rk_tsadc.c revision 1.15 1 1.15 jmcneill /* $NetBSD: rk_tsadc.c,v 1.15 2021/11/13 11:46:32 jmcneill Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 2019 Matthew R. Green
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg * 3. The name of the author may not be used to endorse or promote products
16 1.1 mrg * derived from this software without specific prior written permission.
17 1.1 mrg *
18 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 mrg * SUCH DAMAGE.
29 1.1 mrg */
30 1.1 mrg
31 1.1 mrg #include <sys/cdefs.h>
32 1.1 mrg
33 1.15 jmcneill __KERNEL_RCSID(0, "$NetBSD: rk_tsadc.c,v 1.15 2021/11/13 11:46:32 jmcneill Exp $");
34 1.1 mrg
35 1.1 mrg /*
36 1.1 mrg * Driver for the TSADC temperature sensor monitor in RK3328 and RK3399.
37 1.1 mrg *
38 1.1 mrg * TODO:
39 1.1 mrg * - handle setting various temp values
40 1.1 mrg * - handle DT trips/temp value defaults
41 1.1 mrg * - interrupts aren't triggered (test by lowering warn/crit values), and
42 1.1 mrg * once they work, make the interrupt do something
43 1.1 mrg */
44 1.1 mrg
45 1.1 mrg #include <sys/param.h>
46 1.1 mrg #include <sys/bus.h>
47 1.1 mrg #include <sys/device.h>
48 1.1 mrg #include <sys/intr.h>
49 1.1 mrg #include <sys/systm.h>
50 1.1 mrg #include <sys/time.h>
51 1.1 mrg #include <sys/kmem.h>
52 1.1 mrg
53 1.1 mrg #include <dev/fdt/fdtvar.h>
54 1.1 mrg #include <dev/fdt/syscon.h>
55 1.1 mrg
56 1.1 mrg #include <dev/sysmon/sysmonvar.h>
57 1.1 mrg
58 1.1 mrg #ifdef RKTSADC_DEBUG
59 1.1 mrg #define DPRINTF(fmt, ...) \
60 1.1 mrg printf("%s:%d: " fmt "\n", __func__, __LINE__, ## __VA_ARGS__)
61 1.1 mrg #else
62 1.1 mrg #define DPRINTF(fmt, ...)
63 1.1 mrg #endif
64 1.1 mrg
65 1.1 mrg /* Register definitions */
66 1.1 mrg #define TSADC_USER_CON 0x00
67 1.1 mrg #define TSADC_USER_CON_ADC_STATUS __BIT(12)
68 1.1 mrg #define TSADC_USER_CON_INTER_PD_SOC __BITS(11,6)
69 1.1 mrg #define TSADC_USER_CON_START __BIT(5)
70 1.1 mrg #define TSADC_USER_CON_START_MODE __BIT(4)
71 1.1 mrg #define TSADC_USER_CON_ADC_POWER_CTRL __BIT(3)
72 1.1 mrg #define TSADC_USER_CON_ADC_INPUT_SRC_SEL __BITS(2,0)
73 1.1 mrg #define TSADC_AUTO_CON 0x04
74 1.1 mrg #define TSADC_AUTO_CON_LAST_TSHUT_2CRU __BIT(25)
75 1.1 mrg #define TSADC_AUTO_CON_LAST_TSHUT_2GPIO __BIT(24)
76 1.1 mrg #define TSADC_AUTO_CON_SAMPLE_DLY_SEL __BIT(17)
77 1.1 mrg #define TSADC_AUTO_CON_AUTO_STATUS __BIT(16)
78 1.1 mrg #define TSADC_AUTO_CON_SRC1_LT_EN __BIT(13)
79 1.1 mrg #define TSADC_AUTO_CON_SRC0_LT_EN __BIT(12)
80 1.1 mrg #define TSADC_AUTO_CON_TSHUT_POLARITY __BIT(8)
81 1.1 mrg #define TSADC_AUTO_CON_SRC1_EN __BIT(5)
82 1.1 mrg #define TSADC_AUTO_CON_SRC0_EN __BIT(4)
83 1.1 mrg #define TSADC_AUTO_CON_Q_SEL __BIT(1)
84 1.1 mrg #define TSADC_AUTO_CON_AUTO_EN __BIT(0)
85 1.1 mrg #define TSADC_INT_EN 0x08
86 1.1 mrg #define TSADC_INT_EN_EOC_INT_EN __BIT(16)
87 1.1 mrg #define TSADC_INT_EN_LT_INTEN_SRC1 __BIT(13)
88 1.1 mrg #define TSADC_INT_EN_LT_INTEN_SRC0 __BIT(12)
89 1.1 mrg #define TSADC_INT_EN_TSHUT_2CRU_EN_SRC1 __BIT(9)
90 1.1 mrg #define TSADC_INT_EN_TSHUT_2CRU_EN_SRC0 __BIT(8)
91 1.1 mrg #define TSADC_INT_EN_TSHUT_2GPIO_EN_SRC1 __BIT(5)
92 1.1 mrg #define TSADC_INT_EN_TSHUT_2GPIO_EN_SRC0 __BIT(4)
93 1.1 mrg #define TSADC_INT_EN_HT_INTEN_SRC1 __BIT(1)
94 1.1 mrg #define TSADC_INT_EN_HT_INTEN_SRC0 __BIT(0)
95 1.1 mrg #define TSADC_INT_PD 0x0c
96 1.15 jmcneill #define TSADC_INT_PD_EOC_INT_PD_V3 __BIT(16)
97 1.1 mrg #define TSADC_INT_PD_LT_IRQ_SRC1 __BIT(13)
98 1.1 mrg #define TSADC_INT_PD_LT_IRQ_SRC0 __BIT(12)
99 1.15 jmcneill #define TSADC_INT_PD_EOC_INT_PD_V2 __BIT(8)
100 1.1 mrg #define TSADC_INT_PD_TSHUT_O_SRC1 __BIT(5)
101 1.1 mrg #define TSADC_INT_PD_TSHUT_O_SRC0 __BIT(4)
102 1.1 mrg #define TSADC_INT_PD_HT_IRQ_SRC1 __BIT(1)
103 1.1 mrg #define TSADC_INT_PD_HT_IRQ_SRC0 __BIT(0)
104 1.1 mrg #define TSADC_DATA0 0x20
105 1.1 mrg #define TSADC_DATA0_ADC_DATA __BITS(11,0)
106 1.1 mrg #define TSADC_DATA1 0x24
107 1.1 mrg #define TSADC_DATA1_ADC_DATA __BITS(11,0)
108 1.1 mrg #define TSADC_COMP0_INT 0x30
109 1.1 mrg #define TSADC_COMP0_INT_COMP_SRC0 __BITS(11,0)
110 1.1 mrg #define TSADC_COMP1_INT 0x34
111 1.1 mrg #define TSADC_COMP1_INT_COMP_SRC1 __BITS(11,0)
112 1.1 mrg #define TSADC_COMP0_SHUT 0x40
113 1.1 mrg #define TSADC_COMP0_SHUT_COMP_SRC0 __BITS(11,0)
114 1.1 mrg #define TSADC_COMP1_SHUT 0x44
115 1.1 mrg #define TSADC_COMP1_SHUT_COMP_SRC1 __BITS(11,0)
116 1.1 mrg #define TSADC_HIGH_INT_DEBOUNCE 0x60
117 1.1 mrg #define TSADC_HIGH_INT_DEBOUNCE_TEMP __BITS(7,0)
118 1.1 mrg #define TSADC_HIGH_TSHUT_DEBOUNCE 0x64
119 1.1 mrg #define TSADC_HIGH_TSHUT_DEBOUNCE_TEMP __BITS(7,0)
120 1.1 mrg #define TSADC_AUTO_PERIOD 0x68
121 1.1 mrg #define TSADC_AUTO_PERIOD_TEMP __BITS(31,0)
122 1.1 mrg #define TSADC_AUTO_PERIOD_HT 0x6c
123 1.1 mrg #define TSADC_AUTO_PERIOD_HT_TEMP __BITS(31,0)
124 1.1 mrg #define TSADC_COMP0_LOW_INT 0x80
125 1.1 mrg #define TSADC_COMP0_LOW_INT_COMP_SRC0 __BITS(11,0)
126 1.1 mrg #define TSADC_COMP1_LOW_INT 0x84
127 1.1 mrg #define TSADC_COMP1_LOW_INT_COMP_SRC1 __BITS(11,0)
128 1.1 mrg
129 1.15 jmcneill #define RK3288_TSADC_AUTO_PERIOD_TIME 250 /* 250ms */
130 1.15 jmcneill #define RK3288_TSADC_AUTO_PERIOD_HT_TIME 50 /* 50ms */
131 1.4 mrg #define RK3328_TSADC_AUTO_PERIOD_TIME 250 /* 250ms */
132 1.4 mrg #define RK3399_TSADC_AUTO_PERIOD_TIME 1875 /* 2.5ms */
133 1.1 mrg #define TSADC_HT_DEBOUNCE_COUNT 4
134 1.1 mrg
135 1.1 mrg /*
136 1.1 mrg * All this magic is taking from the Linux rockchip_thermal driver.
137 1.1 mrg *
138 1.1 mrg * VCM means "voltage common mode", but the documentation for RK3399
139 1.1 mrg * does not mention this and I don't know what any of this really
140 1.1 mrg * is for.
141 1.1 mrg */
142 1.1 mrg #define RK3399_GRF_SARADC_TESTBIT 0xe644
143 1.1 mrg #define RK3399_GRF_SARADC_TESTBIT_ON (0x10001 << 2)
144 1.1 mrg #define RK3399_GRF_TSADC_TESTBIT_L 0xe648
145 1.1 mrg #define RK3399_GRF_TSADC_TESTBIT_VCM_EN_L (0x10001 << 7)
146 1.1 mrg #define RK3399_GRF_TSADC_TESTBIT_H 0xe64c
147 1.1 mrg #define RK3399_GRF_TSADC_TESTBIT_VCM_EN_H (0x10001 << 7)
148 1.1 mrg #define RK3399_GRF_TSADC_TESTBIT_H_ON (0x10001 << 2)
149 1.1 mrg
150 1.1 mrg #define TEMP_uC_TO_uK 273150000
151 1.1 mrg
152 1.1 mrg #define TSHUT_MODE_CPU 0
153 1.1 mrg #define TSHUT_MODE_GPIO 1
154 1.1 mrg
155 1.1 mrg #define TSHUT_LOW_ACTIVE 0
156 1.1 mrg #define TSHUT_HIGH_ACTIVE 1
157 1.1 mrg
158 1.1 mrg #define TSHUT_DEF_TEMP 95000
159 1.1 mrg
160 1.1 mrg #define TSADC_DATA_MAX 0xfff
161 1.1 mrg
162 1.5 mrg #define MAX_SENSORS 2
163 1.1 mrg
164 1.4 mrg typedef struct rk_data_array {
165 1.1 mrg uint32_t data; /* register value */
166 1.1 mrg int temp; /* micro-degC */
167 1.4 mrg } rk_data_array;
168 1.4 mrg
169 1.4 mrg struct rk_tsadc_softc;
170 1.5 mrg typedef struct rk_data {
171 1.15 jmcneill const char *rd_name;
172 1.5 mrg const rk_data_array *rd_array;
173 1.5 mrg size_t rd_size;
174 1.5 mrg void (*rd_init)(struct rk_tsadc_softc *, int, int);
175 1.5 mrg bool rd_decr; /* lower values -> higher temp */
176 1.5 mrg unsigned rd_min, rd_max;
177 1.5 mrg unsigned rd_auto_period;
178 1.15 jmcneill unsigned rd_auto_period_ht;
179 1.5 mrg unsigned rd_num_sensors;
180 1.15 jmcneill unsigned rd_version;
181 1.5 mrg } rk_data;
182 1.1 mrg
183 1.1 mrg /* Per-sensor data */
184 1.1 mrg struct rk_tsadc_sensor {
185 1.1 mrg envsys_data_t s_data;
186 1.1 mrg bool s_attached;
187 1.1 mrg /* TSADC register offsets for this sensor */
188 1.1 mrg unsigned s_data_reg;
189 1.1 mrg unsigned s_comp_tshut;
190 1.1 mrg unsigned s_comp_int;
191 1.2 mrg /* enable bit in AUTO_CON register */
192 1.1 mrg unsigned s_comp_int_en;
193 1.1 mrg /* warn/crit values in micro Kelvin */
194 1.1 mrg int s_warn;
195 1.1 mrg int s_tshut;
196 1.1 mrg };
197 1.1 mrg
198 1.1 mrg struct rk_tsadc_softc {
199 1.1 mrg device_t sc_dev;
200 1.1 mrg int sc_phandle;
201 1.1 mrg bus_space_tag_t sc_bst;
202 1.1 mrg bus_space_handle_t sc_bsh;
203 1.1 mrg size_t sc_size;
204 1.1 mrg uint32_t sc_data_mask;
205 1.1 mrg void *sc_ih;
206 1.1 mrg
207 1.1 mrg struct sysmon_envsys *sc_sme;
208 1.5 mrg struct rk_tsadc_sensor sc_sensors[MAX_SENSORS];
209 1.1 mrg
210 1.1 mrg struct clk *sc_clock;
211 1.1 mrg struct clk *sc_clockapb;
212 1.1 mrg struct fdtbus_reset *sc_reset;
213 1.1 mrg struct syscon *sc_syscon;
214 1.4 mrg
215 1.5 mrg const rk_data *sc_rd;
216 1.1 mrg };
217 1.1 mrg
218 1.1 mrg static int rk_tsadc_match(device_t, cfdata_t, void *);
219 1.1 mrg static void rk_tsadc_attach(device_t, device_t, void *);
220 1.1 mrg static int rk_tsadc_detach(device_t, int);
221 1.1 mrg static int rk_tsadc_init_clocks(struct rk_tsadc_softc *);
222 1.1 mrg static void rk_tsadc_init_counts(struct rk_tsadc_softc *);
223 1.1 mrg static void rk_tsadc_tshut_set(struct rk_tsadc_softc *s);
224 1.1 mrg static void rk_tsadc_init_tshut(struct rk_tsadc_softc *, int, int);
225 1.15 jmcneill static void rk_tsadc_init_common(struct rk_tsadc_softc *, int, int);
226 1.4 mrg static void rk_tsadc_init_rk3399(struct rk_tsadc_softc *, int, int);
227 1.1 mrg static void rk_tsadc_init_enable(struct rk_tsadc_softc *);
228 1.4 mrg static void rk_tsadc_init(struct rk_tsadc_softc *, int, int);
229 1.1 mrg static void rk_tsadc_refresh(struct sysmon_envsys *, envsys_data_t *);
230 1.1 mrg static void rk_tsadc_get_limits(struct sysmon_envsys *, envsys_data_t *,
231 1.1 mrg sysmon_envsys_lim_t *, uint32_t *);
232 1.1 mrg
233 1.1 mrg static int rk_tsadc_intr(void *);
234 1.1 mrg static int rk_tsadc_data_to_temp(struct rk_tsadc_softc *, uint32_t);
235 1.1 mrg static uint32_t rk_tsadc_temp_to_data(struct rk_tsadc_softc *, int);
236 1.1 mrg
237 1.1 mrg /* RK3328/RK3399 compatible sensors */
238 1.1 mrg static const struct rk_tsadc_sensor rk_tsadc_sensors[] = {
239 1.1 mrg {
240 1.1 mrg .s_data = { .desc = "CPU" },
241 1.1 mrg .s_data_reg = TSADC_DATA0,
242 1.1 mrg .s_comp_tshut = TSADC_COMP0_SHUT,
243 1.1 mrg .s_comp_int = TSADC_COMP0_INT,
244 1.1 mrg .s_comp_int_en = TSADC_AUTO_CON_SRC0_EN,
245 1.1 mrg /*
246 1.1 mrg * XXX DT has:
247 1.1 mrg * cpu_alert1: cpu_alert1 {
248 1.1 mrg * temperature = <75000>;
249 1.1 mrg * hysteresis = <2000>;
250 1.1 mrg * cpu_crit: cpu_crit {
251 1.1 mrg * temperature = <95000>;
252 1.1 mrg * hysteresis = <2000>;
253 1.1 mrg * pull out of here?
254 1.1 mrg * do something with hysteresis? put in debounce?
255 1.1 mrg *
256 1.14 andvar * Note that tshut may be overridden by the board specific DT.
257 1.1 mrg */
258 1.1 mrg .s_warn = 75000000,
259 1.1 mrg .s_tshut = 95000000,
260 1.1 mrg }, {
261 1.1 mrg .s_data = { .desc = "GPU" },
262 1.1 mrg .s_data_reg = TSADC_DATA1,
263 1.1 mrg .s_comp_tshut = TSADC_COMP1_SHUT,
264 1.1 mrg .s_comp_int = TSADC_COMP1_INT,
265 1.1 mrg .s_comp_int_en = TSADC_AUTO_CON_SRC1_EN,
266 1.1 mrg .s_warn = 75000000,
267 1.1 mrg .s_tshut = 95000000,
268 1.1 mrg },
269 1.1 mrg };
270 1.1 mrg
271 1.5 mrg /*
272 1.15 jmcneill * Table from RK3288 manual.
273 1.15 jmcneill */
274 1.15 jmcneill static const rk_data_array rk3288_data_array[] = {
275 1.15 jmcneill #define ENTRY(d,C) { .data = (d), .temp = (C) * 1000 * 1000, }
276 1.15 jmcneill ENTRY(TSADC_DATA_MAX, -40),
277 1.15 jmcneill ENTRY(3800, -40),
278 1.15 jmcneill ENTRY(3792, -35),
279 1.15 jmcneill ENTRY(3783, -30),
280 1.15 jmcneill ENTRY(3774, -25),
281 1.15 jmcneill ENTRY(3765, -20),
282 1.15 jmcneill ENTRY(3756, -15),
283 1.15 jmcneill ENTRY(3747, -10),
284 1.15 jmcneill ENTRY(3737, -5),
285 1.15 jmcneill ENTRY(3728, 0),
286 1.15 jmcneill ENTRY(3718, 5),
287 1.15 jmcneill ENTRY(3708, 10),
288 1.15 jmcneill ENTRY(3698, 15),
289 1.15 jmcneill ENTRY(3688, 20),
290 1.15 jmcneill ENTRY(3678, 25),
291 1.15 jmcneill ENTRY(3667, 30),
292 1.15 jmcneill ENTRY(3656, 35),
293 1.15 jmcneill ENTRY(3645, 40),
294 1.15 jmcneill ENTRY(3634, 45),
295 1.15 jmcneill ENTRY(3623, 50),
296 1.15 jmcneill ENTRY(3611, 55),
297 1.15 jmcneill ENTRY(3600, 60),
298 1.15 jmcneill ENTRY(3588, 65),
299 1.15 jmcneill ENTRY(3575, 70),
300 1.15 jmcneill ENTRY(3563, 75),
301 1.15 jmcneill ENTRY(3550, 80),
302 1.15 jmcneill ENTRY(3537, 85),
303 1.15 jmcneill ENTRY(3524, 90),
304 1.15 jmcneill ENTRY(3510, 95),
305 1.15 jmcneill ENTRY(3496, 100),
306 1.15 jmcneill ENTRY(3482, 105),
307 1.15 jmcneill ENTRY(3467, 110),
308 1.15 jmcneill ENTRY(3452, 115),
309 1.15 jmcneill ENTRY(3437, 120),
310 1.15 jmcneill ENTRY(3421, 125),
311 1.15 jmcneill ENTRY(0, 15),
312 1.15 jmcneill #undef ENTRY
313 1.15 jmcneill };
314 1.15 jmcneill
315 1.15 jmcneill /*
316 1.5 mrg * Table from RK3328 manual. Note that the manual lists valid numbers as
317 1.5 mrg * 4096 - number. This also means it is increasing not decreasing for
318 1.5 mrg * higher temps, and the min and max are also offset from 4096.
319 1.5 mrg */
320 1.5 mrg #define RK3328_DATA_OFFSET (4096)
321 1.4 mrg static const rk_data_array rk3328_data_array[] = {
322 1.5 mrg #define ENTRY(d,C) \
323 1.5 mrg { .data = RK3328_DATA_OFFSET - (d), .temp = (C) * 1000 * 1000, }
324 1.4 mrg ENTRY(TSADC_DATA_MAX, -40),
325 1.4 mrg ENTRY(3800, -40),
326 1.4 mrg ENTRY(3792, -35),
327 1.4 mrg ENTRY(3783, -30),
328 1.4 mrg ENTRY(3774, -25),
329 1.4 mrg ENTRY(3765, -20),
330 1.4 mrg ENTRY(3756, -15),
331 1.4 mrg ENTRY(3747, -10),
332 1.4 mrg ENTRY(3737, -5),
333 1.4 mrg ENTRY(3728, 0),
334 1.4 mrg ENTRY(3718, 5),
335 1.4 mrg ENTRY(3708, 10),
336 1.4 mrg ENTRY(3698, 15),
337 1.4 mrg ENTRY(3688, 20),
338 1.4 mrg ENTRY(3678, 25),
339 1.4 mrg ENTRY(3667, 30),
340 1.4 mrg ENTRY(3656, 35),
341 1.4 mrg ENTRY(3645, 40),
342 1.4 mrg ENTRY(3634, 45),
343 1.4 mrg ENTRY(3623, 50),
344 1.4 mrg ENTRY(3611, 55),
345 1.4 mrg ENTRY(3600, 60),
346 1.4 mrg ENTRY(3588, 65),
347 1.4 mrg ENTRY(3575, 70),
348 1.4 mrg ENTRY(3563, 75),
349 1.4 mrg ENTRY(3550, 80),
350 1.4 mrg ENTRY(3537, 85),
351 1.4 mrg ENTRY(3524, 90),
352 1.4 mrg ENTRY(3510, 95),
353 1.4 mrg ENTRY(3496, 100),
354 1.4 mrg ENTRY(3482, 105),
355 1.4 mrg ENTRY(3467, 110),
356 1.4 mrg ENTRY(3452, 115),
357 1.4 mrg ENTRY(3437, 120),
358 1.4 mrg ENTRY(3421, 125),
359 1.4 mrg ENTRY(0, 125),
360 1.4 mrg #undef ENTRY
361 1.4 mrg };
362 1.4 mrg
363 1.4 mrg /* Table from RK3399 manual */
364 1.4 mrg static const rk_data_array rk3399_data_array[] = {
365 1.4 mrg #define ENTRY(d,C) { .data = (d), .temp = (C) * 1000 * 1000, }
366 1.4 mrg ENTRY(0, -40),
367 1.4 mrg ENTRY(402, -40),
368 1.4 mrg ENTRY(410, -35),
369 1.4 mrg ENTRY(419, -30),
370 1.4 mrg ENTRY(427, -25),
371 1.4 mrg ENTRY(436, -20),
372 1.4 mrg ENTRY(444, -15),
373 1.4 mrg ENTRY(453, -10),
374 1.4 mrg ENTRY(461, -5),
375 1.4 mrg ENTRY(470, 0),
376 1.4 mrg ENTRY(478, 5),
377 1.4 mrg ENTRY(487, 10),
378 1.4 mrg ENTRY(496, 15),
379 1.4 mrg ENTRY(504, 20),
380 1.4 mrg ENTRY(513, 25),
381 1.4 mrg ENTRY(521, 30),
382 1.4 mrg ENTRY(530, 35),
383 1.4 mrg ENTRY(538, 40),
384 1.4 mrg ENTRY(547, 45),
385 1.4 mrg ENTRY(555, 50),
386 1.4 mrg ENTRY(564, 55),
387 1.4 mrg ENTRY(573, 60),
388 1.4 mrg ENTRY(581, 65),
389 1.4 mrg ENTRY(590, 70),
390 1.4 mrg ENTRY(599, 75),
391 1.4 mrg ENTRY(607, 80),
392 1.4 mrg ENTRY(616, 85),
393 1.4 mrg ENTRY(624, 90),
394 1.4 mrg ENTRY(633, 95),
395 1.4 mrg ENTRY(642, 100),
396 1.4 mrg ENTRY(650, 105),
397 1.4 mrg ENTRY(659, 110),
398 1.4 mrg ENTRY(668, 115),
399 1.4 mrg ENTRY(677, 120),
400 1.4 mrg ENTRY(685, 125),
401 1.4 mrg ENTRY(TSADC_DATA_MAX, 125),
402 1.4 mrg #undef ENTRY
403 1.4 mrg };
404 1.4 mrg
405 1.15 jmcneill static const rk_data rk3288_data_table = {
406 1.15 jmcneill .rd_name = "RK3288",
407 1.15 jmcneill .rd_array = rk3288_data_array,
408 1.15 jmcneill .rd_size = __arraycount(rk3288_data_array),
409 1.15 jmcneill .rd_init = rk_tsadc_init_common,
410 1.15 jmcneill .rd_decr = true,
411 1.15 jmcneill .rd_max = 3800,
412 1.15 jmcneill .rd_min = 3421,
413 1.15 jmcneill .rd_auto_period = RK3288_TSADC_AUTO_PERIOD_TIME,
414 1.15 jmcneill .rd_auto_period_ht = RK3288_TSADC_AUTO_PERIOD_HT_TIME,
415 1.15 jmcneill .rd_num_sensors = 2,
416 1.15 jmcneill .rd_version = 2,
417 1.15 jmcneill };
418 1.15 jmcneill
419 1.5 mrg static const rk_data rk3328_data_table = {
420 1.15 jmcneill .rd_name = "RK3328",
421 1.5 mrg .rd_array = rk3328_data_array,
422 1.5 mrg .rd_size = __arraycount(rk3328_data_array),
423 1.15 jmcneill .rd_init = rk_tsadc_init_common,
424 1.5 mrg .rd_decr = false,
425 1.5 mrg .rd_max = RK3328_DATA_OFFSET - 3420,
426 1.5 mrg .rd_min = RK3328_DATA_OFFSET - 3801,
427 1.5 mrg .rd_auto_period = RK3328_TSADC_AUTO_PERIOD_TIME,
428 1.15 jmcneill .rd_auto_period_ht = RK3328_TSADC_AUTO_PERIOD_TIME,
429 1.5 mrg .rd_num_sensors = 1,
430 1.15 jmcneill .rd_version = 3,
431 1.4 mrg };
432 1.4 mrg
433 1.5 mrg static const rk_data rk3399_data_table = {
434 1.15 jmcneill .rd_name = "RK3399",
435 1.5 mrg .rd_array = rk3399_data_array,
436 1.5 mrg .rd_size = __arraycount(rk3399_data_array),
437 1.5 mrg .rd_init = rk_tsadc_init_rk3399,
438 1.5 mrg .rd_decr = false,
439 1.5 mrg .rd_max = 686,
440 1.5 mrg .rd_min = 401,
441 1.5 mrg .rd_auto_period = RK3399_TSADC_AUTO_PERIOD_TIME,
442 1.15 jmcneill .rd_auto_period_ht = RK3399_TSADC_AUTO_PERIOD_TIME,
443 1.5 mrg .rd_num_sensors = 2,
444 1.15 jmcneill .rd_version = 3,
445 1.4 mrg };
446 1.4 mrg
447 1.9 thorpej static const struct device_compatible_entry compat_data[] = {
448 1.15 jmcneill { .compat = "rockchip,rk3288-tsadc", .data = &rk3288_data_table },
449 1.9 thorpej { .compat = "rockchip,rk3328-tsadc", .data = &rk3328_data_table },
450 1.9 thorpej { .compat = "rockchip,rk3399-tsadc", .data = &rk3399_data_table },
451 1.11 thorpej DEVICE_COMPAT_EOL
452 1.1 mrg };
453 1.1 mrg
454 1.1 mrg #define TSADC_READ(sc, reg) \
455 1.1 mrg bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
456 1.1 mrg #define TSADC_WRITE(sc, reg, val) \
457 1.1 mrg bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
458 1.1 mrg
459 1.1 mrg CFATTACH_DECL3_NEW(rk_tsadc, sizeof(struct rk_tsadc_softc),
460 1.1 mrg rk_tsadc_match, rk_tsadc_attach, rk_tsadc_detach, NULL, NULL, NULL,
461 1.1 mrg DVF_DETACH_SHUTDOWN);
462 1.1 mrg
463 1.1 mrg /* init/teardown support */
464 1.1 mrg static int
465 1.1 mrg rk_tsadc_match(device_t parent, cfdata_t cf, void *aux)
466 1.1 mrg {
467 1.1 mrg struct fdt_attach_args * const faa = aux;
468 1.1 mrg
469 1.12 thorpej return of_compatible_match(faa->faa_phandle, compat_data);
470 1.1 mrg }
471 1.1 mrg
472 1.1 mrg static void
473 1.1 mrg rk_tsadc_attach(device_t parent, device_t self, void *aux)
474 1.1 mrg {
475 1.1 mrg struct rk_tsadc_softc * const sc = device_private(self);
476 1.1 mrg struct fdt_attach_args * const faa = aux;
477 1.1 mrg char intrstr[128];
478 1.1 mrg const int phandle = faa->faa_phandle;
479 1.1 mrg bus_addr_t addr;
480 1.1 mrg int mode, polarity, tshut_temp;
481 1.1 mrg
482 1.1 mrg sc->sc_dev = self;
483 1.1 mrg sc->sc_phandle = phandle;
484 1.1 mrg sc->sc_bst = faa->faa_bst;
485 1.1 mrg
486 1.1 mrg sc->sc_sme = sysmon_envsys_create();
487 1.1 mrg
488 1.1 mrg sc->sc_sme->sme_name = device_xname(self);
489 1.1 mrg sc->sc_sme->sme_cookie = sc;
490 1.1 mrg sc->sc_sme->sme_refresh = rk_tsadc_refresh;
491 1.1 mrg sc->sc_sme->sme_get_limits = rk_tsadc_get_limits;
492 1.2 mrg sc->sc_data_mask = TSADC_DATA_MAX;
493 1.1 mrg
494 1.1 mrg pmf_device_register(self, NULL, NULL);
495 1.1 mrg
496 1.12 thorpej sc->sc_rd = of_compatible_lookup(faa->faa_phandle, compat_data)->data;
497 1.5 mrg
498 1.15 jmcneill aprint_naive("\n");
499 1.15 jmcneill aprint_normal(": %s Temperature Sensor ADC\n", sc->sc_rd->rd_name);
500 1.15 jmcneill
501 1.1 mrg /* Default to tshut via gpio and tshut low is active */
502 1.1 mrg if (of_getprop_uint32(phandle, "rockchip,hw-tshut-mode",
503 1.1 mrg &mode) != 0) {
504 1.1 mrg aprint_error(": could not get TSHUT mode, default to GPIO");
505 1.1 mrg mode = TSHUT_MODE_GPIO;
506 1.1 mrg }
507 1.1 mrg if (mode != TSHUT_MODE_CPU && mode != TSHUT_MODE_GPIO) {
508 1.1 mrg aprint_error(": TSHUT mode should be 0 or 1\n");
509 1.1 mrg goto fail;
510 1.1 mrg }
511 1.1 mrg
512 1.1 mrg if (of_getprop_uint32(phandle, "rockchip,hw-tshut-polarity",
513 1.1 mrg &polarity) != 0) {
514 1.1 mrg aprint_error(": could not get TSHUT polarity, default to low");
515 1.1 mrg polarity = TSHUT_LOW_ACTIVE;
516 1.1 mrg }
517 1.1 mrg if (of_getprop_uint32(phandle,
518 1.1 mrg "rockchip,hw-tshut-temp", &tshut_temp) != 0) {
519 1.1 mrg aprint_error(": could not get TSHUT temperature, default to %u",
520 1.1 mrg TSHUT_DEF_TEMP);
521 1.1 mrg tshut_temp = TSHUT_DEF_TEMP;
522 1.1 mrg }
523 1.13 mrg tshut_temp *= 1000; /* convert fdt mK -> uK */
524 1.1 mrg
525 1.1 mrg memcpy(sc->sc_sensors, rk_tsadc_sensors, sizeof(sc->sc_sensors));
526 1.5 mrg for (unsigned n = 0; n < sc->sc_rd->rd_num_sensors; n++) {
527 1.1 mrg struct rk_tsadc_sensor *rks = &sc->sc_sensors[n];
528 1.1 mrg
529 1.1 mrg rks->s_data.flags = ENVSYS_FMONLIMITS;
530 1.1 mrg rks->s_data.units = ENVSYS_STEMP;
531 1.1 mrg rks->s_data.state = ENVSYS_SINVALID;
532 1.1 mrg
533 1.1 mrg if (sysmon_envsys_sensor_attach(sc->sc_sme, &rks->s_data))
534 1.1 mrg goto fail;
535 1.1 mrg rks->s_attached = true;
536 1.1 mrg rks->s_tshut = tshut_temp;
537 1.3 mrg #if 0
538 1.1 mrg // testing
539 1.2 mrg rks->s_tshut = 68000000;
540 1.2 mrg rks->s_warn = 61000000;
541 1.1 mrg #endif
542 1.1 mrg }
543 1.1 mrg
544 1.1 mrg sc->sc_syscon = fdtbus_syscon_acquire(phandle, "rockchip,grf");
545 1.1 mrg if (sc->sc_syscon == NULL) {
546 1.1 mrg aprint_error(": couldn't get grf syscon\n");
547 1.1 mrg goto fail;
548 1.1 mrg }
549 1.1 mrg if (fdtbus_get_reg(phandle, 0, &addr, &sc->sc_size) != 0) {
550 1.1 mrg aprint_error(": couldn't get registers\n");
551 1.1 mrg sc->sc_size = 0;
552 1.1 mrg goto fail;
553 1.1 mrg }
554 1.1 mrg if (bus_space_map(sc->sc_bst, addr, sc->sc_size, 0, &sc->sc_bsh) != 0) {
555 1.1 mrg aprint_error(": couldn't map registers\n");
556 1.1 mrg sc->sc_size = 0;
557 1.1 mrg goto fail;
558 1.1 mrg }
559 1.1 mrg
560 1.1 mrg if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
561 1.1 mrg aprint_error(": failed to decode interrupt\n");
562 1.1 mrg goto fail;
563 1.1 mrg }
564 1.1 mrg
565 1.8 ryo sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
566 1.8 ryo rk_tsadc_intr, sc, device_xname(self));
567 1.1 mrg if (sc->sc_ih == NULL) {
568 1.1 mrg aprint_error_dev(self, "couldn't establish interrupt on %s\n",
569 1.1 mrg intrstr);
570 1.1 mrg goto fail;
571 1.1 mrg }
572 1.1 mrg aprint_normal_dev(self, "interrupting on %s\n", intrstr);
573 1.1 mrg
574 1.1 mrg if (rk_tsadc_init_clocks(sc)) {
575 1.1 mrg aprint_error(": couldn't enable clocks\n");
576 1.1 mrg return;
577 1.1 mrg }
578 1.1 mrg
579 1.1 mrg /*
580 1.1 mrg * Manual says to setup auto period (both), high temp (interrupt),
581 1.1 mrg * high temp (shutdown), enable high temp resets (TSHUT to GPIO
582 1.1 mrg * or reset chip), set the debounce times, and, finally, enable the
583 1.1 mrg * controller iself.
584 1.1 mrg */
585 1.4 mrg rk_tsadc_init(sc, mode, polarity);
586 1.1 mrg
587 1.1 mrg return;
588 1.1 mrg
589 1.1 mrg fail:
590 1.1 mrg rk_tsadc_detach(self, 0);
591 1.1 mrg }
592 1.1 mrg
593 1.1 mrg static int
594 1.1 mrg rk_tsadc_detach(device_t self, int flags)
595 1.1 mrg {
596 1.1 mrg struct rk_tsadc_softc *sc = device_private(self);
597 1.1 mrg
598 1.1 mrg pmf_device_deregister(self);
599 1.1 mrg
600 1.5 mrg for (unsigned n = 0; n < sc->sc_rd->rd_num_sensors; n++) {
601 1.1 mrg struct rk_tsadc_sensor *rks = &sc->sc_sensors[n];
602 1.1 mrg
603 1.1 mrg if (rks->s_attached) {
604 1.1 mrg sysmon_envsys_sensor_detach(sc->sc_sme, &rks->s_data);
605 1.1 mrg rks->s_attached = false;
606 1.1 mrg }
607 1.1 mrg }
608 1.1 mrg
609 1.1 mrg sysmon_envsys_unregister(sc->sc_sme);
610 1.1 mrg
611 1.1 mrg if (sc->sc_clockapb)
612 1.1 mrg clk_disable(sc->sc_clockapb);
613 1.1 mrg if (sc->sc_clock)
614 1.1 mrg clk_disable(sc->sc_clock);
615 1.1 mrg
616 1.1 mrg if (sc->sc_ih)
617 1.1 mrg fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
618 1.1 mrg
619 1.1 mrg if (sc->sc_size)
620 1.1 mrg bus_space_unmap(sc->sc_bst, sc->sc_bsh, sc->sc_size);
621 1.1 mrg
622 1.1 mrg sysmon_envsys_destroy(sc->sc_sme);
623 1.1 mrg
624 1.1 mrg return 0;
625 1.1 mrg }
626 1.1 mrg
627 1.1 mrg static int
628 1.1 mrg rk_tsadc_init_clocks(struct rk_tsadc_softc *sc)
629 1.1 mrg {
630 1.1 mrg int error;
631 1.1 mrg
632 1.1 mrg fdtbus_clock_assign(sc->sc_phandle);
633 1.1 mrg
634 1.1 mrg sc->sc_reset = fdtbus_reset_get(sc->sc_phandle, "tsadc-apb");
635 1.1 mrg sc->sc_clock = fdtbus_clock_get(sc->sc_phandle, "tsadc");
636 1.1 mrg sc->sc_clockapb = fdtbus_clock_get(sc->sc_phandle, "apb_pclk");
637 1.1 mrg if (sc->sc_reset == NULL ||
638 1.1 mrg sc->sc_clock == NULL ||
639 1.1 mrg sc->sc_clockapb == NULL)
640 1.1 mrg return EINVAL;
641 1.1 mrg
642 1.1 mrg fdtbus_reset_assert(sc->sc_reset);
643 1.1 mrg
644 1.1 mrg error = clk_enable(sc->sc_clock);
645 1.1 mrg if (error) {
646 1.1 mrg fdtbus_reset_deassert(sc->sc_reset);
647 1.1 mrg return error;
648 1.1 mrg }
649 1.1 mrg
650 1.1 mrg error = clk_enable(sc->sc_clockapb);
651 1.1 mrg
652 1.1 mrg DELAY(20);
653 1.1 mrg fdtbus_reset_deassert(sc->sc_reset);
654 1.1 mrg
655 1.1 mrg return error;
656 1.1 mrg }
657 1.1 mrg
658 1.1 mrg static void
659 1.1 mrg rk_tsadc_init_counts(struct rk_tsadc_softc *sc)
660 1.1 mrg {
661 1.1 mrg
662 1.5 mrg TSADC_WRITE(sc, TSADC_AUTO_PERIOD, sc->sc_rd->rd_auto_period);
663 1.15 jmcneill TSADC_WRITE(sc, TSADC_AUTO_PERIOD_HT, sc->sc_rd->rd_auto_period_ht);
664 1.1 mrg TSADC_WRITE(sc, TSADC_HIGH_INT_DEBOUNCE, TSADC_HT_DEBOUNCE_COUNT);
665 1.1 mrg TSADC_WRITE(sc, TSADC_HIGH_TSHUT_DEBOUNCE, TSADC_HT_DEBOUNCE_COUNT);
666 1.1 mrg }
667 1.1 mrg
668 1.1 mrg /* Configure the hardware with the tshut setup. */
669 1.1 mrg static void
670 1.1 mrg rk_tsadc_tshut_set(struct rk_tsadc_softc *sc)
671 1.1 mrg {
672 1.1 mrg uint32_t val = TSADC_READ(sc, TSADC_AUTO_CON);
673 1.1 mrg
674 1.5 mrg for (unsigned n = 0; n < sc->sc_rd->rd_num_sensors; n++) {
675 1.1 mrg struct rk_tsadc_sensor *rks = &sc->sc_sensors[n];
676 1.5 mrg uint32_t data, warndata;
677 1.5 mrg
678 1.5 mrg if (!rks->s_attached)
679 1.5 mrg continue;
680 1.5 mrg
681 1.5 mrg data = rk_tsadc_temp_to_data(sc, rks->s_tshut);
682 1.5 mrg warndata = rk_tsadc_temp_to_data(sc, rks->s_warn);
683 1.1 mrg
684 1.1 mrg DPRINTF("(%s:%s): tshut/data %d/%u warn/data %d/%u",
685 1.1 mrg sc->sc_sme->sme_name, rks->s_data.desc,
686 1.1 mrg rks->s_tshut, data,
687 1.1 mrg rks->s_warn, warndata);
688 1.1 mrg
689 1.1 mrg if (data == sc->sc_data_mask) {
690 1.1 mrg aprint_error_dev(sc->sc_dev,
691 1.1 mrg "Failed converting critical temp %u.%06u to code",
692 1.1 mrg rks->s_tshut / 1000000, rks->s_tshut % 1000000);
693 1.1 mrg continue;
694 1.1 mrg }
695 1.1 mrg if (warndata == sc->sc_data_mask) {
696 1.1 mrg aprint_error_dev(sc->sc_dev,
697 1.1 mrg "Failed converting warn temp %u.%06u to code",
698 1.1 mrg rks->s_warn / 1000000, rks->s_warn % 1000000);
699 1.1 mrg continue;
700 1.1 mrg }
701 1.1 mrg
702 1.1 mrg TSADC_WRITE(sc, rks->s_comp_tshut, data);
703 1.1 mrg TSADC_WRITE(sc, rks->s_comp_int, warndata);
704 1.1 mrg
705 1.1 mrg val |= rks->s_comp_int_en;
706 1.1 mrg }
707 1.1 mrg TSADC_WRITE(sc, TSADC_AUTO_CON, val);
708 1.1 mrg }
709 1.1 mrg
710 1.1 mrg static void
711 1.1 mrg rk_tsadc_init_tshut(struct rk_tsadc_softc *sc, int mode, int polarity)
712 1.1 mrg {
713 1.1 mrg uint32_t val;
714 1.1 mrg
715 1.1 mrg /* Handle TSHUT temp setting. */
716 1.1 mrg rk_tsadc_tshut_set(sc);
717 1.1 mrg
718 1.1 mrg /* Handle TSHUT mode setting. */
719 1.1 mrg val = TSADC_READ(sc, TSADC_INT_EN);
720 1.1 mrg if (mode == TSHUT_MODE_CPU) {
721 1.1 mrg val |= TSADC_INT_EN_TSHUT_2CRU_EN_SRC1 |
722 1.1 mrg TSADC_INT_EN_TSHUT_2CRU_EN_SRC0;
723 1.1 mrg val &= ~(TSADC_INT_EN_TSHUT_2GPIO_EN_SRC1 |
724 1.1 mrg TSADC_INT_EN_TSHUT_2GPIO_EN_SRC0);
725 1.1 mrg } else {
726 1.1 mrg KASSERT(mode == TSHUT_MODE_GPIO);
727 1.1 mrg val &= ~(TSADC_INT_EN_TSHUT_2CRU_EN_SRC1 |
728 1.1 mrg TSADC_INT_EN_TSHUT_2CRU_EN_SRC0);
729 1.7 jmcneill val |= TSADC_INT_EN_TSHUT_2GPIO_EN_SRC1 |
730 1.1 mrg TSADC_INT_EN_TSHUT_2GPIO_EN_SRC0;
731 1.1 mrg }
732 1.1 mrg TSADC_WRITE(sc, TSADC_INT_EN, val);
733 1.1 mrg
734 1.1 mrg /* Handle TSHUT polarity setting. */
735 1.1 mrg val = TSADC_READ(sc, TSADC_AUTO_CON);
736 1.1 mrg if (polarity == TSHUT_HIGH_ACTIVE)
737 1.1 mrg val |= TSADC_AUTO_CON_TSHUT_POLARITY;
738 1.1 mrg else
739 1.1 mrg val &= ~TSADC_AUTO_CON_TSHUT_POLARITY;
740 1.1 mrg TSADC_WRITE(sc, TSADC_AUTO_CON, val);
741 1.1 mrg }
742 1.1 mrg
743 1.1 mrg static void
744 1.15 jmcneill rk_tsadc_init_common(struct rk_tsadc_softc *sc, int mode, int polarity)
745 1.4 mrg {
746 1.4 mrg
747 1.4 mrg rk_tsadc_init_tshut(sc, mode, polarity);
748 1.4 mrg rk_tsadc_init_counts(sc);
749 1.4 mrg }
750 1.4 mrg
751 1.4 mrg static void
752 1.4 mrg rk_tsadc_init_rk3399(struct rk_tsadc_softc *sc, int mode, int polarity)
753 1.1 mrg {
754 1.1 mrg
755 1.1 mrg syscon_lock(sc->sc_syscon);
756 1.1 mrg syscon_write_4(sc->sc_syscon, RK3399_GRF_TSADC_TESTBIT_L,
757 1.1 mrg RK3399_GRF_TSADC_TESTBIT_VCM_EN_L);
758 1.1 mrg syscon_write_4(sc->sc_syscon, RK3399_GRF_TSADC_TESTBIT_H,
759 1.1 mrg RK3399_GRF_TSADC_TESTBIT_VCM_EN_H);
760 1.1 mrg
761 1.1 mrg DELAY(20);
762 1.1 mrg syscon_write_4(sc->sc_syscon, RK3399_GRF_SARADC_TESTBIT,
763 1.1 mrg RK3399_GRF_SARADC_TESTBIT_ON);
764 1.1 mrg syscon_write_4(sc->sc_syscon, RK3399_GRF_TSADC_TESTBIT_H,
765 1.1 mrg RK3399_GRF_TSADC_TESTBIT_H_ON);
766 1.1 mrg DELAY(100);
767 1.1 mrg syscon_unlock(sc->sc_syscon);
768 1.4 mrg
769 1.15 jmcneill rk_tsadc_init_common(sc, mode, polarity);
770 1.1 mrg }
771 1.1 mrg
772 1.1 mrg static void
773 1.1 mrg rk_tsadc_init_enable(struct rk_tsadc_softc *sc)
774 1.1 mrg {
775 1.1 mrg uint32_t val;
776 1.1 mrg
777 1.1 mrg val = TSADC_READ(sc, TSADC_AUTO_CON);
778 1.1 mrg val |= TSADC_AUTO_CON_AUTO_STATUS |
779 1.2 mrg TSADC_AUTO_CON_SRC1_LT_EN | TSADC_AUTO_CON_SRC0_LT_EN;
780 1.1 mrg TSADC_WRITE(sc, TSADC_AUTO_CON, val);
781 1.1 mrg
782 1.1 mrg /* Finally, register & enable the controller */
783 1.1 mrg sysmon_envsys_register(sc->sc_sme);
784 1.1 mrg
785 1.1 mrg val = TSADC_READ(sc, TSADC_AUTO_CON);
786 1.15 jmcneill val |= TSADC_AUTO_CON_AUTO_EN;
787 1.15 jmcneill if (sc->sc_rd->rd_version >= 3) {
788 1.15 jmcneill val |= TSADC_AUTO_CON_Q_SEL;
789 1.15 jmcneill }
790 1.1 mrg TSADC_WRITE(sc, TSADC_AUTO_CON, val);
791 1.1 mrg }
792 1.1 mrg
793 1.4 mrg static void
794 1.4 mrg rk_tsadc_init(struct rk_tsadc_softc *sc, int mode, int polarity)
795 1.4 mrg {
796 1.4 mrg
797 1.5 mrg (*sc->sc_rd->rd_init)(sc, mode, polarity);
798 1.4 mrg rk_tsadc_init_enable(sc);
799 1.4 mrg }
800 1.4 mrg
801 1.1 mrg /* run time support */
802 1.1 mrg
803 1.5 mrg /* given edata, find the matching rk sensor structure */
804 1.1 mrg static struct rk_tsadc_sensor *
805 1.1 mrg rk_tsadc_edata_to_sensor(struct rk_tsadc_softc * const sc, envsys_data_t *edata)
806 1.1 mrg {
807 1.4 mrg
808 1.5 mrg for (unsigned n = 0; n < sc->sc_rd->rd_num_sensors; n++) {
809 1.1 mrg struct rk_tsadc_sensor *rks = &sc->sc_sensors[n];
810 1.1 mrg
811 1.1 mrg if (&rks->s_data == edata)
812 1.1 mrg return rks;
813 1.1 mrg }
814 1.1 mrg return NULL;
815 1.1 mrg }
816 1.1 mrg
817 1.1 mrg static void
818 1.1 mrg rk_tsadc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
819 1.1 mrg {
820 1.1 mrg struct rk_tsadc_softc * const sc = sme->sme_cookie;
821 1.1 mrg struct rk_tsadc_sensor *rks = rk_tsadc_edata_to_sensor(sc, edata);
822 1.1 mrg unsigned data;
823 1.1 mrg int temp;
824 1.1 mrg
825 1.1 mrg if (rks == NULL)
826 1.1 mrg return;
827 1.1 mrg
828 1.1 mrg data = TSADC_READ(sc, rks->s_data_reg) & sc->sc_data_mask;
829 1.1 mrg temp = rk_tsadc_data_to_temp(sc, data);
830 1.1 mrg
831 1.4 mrg DPRINTF("(%s:%s): temp/data %d/%u",
832 1.4 mrg sc->sc_sme->sme_name, rks->s_data.desc,
833 1.4 mrg temp, data);
834 1.4 mrg
835 1.1 mrg if (temp == sc->sc_data_mask) {
836 1.1 mrg edata->state = ENVSYS_SINVALID;
837 1.1 mrg } else {
838 1.1 mrg edata->value_cur = temp + TEMP_uC_TO_uK;
839 1.1 mrg edata->state = ENVSYS_SVALID;
840 1.1 mrg }
841 1.1 mrg }
842 1.1 mrg
843 1.1 mrg static void
844 1.1 mrg rk_tsadc_get_limits(struct sysmon_envsys *sme,
845 1.1 mrg envsys_data_t *edata,
846 1.1 mrg sysmon_envsys_lim_t *lim,
847 1.1 mrg uint32_t *props)
848 1.1 mrg {
849 1.1 mrg struct rk_tsadc_softc *sc = sme->sme_cookie;
850 1.1 mrg struct rk_tsadc_sensor *rks = rk_tsadc_edata_to_sensor(sc, edata);
851 1.1 mrg
852 1.1 mrg if (rks == NULL)
853 1.1 mrg return;
854 1.1 mrg
855 1.1 mrg lim->sel_critmax = rks->s_tshut + TEMP_uC_TO_uK;
856 1.1 mrg lim->sel_warnmax = rks->s_warn + TEMP_uC_TO_uK;
857 1.1 mrg
858 1.1 mrg *props = PROP_CRITMAX | PROP_WARNMAX;
859 1.1 mrg }
860 1.1 mrg
861 1.1 mrg /* XXX do something with interrupts that don't happen yet. */
862 1.1 mrg static int
863 1.1 mrg rk_tsadc_intr(void *arg)
864 1.1 mrg {
865 1.1 mrg struct rk_tsadc_softc * const sc = arg;
866 1.1 mrg uint32_t val;
867 1.1 mrg
868 1.1 mrg /* XXX */
869 1.1 mrg DPRINTF("(%s): interrupted", sc->sc_sme->sme_name);
870 1.6 joerg for (unsigned n = 0; n < __arraycount(rk_tsadc_sensors); n++) {
871 1.1 mrg struct rk_tsadc_sensor *rks = &sc->sc_sensors[n];
872 1.1 mrg
873 1.1 mrg rk_tsadc_refresh(sc->sc_sme, (envsys_data_t *)rks);
874 1.1 mrg }
875 1.1 mrg
876 1.1 mrg /* ack interrupt */
877 1.1 mrg val = TSADC_READ(sc, TSADC_INT_PD);
878 1.15 jmcneill if (sc->sc_rd->rd_version >= 3) {
879 1.15 jmcneill TSADC_WRITE(sc, TSADC_INT_PD,
880 1.15 jmcneill val & ~TSADC_INT_PD_EOC_INT_PD_V3);
881 1.15 jmcneill } else {
882 1.15 jmcneill TSADC_WRITE(sc, TSADC_INT_PD,
883 1.15 jmcneill val & ~TSADC_INT_PD_EOC_INT_PD_V2);
884 1.15 jmcneill }
885 1.1 mrg
886 1.1 mrg return 1;
887 1.1 mrg }
888 1.1 mrg
889 1.1 mrg /*
890 1.1 mrg * Convert TDASC data codes to temp and reverse. The manual only has codes
891 1.1 mrg * and temperature values in 5 degC intervals, but says that interpolation
892 1.1 mrg * can be done to achieve better resolution between these values, and that
893 1.1 mrg * the spacing is linear.
894 1.1 mrg */
895 1.1 mrg static int
896 1.1 mrg rk_tsadc_data_to_temp(struct rk_tsadc_softc *sc, uint32_t data)
897 1.1 mrg {
898 1.1 mrg unsigned i;
899 1.5 mrg const rk_data *rd = sc->sc_rd;
900 1.1 mrg
901 1.5 mrg if (data > rd->rd_max || data < rd->rd_min) {
902 1.5 mrg DPRINTF("data out of range (%u > %u || %u < %u)",
903 1.5 mrg data, rd->rd_max, data, rd->rd_min);
904 1.4 mrg return sc->sc_data_mask;
905 1.4 mrg }
906 1.5 mrg for (i = 1; i < rd->rd_size; i++) {
907 1.5 mrg if (rd->rd_array[i].data >= data) {
908 1.2 mrg int temprange, offset;
909 1.2 mrg uint32_t datarange, datadiff;
910 1.4 mrg unsigned first, secnd;
911 1.2 mrg
912 1.5 mrg if (rd->rd_array[i].data == data)
913 1.5 mrg return rd->rd_array[i].temp;
914 1.2 mrg
915 1.2 mrg /* must interpolate */
916 1.5 mrg if (rd->rd_decr) {
917 1.4 mrg first = i;
918 1.4 mrg secnd = i+1;
919 1.4 mrg } else {
920 1.4 mrg first = i;
921 1.4 mrg secnd = i-1;
922 1.4 mrg }
923 1.4 mrg
924 1.5 mrg temprange = rd->rd_array[first].temp -
925 1.5 mrg rd->rd_array[secnd].temp;
926 1.5 mrg datarange = rd->rd_array[first].data -
927 1.5 mrg rd->rd_array[secnd].data;
928 1.5 mrg datadiff = data - rd->rd_array[secnd].data;
929 1.2 mrg
930 1.2 mrg offset = (temprange * datadiff) / datarange;
931 1.5 mrg return rd->rd_array[secnd].temp + offset;
932 1.1 mrg }
933 1.1 mrg }
934 1.4 mrg panic("didn't find range");
935 1.1 mrg }
936 1.1 mrg
937 1.1 mrg static uint32_t
938 1.1 mrg rk_tsadc_temp_to_data(struct rk_tsadc_softc *sc, int temp)
939 1.1 mrg {
940 1.1 mrg unsigned i;
941 1.5 mrg const rk_data *rd = sc->sc_rd;
942 1.1 mrg
943 1.5 mrg for (i = 1; i < rd->rd_size; i++) {
944 1.5 mrg if (rd->rd_array[i].temp >= temp) {
945 1.2 mrg int temprange, tempdiff;
946 1.2 mrg uint32_t datarange, offset;
947 1.4 mrg unsigned first, secnd;
948 1.2 mrg
949 1.5 mrg if (rd->rd_array[i].temp == temp)
950 1.5 mrg return rd->rd_array[i].data;
951 1.2 mrg
952 1.2 mrg /* must interpolate */
953 1.5 mrg if (rd->rd_decr) {
954 1.4 mrg first = i;
955 1.4 mrg secnd = i+1;
956 1.4 mrg } else {
957 1.4 mrg first = i;
958 1.4 mrg secnd = i-1;
959 1.4 mrg }
960 1.4 mrg
961 1.5 mrg datarange = rd->rd_array[first].data -
962 1.5 mrg rd->rd_array[secnd].data;
963 1.5 mrg temprange = rd->rd_array[first].temp -
964 1.5 mrg rd->rd_array[secnd].temp;
965 1.5 mrg tempdiff = temp - rd->rd_array[secnd].temp;
966 1.2 mrg
967 1.2 mrg offset = (datarange * tempdiff) / temprange;
968 1.5 mrg return rd->rd_array[secnd].data + offset;
969 1.1 mrg }
970 1.1 mrg }
971 1.1 mrg
972 1.1 mrg return sc->sc_data_mask;
973 1.1 mrg }
974