rk_spi.c revision 1.6.4.1 1 /* $NetBSD: rk_spi.c,v 1.6.4.1 2021/05/19 02:58:26 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tobias Nygren.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.6.4.1 2021/05/19 02:58:26 thorpej Exp $");
34
35 #include <sys/param.h>
36 #include <sys/device.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/intr.h>
40 #include <sys/kernel.h>
41 #include <sys/bitops.h>
42 #include <dev/spi/spivar.h>
43 #include <dev/fdt/fdtvar.h>
44 #include <arm/fdt/arm_fdtvar.h>
45
46 #define SPI_CTRLR0 0x00
47 #define SPI_CTRLR0_MTM __BIT(21)
48 #define SPI_CTRLR0_OPM __BIT(20)
49 #define SPI_CTRLR0_XFM __BITS(19, 18)
50 #define SPI_CTRLR0_FRF __BITS(17, 16)
51 #define SPI_CTRLR0_RSD __BITS(15, 14)
52 #define SPI_CTRLR0_BHT __BIT(13)
53 #define SPI_CTRLR0_FBM __BIT(12)
54 #define SPI_CTRLR0_EM __BIT(11)
55 #define SPI_CTRLR0_RW __BIT(10)
56 #define SPI_CTRLR0_CSM __BITS(9, 8)
57 #define SPI_CTRLR0_SCPOL __BIT(7)
58 #define SPI_CTRLR0_SCPH __BIT(6)
59 #define SPI_CTRLR0_CFS __BITS(5, 2)
60 #define SPI_CTRLR0_DFS __BITS(1, 0)
61 #define SPI_CTRLR0_DFS_4BIT 0x0
62 #define SPI_CTRLR0_DFS_8BIT 0x1
63 #define SPI_CTRLR0_DFS_16BIT 0x2
64
65 #define SPI_CTRLR1 0x04
66 #define SPI_CTRLR1_NDM __BITS(15, 0)
67
68 #define SPI_ENR 0x08
69 #define SPI_ENR_ENR __BIT(0)
70
71 #define SPI_SER 0x0c
72 #define SPI_SER_SER1 __BIT(1)
73 #define SPI_SER_SER0 __BIT(0)
74
75 #define SPI_BAUDR 0x10
76 #define SPI_BAUDR_BAUDR __BITS(15, 0)
77
78 #define SPI_TXFTLR 0x14
79 #define SPI_TXFTLR_TXFLTR __BITS(4, 0)
80
81 #define SPI_RXFTLR 0x18
82 #define SPI_RXFLTR_RXFLTR __BITS(4, 0)
83
84 #define SPI_TXFLR 0x1c
85 #define SPI_TXFLR_TXFLR __BITS(5, 0)
86
87 #define SPI_RXFLR 0x20
88 #define SPI_RXFLR_RXFLR __BITS(5, 0)
89
90 #define SPI_SR 0x24
91 #define SPI_SR_RFF __BIT(4)
92 #define SPI_SR_RFE __BIT(3)
93 #define SPI_SR_TFE __BIT(2)
94 #define SPI_SR_TFF __BIT(1)
95 #define SPI_SR_BSF __BIT(0)
96
97 #define SPI_IPR 0x28
98 #define SPI_IPR_IPR __BIT(0)
99
100 #define SPI_IMR 0x2c
101 #define SPI_IMR_RFFIM __BIT(4)
102 #define SPI_IMR_RFOIM __BIT(3)
103 #define SPI_IMR_RFUIM __BIT(2)
104 #define SPI_IMR_TFOIM __BIT(1)
105 #define SPI_IMR_TFEIM __BIT(0)
106
107 #define SPI_ISR 0x30
108 #define SPI_ISR_RFFIS __BIT(4)
109 #define SPI_ISR_RFOIS __BIT(3)
110 #define SPI_ISR_RFUIS __BIT(2)
111 #define SPI_ISR_TFOIS __BIT(1)
112 #define SPI_ISR_TFEIS __BIT(0)
113
114 #define SPI_RISR 0x34
115 #define SPI_RISR_RFFRIS __BIT(4)
116 #define SPI_RISR_RFORIS __BIT(3)
117 #define SPI_RISR_RFURIS __BIT(2)
118 #define SPI_RISR_TFORIS __BIT(1)
119 #define SPI_RISR_TFERIS __BIT(0)
120
121 #define SPI_ICR 0x38
122 #define SPI_ICR_CTFOI __BIT(3)
123 #define SPI_ICR_CRFOI __BIT(2)
124 #define SPI_ICR_CRFUI __BIT(1)
125 #define SPI_ICR_CCI __BIT(0)
126 #define SPI_ICR_ALL __BITS(3, 0)
127
128 #define SPI_DMACR 0x3c
129 #define SPI_DMACR_TDE __BIT(1)
130 #define SPI_DMACR_RDE __BIT(0)
131
132 #define SPI_DMATDLR 0x40
133 #define SPI_DMATDLR_TDL __BITS(4, 0)
134
135 #define SPI_DMARDLR 0x44
136 #define SPI_DMARDLR_RDL __BITS(4, 0)
137
138 #define SPI_TXDR 0x400
139 #define SPI_TXDR_TXDR __BITS(15, 0)
140
141 #define SPI_RXDR 0x800
142 #define SPI_RXDR_RXDR __BITS(15, 0)
143
144 #define SPI_FIFOLEN 32
145
146 static const struct device_compatible_entry compat_data[] = {
147 #if 0 /* should work on RK3328 but untested */
148 { .compat = "rockchip,rk3066-spi" },
149 { .compat = "rockchip,rk3328-spi" },
150 #endif
151 { .compat = "rockchip,rk3399-spi" },
152 DEVICE_COMPAT_EOL
153 };
154
155 struct rk_spi_softc {
156 device_t sc_dev;
157 bus_space_tag_t sc_bst;
158 bus_space_handle_t sc_bsh;
159 void *sc_ih;
160 u_int sc_spi_freq;
161 struct spi_controller sc_spi;
162 SIMPLEQ_HEAD(,spi_transfer) sc_q;
163 struct spi_transfer *sc_transfer;
164 struct spi_chunk *sc_rchunk, *sc_wchunk;
165 volatile bool sc_running;
166 };
167
168 #define SPIREG_READ(sc, reg) \
169 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
170 #define SPIREG_WRITE(sc, reg, val) \
171 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
172
173 static int rk_spi_match(device_t, cfdata_t, void *);
174 static void rk_spi_attach(device_t, device_t, void *);
175
176 static int rk_spi_configure(void *, int, int, int);
177 static int rk_spi_transfer(void *, struct spi_transfer *);
178
179 static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t);
180 static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t);
181 static void rk_spi_rxtx(struct rk_spi_softc * const);
182 static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const);
183 static void rk_spi_start(struct rk_spi_softc * const);
184 static int rk_spi_intr(void *);
185
186 CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc),
187 rk_spi_match, rk_spi_attach, NULL, NULL);
188
189 static int
190 rk_spi_match(device_t parent, cfdata_t cf, void *aux)
191 {
192 struct fdt_attach_args * const faa = aux;
193
194 return of_compatible_match(faa->faa_phandle, compat_data);
195 }
196
197 static void
198 rk_spi_attach(device_t parent, device_t self, void *aux)
199 {
200 struct rk_spi_softc * const sc = device_private(self);
201 struct fdt_attach_args * const faa = aux;
202 const int phandle = faa->faa_phandle;
203 bus_addr_t addr;
204 bus_size_t size;
205 struct clk *sclk, *pclk;
206 char intrstr[128];
207
208 sc->sc_dev = self;
209 sc->sc_bst = faa->faa_bst;
210 SIMPLEQ_INIT(&sc->sc_q);
211
212 if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL
213 || clk_enable(sclk) != 0) {
214 aprint_error(": couldn't enable sclk\n");
215 return;
216 }
217
218 if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL
219 || clk_enable(pclk) != 0) {
220 aprint_error(": couldn't enable pclk\n");
221 return;
222 }
223
224 sc->sc_spi_freq = clk_get_rate(sclk);
225
226 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
227 || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
228 aprint_error(": couldn't map registers\n");
229 return;
230 }
231
232 SPIREG_WRITE(sc, SPI_ENR, 0);
233 SPIREG_WRITE(sc, SPI_IMR, 0);
234
235 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
236 aprint_error(": failed to decode interrupt\n");
237 return;
238 }
239
240 sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
241 rk_spi_intr, sc, device_xname(self));
242 if (sc->sc_ih == NULL) {
243 aprint_error(": unable to establish interrupt\n");
244 return;
245 }
246
247 aprint_naive("\n");
248 aprint_normal(": SPI\n");
249 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
250
251 sc->sc_spi.sct_cookie = sc;
252 sc->sc_spi.sct_configure = rk_spi_configure;
253 sc->sc_spi.sct_transfer = rk_spi_transfer;
254 sc->sc_spi.sct_nslaves = 2;
255
256 fdtbus_register_spi_controller(&sc->sc_spi, phandle);
257
258 struct spibus_attach_args sba = {
259 .sba_controller = &sc->sc_spi,
260 };
261 config_found(self, &sba, spibus_print,
262 CFARG_DEVHANDLE, device_handle(self),
263 CFARG_EOL);
264 }
265
266 static int
267 rk_spi_configure(void *cookie, int slave, int mode, int speed)
268 {
269 struct rk_spi_softc * const sc = cookie;
270 uint32_t ctrlr0;
271 uint16_t divider;
272
273 divider = (sc->sc_spi_freq / speed) & ~1;
274 if (divider < 2) {
275 aprint_error_dev(sc->sc_dev,
276 "spi_clk %u is too low for speed %u, using speed %u\n",
277 sc->sc_spi_freq, speed, sc->sc_spi_freq / 2);
278 divider = 2;
279 }
280
281 if (slave >= sc->sc_spi.sct_nslaves)
282 return EINVAL;
283
284 ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS);
285
286 switch (mode) {
287 case SPI_MODE_0:
288 ctrlr0 |= 0;
289 break;
290 case SPI_MODE_1:
291 ctrlr0 |= SPI_CTRLR0_SCPH;
292 break;
293 case SPI_MODE_2:
294 ctrlr0 |= SPI_CTRLR0_SCPOL;
295 break;
296 case SPI_MODE_3:
297 ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL;
298 break;
299 default:
300 return EINVAL;
301 }
302
303 SPIREG_WRITE(sc, SPI_ENR, 0);
304 SPIREG_WRITE(sc, SPI_SER, 0);
305 SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0);
306 SPIREG_WRITE(sc, SPI_BAUDR, divider);
307
308 SPIREG_WRITE(sc, SPI_DMACR, 0);
309 SPIREG_WRITE(sc, SPI_DMATDLR, 0);
310 SPIREG_WRITE(sc, SPI_DMARDLR, 0);
311
312 SPIREG_WRITE(sc, SPI_IPR, 0);
313 SPIREG_WRITE(sc, SPI_IMR, 0);
314 SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL);
315
316 SPIREG_WRITE(sc, SPI_ENR, 1);
317
318 return 0;
319 }
320
321 static int
322 rk_spi_transfer(void *cookie, struct spi_transfer *st)
323 {
324 struct rk_spi_softc * const sc = cookie;
325 int s;
326
327 s = splbio();
328 spi_transq_enqueue(&sc->sc_q, st);
329 if (sc->sc_running == false) {
330 rk_spi_start(sc);
331 }
332 splx(s);
333
334 return 0;
335 }
336
337 static void
338 rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen)
339 {
340 struct spi_chunk *chunk = sc->sc_wchunk;
341 size_t len;
342 uint8_t b;
343
344 if (chunk == NULL)
345 return;
346
347 len = MIN(maxlen, chunk->chunk_wresid);
348 chunk->chunk_wresid -= len;
349 while (len--) {
350 if (chunk->chunk_wptr) {
351 b = *chunk->chunk_wptr++;
352 } else {
353 b = 0;
354 }
355 bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b);
356 }
357 if (sc->sc_wchunk->chunk_wresid == 0) {
358 sc->sc_wchunk = sc->sc_wchunk->chunk_next;
359 }
360 }
361
362 static void
363 rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen)
364 {
365 struct spi_chunk *chunk = sc->sc_rchunk;
366 size_t len;
367 uint8_t b;
368
369 if (chunk == NULL)
370 return;
371
372 len = MIN(maxlen, chunk->chunk_rresid);
373 chunk->chunk_rresid -= len;
374
375 while (len--) {
376 b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR);
377 if (chunk->chunk_rptr) {
378 *chunk->chunk_rptr++ = b;
379 }
380 }
381 if (sc->sc_rchunk->chunk_rresid == 0) {
382 sc->sc_rchunk = sc->sc_rchunk->chunk_next;
383 }
384 }
385
386 static void
387 rk_spi_rxtx(struct rk_spi_softc * const sc)
388 {
389 bool again;
390 uint32_t reg;
391 size_t avail;
392
393 /* Service both FIFOs until no more progress can be made. */
394 again = true;
395 while (again) {
396 again = false;
397 reg = SPIREG_READ(sc, SPI_RXFLR);
398 avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR);
399 if (avail > 0) {
400 KASSERT(sc->sc_rchunk != NULL);
401 rk_spi_rxfifo_drain(sc, avail);
402 again = true;
403 }
404 reg = SPIREG_READ(sc, SPI_TXFLR);
405 avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR);
406 if (avail > 0 && sc->sc_wchunk != NULL) {
407 rk_spi_txfifo_fill(sc, avail);
408 again = true;
409 }
410 }
411 }
412
413 static void
414 rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc)
415 {
416 uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM;
417 int len;
418
419 /*
420 * Delay rx interrupts until the FIFO has the # of bytes we'd
421 * ideally like to receive, or FIFO is half full.
422 */
423 len = sc->sc_rchunk != NULL
424 ? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0;
425 if (len > 0) {
426 SPIREG_WRITE(sc, SPI_RXFTLR, len - 1);
427 imr |= SPI_IMR_RFFIM;
428 }
429
430 /*
431 * Delay tx interrupts until the FIFO can accept the # of bytes we'd
432 * ideally like to transmit, or the FIFO is half empty.
433 */
434 len = sc->sc_wchunk != NULL
435 ? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0;
436 if (len > 0) {
437 SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len);
438 imr |= SPI_IMR_TFEIM;
439 }
440
441 /* If xfer is done, then interrupt as soon as the tx fifo is empty. */
442 if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) {
443 SPIREG_WRITE(sc, SPI_TXFTLR, 0);
444 imr |= SPI_IMR_TFEIM;
445 }
446
447 SPIREG_WRITE(sc, SPI_IMR, imr);
448 }
449
450 static void
451 rk_spi_start(struct rk_spi_softc * const sc)
452 {
453 struct spi_transfer *st;
454
455 while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
456 spi_transq_dequeue(&sc->sc_q);
457 KASSERT(sc->sc_transfer == NULL);
458 sc->sc_transfer = st;
459 sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
460 sc->sc_running = true;
461
462 KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
463 SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave);
464
465 rk_spi_rxtx(sc);
466 rk_spi_set_interrupt_mask(sc);
467
468 if (!cold)
469 return;
470
471 for (;;) {
472 (void) rk_spi_intr(sc);
473 if (ISSET(st->st_flags, SPI_F_DONE))
474 break;
475 }
476 }
477 sc->sc_running = false;
478 }
479
480 static int
481 rk_spi_intr(void *cookie)
482 {
483 struct rk_spi_softc * const sc = cookie;
484 struct spi_transfer *st;
485 uint32_t isr;
486 uint32_t sr;
487 uint32_t icr = SPI_ICR_CCI;
488
489 isr = SPIREG_READ(sc, SPI_ISR);
490 if (!isr)
491 return 0;
492
493 if (ISSET(isr, SPI_ISR_RFOIS)) {
494 device_printf(sc->sc_dev, "RXFIFO overflow\n");
495 icr |= SPI_ICR_CRFOI;
496 }
497 if (ISSET(isr, SPI_ISR_RFUIS)) {
498 device_printf(sc->sc_dev, "RXFIFO underflow\n");
499 icr |= SPI_ICR_CRFUI;
500 }
501 if (ISSET(isr, SPI_ISR_TFOIS)) {
502 device_printf(sc->sc_dev, "TXFIFO overflow\n");
503 icr |= SPI_ICR_CTFOI;
504 }
505
506 rk_spi_rxtx(sc);
507
508 if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) {
509 do {
510 sr = SPIREG_READ(sc, SPI_SR);
511 } while (ISSET(sr, SPI_SR_BSF));
512 SPIREG_WRITE(sc, SPI_IMR, 0);
513 SPIREG_WRITE(sc, SPI_SER, 0);
514 st = sc->sc_transfer;
515 sc->sc_transfer = NULL;
516 KASSERT(st != NULL);
517 spi_done(st, 0);
518 sc->sc_running = false;
519 } else {
520 rk_spi_set_interrupt_mask(sc);
521 }
522
523 SPIREG_WRITE(sc, SPI_ICR, icr);
524
525 return 1;
526 }
527