1 1.15 rin /* $NetBSD: s3c24x0_clk.c,v 1.15 2020/05/29 12:30:39 rin Exp $ */ 2 1.1 bsh 3 1.1 bsh /* 4 1.1 bsh * Copyright (c) 2003 Genetec corporation. All rights reserved. 5 1.1 bsh * Written by Hiroyuki Bessho for Genetec corporation. 6 1.1 bsh * 7 1.1 bsh * Redistribution and use in source and binary forms, with or without 8 1.1 bsh * modification, are permitted provided that the following conditions 9 1.1 bsh * are met: 10 1.1 bsh * 1. Redistributions of source code must retain the above copyright 11 1.1 bsh * notice, this list of conditions and the following disclaimer. 12 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 bsh * notice, this list of conditions and the following disclaimer in the 14 1.1 bsh * documentation and/or other materials provided with the distribution. 15 1.1 bsh * 3. The name of Genetec corporation may not be used to endorse 16 1.1 bsh * or promote products derived from this software without specific prior 17 1.1 bsh * written permission. 18 1.1 bsh * 19 1.1 bsh * THIS SOFTWARE IS PROVIDED BY GENETEC CORP. ``AS IS'' AND 20 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORP. 23 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 bsh * POSSIBILITY OF SUCH DAMAGE. 30 1.1 bsh */ 31 1.1 bsh 32 1.1 bsh #include <sys/cdefs.h> 33 1.15 rin __KERNEL_RCSID(0, "$NetBSD: s3c24x0_clk.c,v 1.15 2020/05/29 12:30:39 rin Exp $"); 34 1.1 bsh 35 1.1 bsh #include <sys/param.h> 36 1.1 bsh #include <sys/systm.h> 37 1.1 bsh #include <sys/kernel.h> 38 1.9 joerg #include <sys/atomic.h> 39 1.1 bsh #include <sys/time.h> 40 1.9 joerg #include <sys/timetc.h> 41 1.1 bsh 42 1.11 dyoung #include <sys/bus.h> 43 1.1 bsh #include <machine/intr.h> 44 1.1 bsh #include <arm/cpufunc.h> 45 1.1 bsh 46 1.1 bsh #include <arm/s3c2xx0/s3c24x0reg.h> 47 1.1 bsh #include <arm/s3c2xx0/s3c24x0var.h> 48 1.1 bsh 49 1.1 bsh 50 1.1 bsh #ifndef STATHZ 51 1.1 bsh #define STATHZ 64 52 1.1 bsh #endif 53 1.1 bsh 54 1.1 bsh #define TIMER_FREQUENCY(pclk) ((pclk)/16) /* divider=1/16 */ 55 1.1 bsh 56 1.14 nisimura static uint32_t timer4_reload_value; 57 1.14 nisimura static uint32_t timer4_prescaler; 58 1.14 nisimura static uint32_t timer4_mseccount; 59 1.1 bsh 60 1.1 bsh #define usec_to_counter(t) \ 61 1.1 bsh ((timer4_mseccount*(t))/1000) 62 1.1 bsh 63 1.1 bsh #define counter_to_usec(c,pclk) \ 64 1.1 bsh (((c)*timer4_prescaler*1000)/(TIMER_FREQUENCY(pclk)/1000)) 65 1.1 bsh 66 1.9 joerg static u_int s3c24x0_get_timecount(struct timecounter *); 67 1.1 bsh 68 1.9 joerg static struct timecounter s3c24x0_timecounter = { 69 1.15 rin .tc_get_timecount = s3c24x0_get_timecount, 70 1.15 rin .tc_counter_mask = 0xffffffff, 71 1.15 rin .tc_name = "s3c24x0", 72 1.15 rin .tc_quality = 100, 73 1.9 joerg }; 74 1.9 joerg 75 1.9 joerg static volatile uint32_t s3c24x0_base; 76 1.9 joerg 77 1.9 joerg static u_int 78 1.9 joerg s3c24x0_get_timecount(struct timecounter *tc) 79 1.1 bsh { 80 1.1 bsh struct s3c24x0_softc *sc = (struct s3c24x0_softc *) s3c2xx0_softc; 81 1.9 joerg int save, int_pend0, int_pend1, count; 82 1.14 nisimura int int_pend; 83 1.1 bsh 84 1.1 bsh save = disable_interrupts(I32_bit); 85 1.1 bsh 86 1.1 bsh again: 87 1.14 nisimura int_pend = bus_space_read_4(sc->sc_sx.sc_iot, sc->sc_sx.sc_intctl_ioh, 88 1.1 bsh INTCTL_SRCPND); 89 1.14 nisimura int_pend0 = (1<<S3C24X0_INT_TIMER4) & int_pend; 90 1.1 bsh count = bus_space_read_2(sc->sc_sx.sc_iot, sc->sc_timer_ioh, 91 1.3 bsh TIMER_TCNTO(4)); 92 1.1 bsh 93 1.9 joerg for (;;) { 94 1.1 bsh 95 1.14 nisimura int_pend1 = bus_space_read_4(sc->sc_sx.sc_iot, 96 1.14 nisimura sc->sc_sx.sc_intctl_ioh, INTCTL_SRCPND); 97 1.14 nisimura int_pend1 &= (1<<S3C24X0_INT_TIMER4); 98 1.1 bsh if( int_pend0 == int_pend1 ) 99 1.1 bsh break; 100 1.1 bsh 101 1.1 bsh /* 102 1.1 bsh * Down counter reached to zero while we were reading 103 1.1 bsh * timer values. do it again to get consistent values. 104 1.1 bsh */ 105 1.1 bsh int_pend0 = int_pend1; 106 1.1 bsh count = bus_space_read_2(sc->sc_sx.sc_iot, sc->sc_timer_ioh, 107 1.3 bsh TIMER_TCNTO(4)); 108 1.1 bsh } 109 1.1 bsh 110 1.9 joerg if (__predict_false(count > timer4_reload_value)) { 111 1.1 bsh /* 112 1.1 bsh * Buggy Hardware Warning --- sometimes timer counter 113 1.1 bsh * reads bogus value like 0xffff. I guess it happens when 114 1.1 bsh * the timer is reloaded. 115 1.1 bsh */ 116 1.9 joerg printf("Bogus value from timer counter: %d\n", count); 117 1.1 bsh goto again; 118 1.1 bsh } 119 1.1 bsh 120 1.1 bsh restore_interrupts(save); 121 1.1 bsh 122 1.14 nisimura if (int_pend1 && count > 0) { 123 1.9 joerg count -= timer4_reload_value; 124 1.12 nisimura } 125 1.1 bsh 126 1.9 joerg return s3c24x0_base - count; 127 1.1 bsh } 128 1.1 bsh 129 1.6 perry static inline int 130 1.1 bsh read_timer(struct s3c24x0_softc *sc) 131 1.1 bsh { 132 1.1 bsh int count; 133 1.1 bsh 134 1.1 bsh do { 135 1.1 bsh count = bus_space_read_2(sc->sc_sx.sc_iot, sc->sc_timer_ioh, 136 1.3 bsh TIMER_TCNTO(4)); 137 1.1 bsh } while ( __predict_false(count > timer4_reload_value) ); 138 1.1 bsh 139 1.1 bsh return count; 140 1.1 bsh } 141 1.1 bsh 142 1.1 bsh /* 143 1.1 bsh * delay: 144 1.1 bsh * 145 1.1 bsh * Delay for at least N microseconds. 146 1.1 bsh */ 147 1.1 bsh void 148 1.1 bsh delay(u_int n) 149 1.1 bsh { 150 1.1 bsh struct s3c24x0_softc *sc = (struct s3c24x0_softc *) s3c2xx0_softc; 151 1.1 bsh int v0, v1, delta; 152 1.1 bsh u_int ucnt; 153 1.1 bsh 154 1.1 bsh if ( timer4_reload_value == 0 ){ 155 1.1 bsh /* not initialized yet */ 156 1.1 bsh while ( n-- > 0 ){ 157 1.1 bsh int m; 158 1.1 bsh 159 1.1 bsh for (m=0; m<100; ++m ) 160 1.1 bsh ; 161 1.1 bsh } 162 1.1 bsh return; 163 1.1 bsh } 164 1.1 bsh 165 1.1 bsh /* read down counter */ 166 1.1 bsh v0 = read_timer(sc); 167 1.1 bsh 168 1.1 bsh ucnt = usec_to_counter(n); 169 1.1 bsh 170 1.1 bsh while( ucnt > 0 ) { 171 1.1 bsh v1 = read_timer(sc); 172 1.1 bsh delta = v0 - v1; 173 1.1 bsh if ( delta < 0 ) 174 1.1 bsh delta += timer4_reload_value; 175 1.1 bsh #ifdef DEBUG 176 1.1 bsh if (delta < 0 || delta > timer4_reload_value) 177 1.1 bsh panic("wrong value from timer counter"); 178 1.1 bsh #endif 179 1.1 bsh 180 1.1 bsh if((u_int)delta < ucnt){ 181 1.1 bsh ucnt -= (u_int)delta; 182 1.1 bsh v0 = v1; 183 1.1 bsh } 184 1.1 bsh else { 185 1.1 bsh ucnt = 0; 186 1.1 bsh } 187 1.1 bsh } 188 1.1 bsh /*NOTREACHED*/ 189 1.1 bsh } 190 1.1 bsh 191 1.1 bsh void 192 1.4 he setstatclockrate(int newhz) 193 1.1 bsh { 194 1.1 bsh } 195 1.1 bsh 196 1.9 joerg static int 197 1.9 joerg hardintr(void *arg) 198 1.9 joerg { 199 1.9 joerg atomic_add_32(&s3c24x0_base, timer4_reload_value); 200 1.9 joerg 201 1.9 joerg hardclock((struct clockframe *)arg); 202 1.9 joerg 203 1.9 joerg return 1; 204 1.9 joerg } 205 1.1 bsh 206 1.12 nisimura static int 207 1.12 nisimura statintr(void *arg) 208 1.12 nisimura { 209 1.12 nisimura statclock((struct clockframe *)arg); 210 1.12 nisimura 211 1.12 nisimura return 1; 212 1.12 nisimura } 213 1.12 nisimura 214 1.1 bsh void 215 1.1 bsh cpu_initclocks(void) 216 1.1 bsh { 217 1.1 bsh struct s3c24x0_softc *sc = (struct s3c24x0_softc *)s3c2xx0_softc; 218 1.1 bsh long tc; 219 1.1 bsh int prescaler, h; 220 1.1 bsh int pclk = s3c2xx0_softc->sc_pclk; 221 1.1 bsh bus_space_tag_t iot = sc->sc_sx.sc_iot; 222 1.2 bsh bus_space_handle_t ioh = sc->sc_timer_ioh; 223 1.1 bsh uint32_t reg; 224 1.1 bsh 225 1.1 bsh stathz = STATHZ; 226 1.1 bsh profhz = stathz; 227 1.1 bsh 228 1.1 bsh #define time_constant(hz) (TIMER_FREQUENCY(pclk) /(hz)/ prescaler) 229 1.1 bsh #define calc_time_constant(hz) \ 230 1.1 bsh do { \ 231 1.1 bsh prescaler = 1; \ 232 1.1 bsh do { \ 233 1.1 bsh ++prescaler; \ 234 1.1 bsh tc = time_constant(hz); \ 235 1.1 bsh } while( tc > 65536 ); \ 236 1.1 bsh } while(0) 237 1.1 bsh 238 1.1 bsh 239 1.1 bsh /* Use the channels 4 and 3 for hardclock and statclock, respectively */ 240 1.1 bsh 241 1.1 bsh /* stop all timers */ 242 1.1 bsh bus_space_write_4(iot, ioh, TIMER_TCON, 0); 243 1.1 bsh 244 1.1 bsh /* calc suitable prescaler value */ 245 1.1 bsh h = MIN(hz,stathz); 246 1.1 bsh calc_time_constant(h); 247 1.1 bsh 248 1.1 bsh timer4_prescaler = prescaler; 249 1.14 nisimura timer4_reload_value = (TIMER_FREQUENCY(pclk) / hz / prescaler) - 1; 250 1.1 bsh timer4_mseccount = TIMER_FREQUENCY(pclk)/timer4_prescaler/1000 ; 251 1.1 bsh 252 1.3 bsh bus_space_write_4(iot, ioh, TIMER_TCNTB(4), 253 1.12 nisimura /*((prescaler - 1) << 16) |*/ (timer4_reload_value )); 254 1.1 bsh 255 1.1 bsh printf("clock: hz=%d stathz = %d PCLK=%d prescaler=%d tc=%ld\n", 256 1.1 bsh hz, stathz, pclk, prescaler, tc); 257 1.1 bsh 258 1.3 bsh bus_space_write_4(iot, ioh, TIMER_TCNTB(3), 259 1.12 nisimura /*((prescaler - 1) << 16) |*/ (time_constant(stathz))); 260 1.1 bsh 261 1.12 nisimura s3c24x0_intr_establish(S3C24X0_INT_TIMER4, IPL_CLOCK, 262 1.1 bsh IST_NONE, hardintr, 0); 263 1.12 nisimura s3c24x0_intr_establish(S3C24X0_INT_TIMER3, IPL_HIGH, 264 1.1 bsh IST_NONE, statintr, 0); 265 1.1 bsh 266 1.1 bsh /* set prescaler1 */ 267 1.1 bsh reg = bus_space_read_4(iot, ioh, TIMER_TCFG0); 268 1.1 bsh bus_space_write_4(iot, ioh, TIMER_TCFG0, 269 1.1 bsh (reg & ~0xff00) | ((prescaler-1) << 8)); 270 1.1 bsh 271 1.1 bsh /* divider 1/16 for ch #3 and #4 */ 272 1.1 bsh reg = bus_space_read_4(iot, ioh, TIMER_TCFG1); 273 1.1 bsh bus_space_write_4(iot, ioh, TIMER_TCFG1, 274 1.1 bsh (reg & ~(TCFG1_MUX_MASK(3)|TCFG1_MUX_MASK(4))) | 275 1.1 bsh (TCFG1_MUX_DIV16 << TCFG1_MUX_SHIFT(3)) | 276 1.1 bsh (TCFG1_MUX_DIV16 << TCFG1_MUX_SHIFT(4)) ); 277 1.1 bsh 278 1.1 bsh 279 1.1 bsh /* start timers */ 280 1.1 bsh reg = bus_space_read_4(iot, ioh, TIMER_TCON); 281 1.1 bsh reg &= ~(TCON_MASK(3)|TCON_MASK(4)); 282 1.2 bsh 283 1.12 nisimura s3c24x0_base = timer4_reload_value; 284 1.12 nisimura 285 1.1 bsh /* load the time constant */ 286 1.1 bsh bus_space_write_4(iot, ioh, TIMER_TCON, reg | 287 1.1 bsh TCON_MANUALUPDATE(3) | TCON_MANUALUPDATE(4)); 288 1.1 bsh /* set auto reload and start */ 289 1.1 bsh bus_space_write_4(iot, ioh, TIMER_TCON, reg | 290 1.1 bsh TCON_AUTORELOAD(3) | TCON_START(3) | 291 1.1 bsh TCON_AUTORELOAD(4) | TCON_START(4) ); 292 1.9 joerg 293 1.10 bsh s3c24x0_timecounter.tc_frequency = TIMER_FREQUENCY(pclk) / timer4_prescaler; 294 1.9 joerg tc_init(&s3c24x0_timecounter); 295 1.1 bsh } 296 1.1 bsh 297 1.1 bsh 298 1.1 bsh #if 0 299 1.1 bsh /* test routine for delay() */ 300 1.1 bsh 301 1.1 bsh void delay_test(void); 302 1.1 bsh void 303 1.1 bsh delay_test(void) 304 1.1 bsh { 305 1.1 bsh struct s3c2xx0_softc *sc = s3c2xx0_softc; 306 1.1 bsh volatile int *pdatc = (volatile int *) 307 1.1 bsh ((char *)bus_space_vaddr(sc->sc_iot, sc->sc_gpio_ioh) + GPIO_PDATC); 308 1.1 bsh static const int d[] = {0, 1, 5, 10, 50, 100, 500, 1000, -1}; 309 1.1 bsh int i; 310 1.1 bsh int v = *pdatc & ~0x07; 311 1.1 bsh 312 1.1 bsh for (;;) { 313 1.1 bsh *pdatc = v | 2; 314 1.1 bsh 315 1.1 bsh for (i=0; d[i] >= 0; ++i) { 316 1.1 bsh *pdatc = v | 3; 317 1.1 bsh delay(d[i]); 318 1.1 bsh *pdatc = v | 2; 319 1.1 bsh } 320 1.1 bsh *pdatc = v; 321 1.1 bsh } 322 1.1 bsh } 323 1.1 bsh #endif 324 1.1 bsh 325