTRLR0_CSM __BITS(9, 8)
57 #define SPI_CTRLR0_SCPOL __BIT(7)
58 #define SPI_CTRLR0_SCPH __BIT(6)
59 #define SPI_CTRLR0_CFS __BITS(5, 2)
60 #define SPI_CTRLR0_DFS __BITS(1, 0)
61 #define SPI_CTRLR0_DFS_4BIT 0x0
62 #define SPI_CTRLR0_DFS_8BIT 0x1
63 #define SPI_CTRLR0_DFS_16BIT 0x2
64
65 #define SPI_CTRLR1 0x04
66 #define SPI_CTRLR1_NDM __BITS(15, 0)
67
68 #define SPI_ENR 0x08
69 #define SPI_ENR_ENR __BIT(0)
70
71 #define SPI_SER 0x0c
72 #define SPI_SER_SER1 __BIT(1)
73 #define SPI_SER_SER0 __BIT(0)
74
75 #define SPI_BAUDR 0x10
76 #define SPI_BAUDR_BAUDR __BITS(15, 0)
77
78 #define SPI_TXFTLR 0x14
79 #define SPI_TXFTLR_TXFLTR __BITS(4, 0)
80
81 #define SPI_RXFTLR 0x18
82 #define SPI_RXFLTR_RXFLTR __BITS(4, 0)
83
84 #define SPI_TXFLR 0x1c
85 #define SPI_TXFLR_TXFLR __BITS(5, 0)
86
87 #define SPI_RXFLR 0x20
88 #define SPI_RXFLR_RXFLR __BITS(5, 0)
89
90 #define SPI_SR 0x24
91 #define SPI_SR_RFF __BIT(4)
92 #define SPI_SR_RFE __BIT(3)
93 #define SPI_SR_TFE __BIT(2)
94 #define SPI_SR_TFF __BIT(1)
95 #define SPI_SR_BSF __BIT(0)
96
97 #define SPI_IPR 0x28
98 #define SPI_IPR_IPR __BIT(0)
99
100 #define SPI_IMR 0x2c
101 #define SPI_IMR_RFFIM __BIT(4)
102 #define SPI_IMR_RFOIM __BIT(3)
103 #define SPI_IMR_RFUIM __BIT(2)
104 #define SPI_IMR_TFOIM __BIT(1)
105 #define SPI_IMR_TFEIM __BIT(0)
106
107 #define SPI_ISR 0x30
108 #define SPI_ISR_RFFIS __BIT(4)
109 #define SPI_ISR_RFOIS __BIT(3)
110 #define SPI_ISR_RFUIS __BIT(2)
111 #define SPI_ISR_TFOIS __BIT(1)
112 #define SPI_ISR_TFEIS __BIT(0)
113
114 #define SPI_RISR 0x34
115 #define SPI_RISR_RFFRIS __BIT(4)
116 #define SPI_RISR_RFORIS __BIT(3)
117 #define SPI_RISR_RFURIS __BIT(2)
118 #define SPI_RISR_TFORIS __BIT(1)
119 #define SPI_RISR_TFERIS __BIT(0)
120
121 #define SPI_ICR 0x38
122 #define SPI_ICR_CTFOI __BIT(3)
123 #define SPI_ICR_CRFOI __BIT(2)
124 #define SPI_ICR_CRFUI __BIT(1)
125 #define SPI_ICR_CCI __BIT(0)
126 #define SPI_ICR_ALL __BITS(3, 0)
127
128 #define SPI_DMACR 0x3c
129 #define SPI_DMACR_TDE __BIT(1)
130 #define SPI_DMACR_RDE __BIT(0)
131
132 #define SPI_DMATDLR 0x40
133 #define SPI_DMATDLR_TDL __BITS(4, 0)
134
135 #define SPI_DMARDLR 0x44
136 #define SPI_DMARDLR_RDL __BITS(4, 0)
137
138 #define SPI_TXDR 0x400
139 #define SPI_TXDR_TXDR __BITS(15, 0)
140
141 #define SPI_RXDR 0x800
142 #define SPI_RXDR_RXDR __BITS(15, 0)
143
144 #define SPI_FIFOLEN 32
145
146 static const struct device_compatible_entry compat_data[] = {
147 #if 0 /* should work on RK3328 but untested */
148 { .compat = "rockchip,rk3066-spi" },
149 { .compat = "rockchip,rk3328-spi" },
150 #endif
151 { .compat = "rockchip,rk3399-spi" },
152 DEVICE_COMPAT_EOL
153 };
154
155 struct rk_spi_softc {
156 device_t sc_dev;
157 bus_space_tag_t sc_bst;
158 bus_space_handle_t sc_bsh;
159 void *sc_ih;
160 u_int sc_spi_freq;
161 struct spi_controller sc_spi;
162 SIMPLEQ_HEAD(,spi_transfer) sc_q;
163 struct spi_transfer *sc_transfer;
164 struct spi_chunk *sc_rchunk, *sc_wchunk;
165 volatile bool sc_running;
166 };
167
168 #define SPIREG_READ(sc, reg) \
169 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
170 #define SPIREG_WRITE(sc, reg, val) \
171 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
172
173 static struct spi_controller *rk_spi_get_controller(device_t);
174 static int rk_spi_match(device_t, cfdata_t, void *);
175 static void rk_spi_attach(device_t, device_t, void *);
176
177 static int rk_spi_configure(void *, int, int, int);
178 static int rk_spi_transfer(void *, struct spi_transfer *);
179
180 static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t);
181 static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t);
182 static void rk_spi_rxtx(struct rk_spi_softc * const);
183 static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const);
184 static void rk_spi_start(struct rk_spi_softc * const);
185 static int rk_spi_intr(void *);
186
187 CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc),
188 rk_spi_match, rk_spi_attach, NULL, NULL);
189
190 static const struct fdtbus_spi_controller_func rk_spi_funcs = {
191 .get_controller = rk_spi_get_controller
192 };
193
194 static struct spi_controller *
195 rk_spi_get_controller(device_t dev)
196 {
197 struct rk_spi_softc * const sc = device_private(dev);
198
199 return &sc->sc_spi;
200 }
201
202 static int
203 rk_spi_match(device_t parent, cfdata_t cf, void *aux)
204 {
205 struct fdt_attach_args * const faa = aux;
206
207 return of_compatible_match(faa->faa_phandle, compat_data);
208 }
209
210 static void
211 rk_spi_attach(device_t parent, device_t self, void *aux)
212 {
213 struct rk_spi_softc * const sc = device_private(self);
214 struct fdt_attach_args * const faa = aux;
215 const int phandle = faa->faa_phandle;
216 bus_addr_t addr;
217 bus_size_t size;
218 struct clk *sclk, *pclk;
219 char intrstr[128];
220
221 sc->sc_dev = self;
222 sc->sc_bst = faa->faa_bst;
223 SIMPLEQ_INIT(&sc->sc_q);
224
225 if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL
226 || clk_enable(sclk) != 0) {
227 aprint_error(": couldn't enable sclk\n");
228 return;
229 }
230
231 if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL
232 || clk_enable(pclk) != 0) {
233 aprint_error(": couldn't enable pclk\n");
234 return;
235 }
236
237 sc->sc_spi_freq = clk_get_rate(sclk);
238
239 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
240 || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
241 aprint_error(": couldn't map registers\n");
242 return;
243 }
244
245 SPIREG_WRITE(sc, SPI_ENR, 0);
246 SPIREG_WRITE(sc, SPI_IMR, 0);
247
248 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
249 aprint_error(": failed to decode interrupt\n");
250 return;
251 }
252
253 sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
254 rk_spi_intr, sc, device_xname(self));
255 if (sc->sc_ih == NULL) {
256 aprint_error(": unable to establish interrupt\n");
257 return;
258 }
259
260 aprint_naive("\n");
261 aprint_normal(": SPI\n");
262 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
263
264 sc->sc_spi.sct_cookie = sc;
265 sc->sc_spi.sct_configure = rk_spi_configure;
266 sc->sc_spi.sct_transfer = rk_spi_transfer;
267 sc->sc_spi.sct_nslaves = 2;
268
269 fdtbus_register_spi_controller(self, phandle, &rk_spi_funcs);
270 (void) fdtbus_attach_spibus(self, phandle, spibus_print);
271 }
272
273 static int
274 rk_spi_configure(void *cookie, int slave, int mode, int speed)
275 {
276 struct rk_spi_softc * const sc = cookie;
277 uint32_t ctrlr0;
278 uint16_t divider;
279
280 divider = (sc->sc_spi_freq / speed) & ~1;
281 if (divider < 2) {
282 aprint_error_dev(sc->sc_dev,
283 "spi_clk %u is too low for speed %u, using speed %u\n",
284 sc->sc_spi_freq, speed, sc->sc_spi_freq / 2);
285 divider = 2;
286 }
287
288 if (slave >= sc->sc_spi.sct_nslaves)
289 return EINVAL;
290
291 ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS);
292
293 switch (mode) {
294 case SPI_MODE_0:
295 ctrlr0 |= 0;
296 break;
297 case SPI_MODE_1:
298 ctrlr0 |= SPI_CTRLR0_SCPH;
299 break;
300 case SPI_MODE_2:
301 ctrlr0 |= SPI_CTRLR0_SCPOL;
302 break;
303 case SPI_MODE_3:
304 ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL;
305 break;
306 default:
307 return EINVAL;
308 }
309
310 SPIREG_WRITE(sc, SPI_ENR, 0);
311 SPIREG_WRITE(sc, SPI_SER, 0);
312 SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0);
313 SPIREG_WRITE(sc, SPI_BAUDR, divider);
314
315 SPIREG_WRITE(sc, SPI_DMACR, 0);
316 SPIREG_WRITE(sc, SPI_DMATDLR, 0);
317 SPIREG_WRITE(sc, SPI_DMARDLR, 0);
318
319 SPIREG_WRITE(sc, SPI_IPR, 0);
320 SPIREG_WRITE(sc, SPI_IMR, 0);
321 SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL);
322
323 SPIREG_WRITE(sc, SPI_ENR, 1);
324
325 return 0;
326 }
327
328 static int
329 rk_spi_transfer(void *cookie, struct spi_transfer *st)
330 {
331 struct rk_spi_softc * const sc = cookie;
332 int s;
333
334 s = splbio();
335 spi_transq_enqueue(&sc->sc_q, st);
336 if (sc->sc_running == false) {
337 rk_spi_start(sc);
338 }
339 splx(s);
340
341 return 0;
342 }
343
344 static void
345 rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen)
346 {
347 struct spi_chunk *chunk = sc->sc_wchunk;
348 size_t len;
349 uint8_t b;
350
351 if (chunk == NULL)
352 return;
353
354 len = MIN(maxlen, chunk->chunk_wresid);
355 chunk->chunk_wresid -= len;
356 while (len--) {
357 if (chunk->chunk_wptr) {
358 b = *chunk->chunk_wptr++;
359 } else {
360 b = 0;
361 }
362 bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b);
363 }
364 if (sc->sc_wchunk->chunk_wresid == 0) {
365 sc->sc_wchunk = sc->sc_wchunk->chunk_next;
366 }
367 }
368
369 static void
370 rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen)
371 {
372 struct spi_chunk *chunk = sc->sc_rchunk;
373 size_t len;
374 uint8_t b;
375
376 if (chunk == NULL)
377 return;
378
379 len = MIN(maxlen, chunk->chunk_rresid);
380 chunk->chunk_rresid -= len;
381
382 while (len--) {
383 b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR);
384 if (chunk->chunk_rptr) {
385 *chunk->chunk_rptr++ = b;
386 }
387 }
388 if (sc->sc_rchunk->chunk_rresid == 0) {
389 sc->sc_rchunk = sc->sc_rchunk->chunk_next;
390 }
391 }
392
393 static void
394 rk_spi_rxtx(struct rk_spi_softc * const sc)
395 {
396 bool again;
397 uint32_t reg;
398 size_t avail;
399
400 /* Service both FIFOs until no more progress can be made. */
401 again = true;
402 while (again) {
403 again = false;
404 reg = SPIREG_READ(sc, SPI_RXFLR);
405 avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR);
406 if (avail > 0) {
407 KASSERT(sc->sc_rchunk != NULL);
408 rk_spi_rxfifo_drain(sc, avail);
409 again = true;
410 }
411 reg = SPIREG_READ(sc, SPI_TXFLR);
412 avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR);
413 if (avail > 0 && sc->sc_wchunk != NULL) {
414 rk_spi_txfifo_fill(sc, avail);
415 again = true;
416 }
417 }
418 }
419
420 static void
421 rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc)
422 {
423 uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM;
424 int len;
425
426 /*
427 * Delay rx interrupts until the FIFO has the # of bytes we'd
428 * ideally like to receive, or FIFO is half full.
429 */
430 len = sc->sc_rchunk != NULL
431 ? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0;
432 if (len > 0) {
433 SPIREG_WRITE(sc, SPI_RXFTLR, len - 1);
434 imr |= SPI_IMR_RFFIM;
435 }
436
437 /*
438 * Delay tx interrupts until the FIFO can accept the # of bytes we'd
439 * ideally like to transmit, or the FIFO is half empty.
440 */
441 len = sc->sc_wchunk != NULL
442 ? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0;
443 if (len > 0) {
444 SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len);
445 imr |= SPI_IMR_TFEIM;
446 }
447
448 /* If xfer is done, then interrupt as soon as the tx fifo is empty. */
449 if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) {
450 SPIREG_WRITE(sc, SPI_TXFTLR, 0);
451 imr |= SPI_IMR_TFEIM;
452 }
453
454 SPIREG_WRITE(sc, SPI_IMR, imr);
455 }
456
457 static void
458 rk_spi_start(struct rk_spi_softc * const sc)
459 {
460 struct spi_transfer *st;
461
462 while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
463 spi_transq_dequeue(&sc->sc_q);
464 KASSERT(sc->sc_transfer == NULL);
465 sc->sc_transfer = st;
466 sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
467 sc->sc_running = true;
468
469 KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
470 SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave);
471
472 rk_spi_rxtx(sc);
473 rk_spi_set_interrupt_mask(sc);
474
475 if (!cold)
476 return;
477
478 for (;;) {
479 (void) rk_spi_intr(sc);
480 if (ISSET(st->st_flags, SPI_F_DONE))
481 break;
482 }
483 }
484 sc->sc_running = false;
485 }
486
487 static int
488 rk_spi_intr(void *cookie)
489 {
490 struct rk_spi_softc * const sc = cookie;
491 struct spi_transfer *st;
492 uint32_t isr;
493 uint32_t sr;
494 uint32_t icr = SPI_ICR_CCI;
495
496 isr = SPIREG_READ(sc, SPI_ISR);
497 if (!isr)
498 return 0;
499
500 if (ISSET(isr, SPI_ISR_RFOIS)) {
501 device_printf(sc->sc_dev, "RXFIFO overflow\n");
502 icr |= SPI_ICR_CRFOI;
503 }
504 if (ISSET(isr, SPI_ISR_RFUIS)) {
505 device_printf(sc->sc_dev, "RXFIFO underflow\n");
506 icr |= SPI_ICR_CRFUI;
507 }
508 if (ISSET(isr, SPI_ISR_TFOIS)) {
509 device_printf(sc->sc_dev, "TXFIFO overflow\n");
510 icr |= SPI_ICR_CTFOI;
511 }
512
513 rk_spi_rxtx(sc);
514
515 if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) {
516 do {
517 sr = SPIREG_READ(sc, SPI_SR);
518 } while (ISSET(sr, SPI_SR_BSF));
519 SPIREG_WRITE(sc, SPI_IMR, 0);
520 SPIREG_WRITE(sc, SPI_SER, 0);
521 st = sc->sc_transfer;
522 sc->sc_transfer = NULL;
523 KASSERT(st != NULL);
524 spi_done(st, 0);
525 sc->sc_running = false;
526 } else {
527 rk_spi_set_interrupt_mask(sc);
528 }
529
530 SPIREG_WRITE(sc, SPI_ICR, icr);
531
532 return 1;
533 }
534