if_scx.c revision 1.1 1 /* $NetBSD: if_scx.c,v 1.1 2020/03/23 03:25:06 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #define NOT_MP_SAFE 0
33
34 /*
35 * Socionext SC2A11 SynQuacer NetSec GbE driver
36 *
37 * (possibly incorrect notes to be removed eventually)
38 * - 32 byte descriptor for 64 bit paddr design.
39 * - multiple rings seems available. There are special descriptor fields
40 * to designify ring number from which to arrive or to which go.
41 * - memory mapped EEPROM to hold MAC address. The rest of the area is
42 * occupied by a set of ucode for two DMA engines and one packet engine.
43 * - The size of frame address filter is unknown. Might be 32
44 * - The first slot is my own station address. Always enabled to perform
45 * to identify oneself.
46 * - 1~31 are for supplimental MAC addresses. Independently enabled
47 * for use. Good to catch multicast. Byte-wise selective match available.
48 * Use to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
49 * - The size of multicast hash filter store is unknown. Might be 256 bit.
50 */
51
52 #include <sys/cdefs.h>
53 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.1 2020/03/23 03:25:06 nisimura Exp $");
54
55 #include <sys/param.h>
56 #include <sys/bus.h>
57 #include <sys/intr.h>
58 #include <sys/device.h>
59 #include <sys/callout.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63 #include <sys/rndsource.h>
64 #include <sys/kernel.h>
65 #include <sys/systm.h>
66
67 #include <net/if.h>
68 #include <net/if_media.h>
69 #include <net/if_dl.h>
70 #include <net/if_ether.h>
71 #include <dev/mii/mii.h>
72 #include <dev/mii/miivar.h>
73 #include <net/bpf.h>
74
75 #include <dev/fdt/fdtvar.h>
76 #include <dev/acpi/acpireg.h>
77 #include <dev/acpi/acpivar.h>
78 #include <dev/acpi/acpi_intr.h>
79
80 #define SWRESET 0x104
81 #define COMINIT 0x120
82 #define INTRST 0x200
83 #define IRQ_RX (1U<<1)
84 #define IRQ_TX (1U<<0)
85 #define INTREN 0x204
86 #define INTR_SET 0x234
87 #define INTR_CLR 0x238
88 #define TXINTST 0x400
89 #define TXINTEN 0x404
90 #define TXINT_SET 0x428
91 #define TXINT_CLR 0x42c
92 #define TXI_NTOWNR (1U<<17)
93 #define TXI_TR_ERR (1U<<16)
94 #define TXI_TXDONE (1U<<15)
95 #define TXI_TMREXP (1U<<14)
96 #define RXINTST 0x440
97 #define RXINTEN 0x444
98 #define RXINT_SET 0x468
99 #define RXINT_CLR 0x46c
100 #define RXI_RC_ERR (1U<<16)
101 #define RXI_PKTCNT (1U<<15)
102 #define RXI_TMREXP (1U<<14)
103 #define TXTIMER 0x41c
104 #define RXTIMER 0x45c
105 #define TXCOUNT 0x410
106 #define RXCOUNT 0x454
107 #define DMACH2M 0x210 /* DMAC host2media ucode port */
108 #define DMACM2H 0x21c /* DMAC media2host ucode port */
109 #define PKTENG 0x0d0 /* packet engine ucode port */
110 #define HWVER0 0x22c
111 #define HWVER1 0x230
112
113 #define MACSTAT 0x1024 /* gmac status */
114 #define MACDATA 0x11c0 /* gmac rd/wr data */
115 #define MACCMD 0x11c4 /* gmac operation */
116 #define CMD_IOWR (1U<<28) /* write op */
117 #define CMD_BUSY (1U<<31) /* busy bit */
118 #define DESCENG_INIT 0x11fc
119 #define DESCENG_SRST 0x1204
120
121 #define GMACMCR 0x0000 /* MAC configuration */
122 #define MCR_IBN (1U<<30) /* */
123 #define MCR_CST (1U<<25) /* strip CRC */
124 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
125 #define MCR_JE (1U<<20) /* ignore oversized >9018 frame */
126 #define MCR_USEMII (1U<<15) /* 1: RMII/MII, 0: RGMII */
127 #define MCR_SPD100 (1U<<14) /* force speed 100 */
128 #define MCR_USEFDX (1U<<11) /* force full duplex */
129 #define MCR_IPCKEN (1U<<10) /* handle checksum */
130 #define MCR_ACS (1U<<7) /* auto pad CRC strip */
131 #define MCR_TXE (1U<<3) /* start Tx DMA engine */
132 #define MCR_RXE (1U<<2) /* start Rx DMA engine */
133 #define _MCR_FDX 0x0000280c /* XXX TBD */
134 #define _MCR_HDX 0x0001a00c /* XXX TBD */
135 #define GMACAFR 0x0004 /* frame DA/SA address filter */
136 #define AFR_RA (1U<<31) /* receive all on */
137 #define AFR_HPF (1U<<10) /* activate hash or perfect filter */
138 #define AFR_SAF (1U<<9) /* source address filter */
139 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
140 #define AFR_PCF (3U<<6) /* */
141 #define AFR_RB (1U<<5) /* reject broadcast frame */
142 #define AFR_AM (1U<<4) /* accept all multicast frame */
143 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
144 #define AFR_MHTE (1U<<2) /* use multicast hash table */
145 #define AFR_UHTE (1U<<1) /* use additional MAC addresses */
146 #define AFR_PM (1U<<0) /* run promisc mode */
147 #define _AFR 0x80000001 /* XXX TBD */
148 #define GMACMHTH 0x0008 /* XXX multicast hash table 63:32 */
149 #define GMACMHTL 0x000c /* XXX multicast hash table 31:0 */
150 #define GMACGAR 0x0010 /* MDIO operation */
151 #define GAR_PHY (11) /* mii phy 15:11 */
152 #define GAR_REG (6) /* mii reg 10:6 */
153 #define GAR_CTL (2) /* control 5:2 */
154 #define GAR_IOWR (1U<<1) /* MDIO write op */
155 #define GAR_BUSY (1U) /* busy bit */
156 #define GMACGDR 0x0014 /* MDIO rd/wr data */
157 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
158 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
159 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
160 #define GMACIMPL 0x0020 /* (dig this number XXXX.YYYY) */
161 #define GMACVTAG 0x001c /* VLAN tag control */
162 #define GMACMAH0 0x0040 /* MAC address 0 47:32 */
163 #define GMACMAL0 0x0044 /* MAC address 0 31:0 */
164 #define GMACMAH(i) ((i)*8+0x40) /* 0 - 15 */
165 #define GMACMAL(i) ((i)*8+0x44)
166 #define GMACMHT0 0x0500 /* multcast hash table 0 - 8*/
167 #define GMACBMR 0x1000 /* DMA bus mode
168 * 24 4PBL
169 * 22:17 RPBL
170 * 16 fix burst
171 * 15:14 priority between Rx and Tx
172 * 3 rxtx41
173 * 2 rxtx31
174 * 1 rxtx21
175 * 0 rxtx11
176 * 13:8 PBL possible DMA burst len
177 * 0 reset op. self clear
178 */
179 #define _BMR 0x00412080 /* XXX TBD */
180 #define _BMR0 0x00020181 /* XXX TBD */
181 #define BMR_RST (1U<<0) /* reset op. self clear when done */
182 #define GMACRDLAR 0x100c /* */
183 #define _RDLAR 0x18000 /* XXX TBD */
184 #define GMACTDLAR 0x1010 /* */
185 #define _TDLAR 0x1c000 /* XXX TBD */
186 #define GMACOMR 0x1018 /* DMA operation */
187 #define OMR_TXE (1U<<13) /* start Tx DMA engine */
188 #define OMR_RXE (1U<<1) /* start Rx DMA engine */
189
190 const struct {
191 uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
192 } garclk[] = {
193 { 35, 2 }, /* 25-35 MHz */
194 { 60, 3 }, /* 35-60 MHz */
195 { 100, 0 }, /* 60-100 MHz */
196 { 150, 1 }, /* 100-150 MHz */
197 { 250, 4 }, /* 150-250 MHz */
198 { 300, 5 }, /* 250-300 MHz */
199 { 0 },
200 };
201 static int get_garclk(uint32_t);
202
203 /* descriptor format definition */
204 struct tdes {
205 uint32_t t0, t1, t2, t3;
206 };
207
208 struct rdes {
209 uint32_t r0, r1, r2, r3;
210 };
211
212 #define T0_OWN (1U<<31) /* desc is ready to Tx */
213 #define T0_EOD (1U<<30) /* end of descriptor array */
214 #define T0_DRID (24) /* 29:24 DRID */
215 #define T0_PT (1U<<21) /* 23:21 PT */
216 #define T0_TRID (16) /* 20:16 TRID */
217 #define T0_FS (1U<<9) /* first segment of frame */
218 #define T0_LS (1U<<8) /* last segment of frame */
219 #define T0_CSUM (1U<<7) /* enable check sum offload */
220 #define T0_SGOL (1U<<6) /* enable TCP segment offload */
221 #define T0_TRS (1U<<4) /* 5:4 TRS */
222 #define T0_IOC (0) /* XXX TBD interrupt when completed */
223 /* T1 segment address 63:32 */
224 /* T2 segment address 31:0 */
225 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
226 #define R0_OWN (1U<<31) /* desc is empty */
227 #define R0_EOD (1U<<30) /* end of descriptor array */
228 #define R0_SRID (24) /* 29:24 SRID */
229 #define R0_FR (1U<<23) /* FR */
230 #define R0_ER (1U<<21) /* Rx error indication */
231 #define R0_ERR (3U<<16) /* 18:16 receive error code */
232 #define R0_TDRID (14) /* 15:14 TDRID */
233 #define R0_FS (1U<<9) /* first segment of frame */
234 #define R0_LS (1U<<8) /* last segment of frame */
235 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
236 #define R0_CERR (2U<<6) /* 0 (undone), 1 (found ok), 2 (bad) */
237 /* R1 frame address 63:32 */
238 /* R2 frame address 31:0 */
239 /* R3 31:16 received frame length, 15:0 buffer length to receive */
240
241 #define SCX_NTXSEGS 16
242 #define SCX_TXQUEUELEN 16
243 #define SCX_TXQUEUELEN_MASK (SCX_TXQUEUELEN - 1)
244 #define SCX_TXQUEUE_GC (SCX_TXQUEUELEN / 4)
245 #define SCX_NTXDESC (SCX_TXQUEUELEN * SCX_NTXSEGS)
246 #define SCX_NTXDESC_MASK (SCX_NTXDESC - 1)
247 #define SCX_NEXTTX(x) (((x) + 1) & SCX_NTXDESC_MASK)
248 #define SCX_NEXTTXS(x) (((x) + 1) & SCX_TXQUEUELEN_MASK)
249
250 #define SCX_NRXDESC 64
251 #define SCX_NRXDESC_MASK (SCX_NRXDESC - 1)
252 #define SCX_NEXTRX(x) (((x) + 1) & SCX_NRXDESC_MASK)
253
254 #define SCX_INIT_RXDESC(sc, x) \
255 do { \
256 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
257 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
258 struct mbuf *__m = __rxs->rxs_mbuf; \
259 bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr; \
260 __m->m_data = __m->m_ext.ext_buf; \
261 __rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len; \
262 __rxd->r2 = htole32(BUS_ADDR_LO32(__paddr)); \
263 __rxd->r1 = htole32(BUS_ADDR_HI32(__paddr)); \
264 __rxd->r0 = R0_OWN | R0_FS | R0_LS; \
265 if ((x) == SCX_NRXDESC - 1) __rxd->r0 |= R0_EOD; \
266 } while (/*CONSTCOND*/0)
267
268 struct control_data {
269 struct tdes cd_txdescs[SCX_NTXDESC];
270 struct rdes cd_rxdescs[SCX_NRXDESC];
271 };
272 #define SCX_CDOFF(x) offsetof(struct control_data, x)
273 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
274 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
275
276 struct scx_txsoft {
277 struct mbuf *txs_mbuf; /* head of our mbuf chain */
278 bus_dmamap_t txs_dmamap; /* our DMA map */
279 int txs_firstdesc; /* first descriptor in packet */
280 int txs_lastdesc; /* last descriptor in packet */
281 int txs_ndesc; /* # of descriptors used */
282 };
283
284 struct scx_rxsoft {
285 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
286 bus_dmamap_t rxs_dmamap; /* our DMA map */
287 };
288
289 struct scx_softc {
290 device_t sc_dev; /* generic device information */
291 bus_space_tag_t sc_st; /* bus space tag */
292 bus_space_handle_t sc_sh; /* bus space handle */
293 bus_size_t sc_sz; /* csr map size */
294 bus_space_handle_t sc_eesh; /* eeprom section handle */
295 bus_size_t sc_eesz; /* eeprom map size */
296 bus_dma_tag_t sc_dmat; /* bus DMA tag */
297 struct ethercom sc_ethercom; /* Ethernet common data */
298 struct mii_data sc_mii; /* MII */
299 callout_t sc_tick_ch; /* PHY monitor callout */
300 int sc_flowflags; /* 802.3x PAUSE flow control */
301 void *sc_ih; /* interrupt cookie */
302 bus_dma_segment_t sc_seg; /* descriptor store seg */
303 int sc_nseg; /* descriptor store nseg */
304 int sc_phy_id; /* PHY address */
305 uint32_t sc_gar; /* GAR 5:2 clock selection */
306 int sc_phandle; /* fdt phandle */
307 uint32_t sc_t0coso; /* T0_CSUM | T0_SGOL */
308
309 bus_dmamap_t sc_cddmamap; /* control data DMA map */
310 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
311
312 struct control_data *sc_control_data;
313 #define sc_txdescs sc_control_data->cd_txdescs
314 #define sc_rxdescs sc_control_data->cd_rxdescs
315
316 struct scx_txsoft sc_txsoft[SCX_TXQUEUELEN];
317 struct scx_rxsoft sc_rxsoft[SCX_NRXDESC];
318 int sc_txfree; /* number of free Tx descriptors */
319 int sc_txnext; /* next ready Tx descriptor */
320 int sc_txsfree; /* number of free Tx jobs */
321 int sc_txsnext; /* next ready Tx job */
322 int sc_txsdirty; /* dirty Tx jobs */
323 int sc_rxptr; /* next ready Rx descriptor/descsoft */
324
325 krndsource_t rnd_source; /* random source */
326 };
327
328 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
329 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
330
331 #define SCX_CDTXSYNC(sc, x, n, ops) \
332 do { \
333 int __x, __n; \
334 \
335 __x = (x); \
336 __n = (n); \
337 \
338 /* If it will wrap around, sync to the end of the ring. */ \
339 if ((__x + __n) > SCX_NTXDESC) { \
340 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
341 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
342 (SCX_NTXDESC - __x), (ops)); \
343 __n -= (SCX_NTXDESC - __x); \
344 __x = 0; \
345 } \
346 \
347 /* Now sync whatever is left. */ \
348 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
349 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
350 } while (/*CONSTCOND*/0)
351
352 #define SCX_CDRXSYNC(sc, x, ops) \
353 do { \
354 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
355 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
356 } while (/*CONSTCOND*/0)
357
358 static int scx_fdt_match(device_t, cfdata_t, void *);
359 static void scx_fdt_attach(device_t, device_t, void *);
360 static int scx_acpi_match(device_t, cfdata_t, void *);
361 static void scx_acpi_attach(device_t, device_t, void *);
362
363 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
364 scx_fdt_match, scx_fdt_attach, NULL, NULL);
365
366 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
367 scx_acpi_match, scx_acpi_attach, NULL, NULL);
368
369 static void scx_attach_i(struct scx_softc *);
370 static void scx_reset(struct scx_softc *);
371 static int scx_init(struct ifnet *);
372 static void scx_start(struct ifnet *);
373 static void scx_stop(struct ifnet *, int);
374 static void scx_watchdog(struct ifnet *);
375 static int scx_ioctl(struct ifnet *, u_long, void *);
376 static void scx_set_rcvfilt(struct scx_softc *);
377 static int scx_ifmedia_upd(struct ifnet *);
378 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
379 static void mii_statchg(struct ifnet *);
380 static void phy_tick(void *);
381 static int mii_readreg(device_t, int, int, uint16_t *);
382 static int mii_writereg(device_t, int, int, uint16_t);
383 static int scx_intr(void *);
384 static void txreap(struct scx_softc *);
385 static void rxintr(struct scx_softc *);
386 static int add_rxbuf(struct scx_softc *, int);
387 static int spin_waitfor(struct scx_softc *, int, int);
388 static int mac_read(struct scx_softc *, int);
389 static void mac_write(struct scx_softc *, int, int);
390 static void loaducode(struct scx_softc *);
391 static void injectucode(struct scx_softc *, int, uint64_t, uint32_t);
392
393 #define CSR_READ(sc,off) \
394 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
395 #define CSR_WRITE(sc,off,val) \
396 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
397 #define EE_READ(sc,off) \
398 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
399
400 static int
401 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
402 {
403 static const char * compatible[] = {
404 "socionext,synquacer-netsec",
405 NULL
406 };
407 struct fdt_attach_args * const faa = aux;
408
409 return of_match_compatible(faa->faa_phandle, compatible);
410 }
411
412 static void
413 scx_fdt_attach(device_t parent, device_t self, void *aux)
414 {
415 struct scx_softc * const sc = device_private(self);
416 struct fdt_attach_args * const faa = aux;
417 const int phandle = faa->faa_phandle;
418 bus_space_tag_t bst = faa->faa_bst;
419 bus_space_handle_t bsh;
420 bus_space_handle_t eebsh;
421 bus_addr_t addr;
422 bus_size_t size;
423 char intrstr[128];
424
425 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
426 || bus_space_map(faa->faa_bst, addr, size, 0, &bsh) != 0) {
427 aprint_error(": unable to map device csr\n");
428 return;
429 }
430 sc->sc_sz = size;
431 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
432 aprint_error(": failed to decode interrupt\n");
433 goto fail;
434 }
435 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
436 NOT_MP_SAFE, scx_intr, sc);
437 if (sc->sc_ih == NULL) {
438 aprint_error_dev(self, "couldn't establish interrupt\n");
439 goto fail;
440 }
441 if (fdtbus_get_reg(phandle, 1, &addr, &size) != 0
442 || bus_space_map(faa->faa_bst, addr, size, 0, &eebsh) != 0) {
443 aprint_error(": unable to map device eeprom\n");
444 goto fail;
445 }
446 sc->sc_eesz = size;
447
448 aprint_naive("\n");
449 aprint_normal(": Gigabit Ethernet Controller\n");
450 aprint_normal_dev(self, "interrupt on %s\n", intrstr);
451
452 sc->sc_dev = self;
453 sc->sc_st = bst;
454 sc->sc_sh = bsh;
455 sc->sc_eesh = eebsh;
456 sc->sc_dmat = faa->faa_dmat;
457 sc->sc_phandle = phandle;
458
459 scx_attach_i(sc);
460 return;
461 fail:
462 if (sc->sc_eesz)
463 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
464 if (sc->sc_sz)
465 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
466 return;
467 }
468
469 static int
470 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
471 {
472 static const char * compatible[] = {
473 "SCX0001",
474 NULL
475 };
476 struct acpi_attach_args *aa = aux;
477
478 if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
479 return 0;
480 return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
481 }
482
483 static void
484 scx_acpi_attach(device_t parent, device_t self, void *aux)
485 {
486 struct scx_softc * const sc = device_private(self);
487 struct acpi_attach_args * const aa = aux;
488 ACPI_HANDLE handle = aa->aa_node->ad_handle;
489 bus_space_tag_t bst = aa->aa_memt;
490 bus_space_handle_t bsh, eebsh;
491 struct acpi_resources res;
492 struct acpi_mem *mem;
493 struct acpi_irq *irq;
494 ACPI_STATUS rv;
495
496 rv = acpi_resource_parse(self, handle, "_CRS",
497 &res, &acpi_resource_parse_ops_default);
498 if (ACPI_FAILURE(rv))
499 return;
500 mem = acpi_res_mem(&res, 0);
501 irq = acpi_res_irq(&res, 0);
502 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
503 aprint_error(": incomplete csr resources\n");
504 return;
505 }
506 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
507 aprint_error(": couldn't map registers\n");
508 return;
509 }
510 sc->sc_sz = mem->ar_length;
511 sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
512 NOT_MP_SAFE, scx_intr, sc, device_xname(self));
513 if (sc->sc_ih == NULL) {
514 aprint_error_dev(self, "couldn't establish interrupt\n");
515 goto fail;
516 }
517 mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
518 if (mem == NULL || mem->ar_length == 0) {
519 aprint_error(": incomplete eeprom resources\n");
520 goto fail;
521 }
522 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
523 aprint_error(": couldn't map registers\n");
524 goto fail;
525 }
526 sc->sc_eesz = mem->ar_length;
527
528 aprint_naive("\n");
529 aprint_normal(": Gigabit Ethernet Controller\n");
530
531 sc->sc_dev = self;
532 sc->sc_st = bst;
533 sc->sc_sh = bsh;
534 sc->sc_eesh = eebsh;
535 sc->sc_dmat = aa->aa_dmat64;
536
537 scx_attach_i(sc);
538
539 acpi_resource_cleanup(&res);
540 return;
541 fail:
542 if (sc->sc_eesz > 0)
543 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
544 if (sc->sc_sz > 0)
545 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
546 acpi_resource_cleanup(&res);
547 return;
548 }
549
550 static void
551 scx_attach_i(struct scx_softc *sc)
552 {
553 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
554 struct mii_data * const mii = &sc->sc_mii;
555 struct ifmedia * const ifm = &mii->mii_media;
556 uint32_t hwver, phyfreq;
557 uint8_t enaddr[ETHER_ADDR_LEN];
558 bus_dma_segment_t seg;
559 uint32_t csr;
560 int i, nseg, error = 0;
561
562 hwver = CSR_READ(sc, HWVER1);
563 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
564 enaddr[0] = csr >> 24;
565 enaddr[1] = csr >> 16;
566 enaddr[2] = csr >> 8;
567 enaddr[3] = csr;
568 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
569 enaddr[4] = csr >> 24;
570 enaddr[5] = csr >> 16;
571
572 aprint_normal_dev(sc->sc_dev, "NetSec GbE (%d.%d)\n",
573 hwver >> 16, hwver & 0xffff);
574 aprint_normal_dev(sc->sc_dev,
575 "Ethernet address %s\n", ether_sprintf(enaddr));
576
577 phyfreq = 0;
578 sc->sc_phy_id = MII_PHY_ANY;
579 sc->sc_gar = get_garclk(phyfreq) << GAR_CTL; /* 5:2 gar control */
580
581 sc->sc_flowflags = 0;
582
583 if (0/*CONSTCOND*/)
584 loaducode(sc);
585
586 mii->mii_ifp = ifp;
587 mii->mii_readreg = mii_readreg;
588 mii->mii_writereg = mii_writereg;
589 mii->mii_statchg = mii_statchg;
590
591 sc->sc_ethercom.ec_mii = mii;
592 ifmedia_init(ifm, 0, scx_ifmedia_upd, scx_ifmedia_sts);
593 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
594 MII_OFFSET_ANY, MIIF_DOPAUSE);
595 if (LIST_FIRST(&mii->mii_phys) == NULL) {
596 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
597 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
598 } else
599 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
600 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
601
602 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
603 ifp->if_softc = sc;
604 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
605 ifp->if_ioctl = scx_ioctl;
606 ifp->if_start = scx_start;
607 ifp->if_watchdog = scx_watchdog;
608 ifp->if_init = scx_init;
609 ifp->if_stop = scx_stop;
610 IFQ_SET_READY(&ifp->if_snd);
611
612 if_attach(ifp);
613 if_deferred_start_init(ifp, NULL);
614 ether_ifattach(ifp, enaddr);
615
616 callout_init(&sc->sc_tick_ch, 0);
617 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
618
619 /*
620 * Allocate the control data structures, and create and load the
621 * DMA map for it.
622 */
623 error = bus_dmamem_alloc(sc->sc_dmat,
624 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
625 if (error != 0) {
626 aprint_error_dev(sc->sc_dev,
627 "unable to allocate control data, error = %d\n", error);
628 goto fail_0;
629 }
630 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
631 sizeof(struct control_data), (void **)&sc->sc_control_data,
632 BUS_DMA_COHERENT);
633 if (error != 0) {
634 aprint_error_dev(sc->sc_dev,
635 "unable to map control data, error = %d\n", error);
636 goto fail_1;
637 }
638 error = bus_dmamap_create(sc->sc_dmat,
639 sizeof(struct control_data), 1,
640 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
641 if (error != 0) {
642 aprint_error_dev(sc->sc_dev,
643 "unable to create control data DMA map, "
644 "error = %d\n", error);
645 goto fail_2;
646 }
647 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
648 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
649 if (error != 0) {
650 aprint_error_dev(sc->sc_dev,
651 "unable to load control data DMA map, error = %d\n",
652 error);
653 goto fail_3;
654 }
655 for (i = 0; i < SCX_TXQUEUELEN; i++) {
656 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
657 SCX_NTXSEGS, MCLBYTES, 0, 0,
658 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
659 aprint_error_dev(sc->sc_dev,
660 "unable to create tx DMA map %d, error = %d\n",
661 i, error);
662 goto fail_4;
663 }
664 }
665 for (i = 0; i < SCX_NRXDESC; i++) {
666 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
667 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
668 aprint_error_dev(sc->sc_dev,
669 "unable to create rx DMA map %d, error = %d\n",
670 i, error);
671 goto fail_5;
672 }
673 sc->sc_rxsoft[i].rxs_mbuf = NULL;
674 }
675 sc->sc_seg = seg;
676 sc->sc_nseg = nseg;
677 printf("bus_dmaseg ds_addr %08lx, ds_len %08lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
678
679 if (pmf_device_register(sc->sc_dev, NULL, NULL))
680 pmf_class_network_register(sc->sc_dev, ifp);
681 else
682 aprint_error_dev(sc->sc_dev,
683 "couldn't establish power handler\n");
684
685 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
686 RND_TYPE_NET, RND_FLAG_DEFAULT);
687
688 return;
689
690 fail_5:
691 for (i = 0; i < SCX_NRXDESC; i++) {
692 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
693 bus_dmamap_destroy(sc->sc_dmat,
694 sc->sc_rxsoft[i].rxs_dmamap);
695 }
696 fail_4:
697 for (i = 0; i < SCX_TXQUEUELEN; i++) {
698 if (sc->sc_txsoft[i].txs_dmamap != NULL)
699 bus_dmamap_destroy(sc->sc_dmat,
700 sc->sc_txsoft[i].txs_dmamap);
701 }
702 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
703 fail_3:
704 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
705 fail_2:
706 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
707 sizeof(struct control_data));
708 fail_1:
709 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
710 fail_0:
711 if (sc->sc_phandle)
712 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
713 else
714 acpi_intr_disestablish(sc->sc_ih);
715 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
716 return;
717 }
718
719 static void
720 scx_reset(struct scx_softc *sc)
721 {
722
723 mac_write(sc, GMACBMR, BMR_RST); /* may take for a while */
724 (void)spin_waitfor(sc, GMACBMR, BMR_RST);
725
726 CSR_WRITE(sc, DESCENG_SRST, 1);
727 CSR_WRITE(sc, DESCENG_INIT, 1);
728 mac_write(sc, GMACBMR, _BMR);
729 mac_write(sc, GMACRDLAR, _RDLAR);
730 mac_write(sc, GMACTDLAR, _TDLAR);
731 mac_write(sc, GMACAFR, _AFR);
732 }
733
734 static int
735 scx_init(struct ifnet *ifp)
736 {
737 struct scx_softc *sc = ifp->if_softc;
738 const uint8_t *ea = CLLADDR(ifp->if_sadl);
739 uint32_t csr;
740 int i;
741
742 /* Cancel pending I/O. */
743 scx_stop(ifp, 0);
744
745 /* Reset the chip to a known state. */
746 scx_reset(sc);
747
748 /* build sane Tx and load Rx descriptors with mbuf */
749 for (i = 0; i < SCX_NTXDESC; i++)
750 sc->sc_txdescs[i].t0 = T0_OWN;
751 sc->sc_txdescs[SCX_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
752 for (i = 0; i < SCX_NRXDESC; i++)
753 (void)add_rxbuf(sc, i);
754
755 /* set my address in perfect match slot 0 */
756 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
757 CSR_WRITE(sc, GMACMAL0, csr);
758 csr = (ea[5] << 8) | ea[4];
759 CSR_WRITE(sc, GMACMAH0, csr | 1U<<31); /* always valid? */
760
761 /* accept multicast frame or run promisc mode */
762 scx_set_rcvfilt(sc);
763
764 (void)scx_ifmedia_upd(ifp);
765
766 /* kick to start GMAC engine */
767 csr = mac_read(sc, GMACOMR);
768 CSR_WRITE(sc, RXINT_CLR, ~0);
769 CSR_WRITE(sc, TXINT_CLR, ~0);
770 mac_write(sc, GMACOMR, csr | OMR_RXE | OMR_TXE);
771
772 ifp->if_flags |= IFF_RUNNING;
773 ifp->if_flags &= ~IFF_OACTIVE;
774
775 /* start one second timer */
776 callout_schedule(&sc->sc_tick_ch, hz);
777
778 return 0;
779 }
780
781 static void
782 scx_stop(struct ifnet *ifp, int disable)
783 {
784 struct scx_softc *sc = ifp->if_softc;
785
786 /* Stop the one second clock. */
787 callout_stop(&sc->sc_tick_ch);
788
789 /* Down the MII. */
790 mii_down(&sc->sc_mii);
791
792 /* Mark the interface down and cancel the watchdog timer. */
793 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
794 ifp->if_timer = 0;
795 }
796
797 static void
798 scx_watchdog(struct ifnet *ifp)
799 {
800 struct scx_softc *sc = ifp->if_softc;
801
802 /*
803 * Since we're not interrupting every packet, sweep
804 * up before we report an error.
805 */
806 txreap(sc);
807
808 if (sc->sc_txfree != SCX_NTXDESC) {
809 aprint_error_dev(sc->sc_dev,
810 "device timeout (txfree %d txsfree %d txnext %d)\n",
811 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
812 if_statinc(ifp, if_oerrors);
813
814 /* Reset the interface. */
815 scx_init(ifp);
816 }
817
818 scx_start(ifp);
819 }
820
821 static int
822 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
823 {
824 struct scx_softc *sc = ifp->if_softc;
825 struct ifreq *ifr = (struct ifreq *)data;
826 struct ifmedia *ifm;
827 int s, error;
828
829 s = splnet();
830
831 switch (cmd) {
832 case SIOCSIFMEDIA:
833 /* Flow control requires full-duplex mode. */
834 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
835 (ifr->ifr_media & IFM_FDX) == 0)
836 ifr->ifr_media &= ~IFM_ETH_FMASK;
837 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
838 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
839 /* We can do both TXPAUSE and RXPAUSE. */
840 ifr->ifr_media |=
841 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
842 }
843 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
844 }
845 ifm = &sc->sc_mii.mii_media;
846 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
847 break;
848 default:
849 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
850 break;
851
852 error = 0;
853
854 if (cmd == SIOCSIFCAP)
855 error = (*ifp->if_init)(ifp);
856 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
857 ;
858 else if (ifp->if_flags & IFF_RUNNING) {
859 /*
860 * Multicast list has changed; set the hardware filter
861 * accordingly.
862 */
863 scx_set_rcvfilt(sc);
864 }
865 break;
866 }
867
868 splx(s);
869 return error;
870 }
871
872 static void
873 scx_set_rcvfilt(struct scx_softc *sc)
874 {
875 struct ethercom * const ec = &sc->sc_ethercom;
876 struct ifnet * const ifp = &ec->ec_if;
877 struct ether_multistep step;
878 struct ether_multi *enm;
879 uint32_t mchash[8]; /* 8x 32 = 256 bit */
880 uint32_t csr, crc;
881 int i;
882
883 csr = CSR_READ(sc, GMACAFR);
884 csr &= ~(AFR_PM | AFR_AM | AFR_MHTE);
885 CSR_WRITE(sc, GMACAFR, csr);
886
887 ETHER_LOCK(ec);
888 if (ifp->if_flags & IFF_PROMISC) {
889 ec->ec_flags |= ETHER_F_ALLMULTI;
890 ETHER_UNLOCK(ec);
891 goto update;
892 }
893 ec->ec_flags &= ~ETHER_F_ALLMULTI;
894
895 /* clear 15 entry supplimental perfect match filter */
896 for (i = 1; i < 16; i++)
897 CSR_WRITE(sc, GMACMAH(i), 0);
898 /* build 256 bit multicast hash filter */
899 memset(mchash, 0, sizeof(mchash));
900 crc = 0;
901
902 ETHER_FIRST_MULTI(step, ec, enm);
903 i = 1; /* slot 0 is occupied */
904 while (enm != NULL) {
905 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
906 /*
907 * We must listen to a range of multicast addresses.
908 * For now, just accept all multicasts, rather than
909 * trying to set only those filter bits needed to match
910 * the range. (At this time, the only use of address
911 * ranges is for IP multicast routing, for which the
912 * range is big enough to require all bits set.)
913 */
914 ec->ec_flags |= ETHER_F_ALLMULTI;
915 ETHER_UNLOCK(ec);
916 goto update;
917 }
918 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
919 if (i < 16) {
920 /* use 31 entry perfect match filter */
921 uint32_t addr;
922 uint8_t *ep = enm->enm_addrlo;
923 addr = (ep[3] << 24) | (ep[2] << 16)
924 | (ep[1] << 8) | ep[0];
925 CSR_WRITE(sc, GMACMAL(i), addr);
926 addr = (ep[5] << 8) | ep[4];
927 CSR_WRITE(sc, GMACMAH(i), addr | 1U<<31);
928 } else {
929 /* use hash table when too many */
930 /* bit_reserve_32(~crc) !? */
931 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
932 /* 3(31:29) 5(28:24) bit sampling */
933 mchash[crc >> 29] |= 1 << ((crc >> 24) & 0x1f);
934 }
935 ETHER_NEXT_MULTI(step, enm);
936 i++;
937 }
938 ETHER_UNLOCK(ec);
939
940 if (crc)
941 csr |= AFR_MHTE;
942 for (i = 0; i < 8; i++)
943 CSR_WRITE(sc, GMACMHT0 + i * 4, mchash[i]);
944 CSR_WRITE(sc, GMACAFR, csr);
945 return;
946
947 update:
948 /* With PM or AM, MHTE/MTL/MTH are never consulted. really? */
949 if (ifp->if_flags & IFF_PROMISC)
950 csr |= AFR_PM; /* run promisc. mode */
951 else
952 csr |= AFR_AM; /* accept all multicast */
953 CSR_WRITE(sc, GMACAFR, csr);
954 return;
955 }
956
957 static int
958 scx_ifmedia_upd(struct ifnet *ifp)
959 {
960 struct scx_softc *sc = ifp->if_softc;
961 struct ifmedia *ifm = &sc->sc_mii.mii_media;
962
963 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
964 ; /* restart AN */
965 ; /* enable AN */
966 ; /* advertise flow control pause */
967 ; /* adv. 100FDX,100HDX,10FDX,10HDX */
968 } else {
969 #if 1
970 uint32_t mcr = mac_read(sc, GMACMCR);
971 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_1000_T)
972 mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
973 else {
974 mcr |= MCR_USEMII; /* RMII/MII */
975 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
976 mcr |= MCR_SPD100;
977 }
978 if (ifm->ifm_cur->ifm_media & IFM_FDX)
979 mcr |= MCR_USEFDX;
980 mcr |= MCR_CST | MCR_JE;
981 mcr |= MCR_IBN;
982 mac_write(sc, GMACMCR, mcr);
983 #endif
984 }
985 return 0;
986 }
987
988 static void
989 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
990 {
991 struct scx_softc *sc = ifp->if_softc;
992 struct mii_data *mii = &sc->sc_mii;
993
994 mii_pollstat(mii);
995 ifmr->ifm_status = mii->mii_media_status;
996 ifmr->ifm_active = sc->sc_flowflags |
997 (mii->mii_media_active & ~IFM_ETH_FMASK);
998 }
999
1000 void
1001 mii_statchg(struct ifnet *ifp)
1002 {
1003 struct scx_softc *sc = ifp->if_softc;
1004 struct mii_data *mii = &sc->sc_mii;
1005 uint32_t fcr;
1006
1007 /* Get flow control negotiation result. */
1008 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1009 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1010 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1011
1012 /* Adjust PAUSE flow control. */
1013 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1014 if (mii->mii_media_active & IFM_FDX) {
1015 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1016 fcr |= FCR_TFE;
1017 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1018 fcr |= FCR_RFE;
1019 }
1020 mac_write(sc, GMACFCR, fcr);
1021
1022 printf("%ctxfe, %crxfe\n",
1023 (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
1024 }
1025
1026 static void
1027 phy_tick(void *arg)
1028 {
1029 struct scx_softc *sc = arg;
1030 struct mii_data *mii = &sc->sc_mii;
1031 int s;
1032
1033 s = splnet();
1034 mii_tick(mii);
1035 splx(s);
1036
1037 callout_schedule(&sc->sc_tick_ch, hz);
1038 }
1039
1040 static int
1041 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1042 {
1043 struct scx_softc *sc = device_private(self);
1044 uint32_t gar;
1045 int error;
1046
1047 gar = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_gar;
1048 mac_write(sc, GMACGAR, gar | GAR_BUSY);
1049 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1050 if (error)
1051 return error;
1052 *val = mac_read(sc, GMACGDR);
1053 return 0;
1054 }
1055
1056 static int
1057 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1058 {
1059 struct scx_softc *sc = device_private(self);
1060 uint32_t gar;
1061 uint16_t dummy;
1062 int error;
1063
1064 gar = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_gar;
1065 mac_write(sc, GMACGDR, val);
1066 mac_write(sc, GMACGAR, gar | GAR_IOWR | GAR_BUSY);
1067 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1068 if (error)
1069 return error;
1070 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1071 return 0;
1072 }
1073
1074 static void
1075 scx_start(struct ifnet *ifp)
1076 {
1077 struct scx_softc *sc = ifp->if_softc;
1078 struct mbuf *m0, *m;
1079 struct scx_txsoft *txs;
1080 bus_dmamap_t dmamap;
1081 int error, nexttx, lasttx, ofree, seg;
1082 uint32_t tdes0;
1083
1084 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1085 return;
1086
1087 /* Remember the previous number of free descriptors. */
1088 ofree = sc->sc_txfree;
1089
1090 /*
1091 * Loop through the send queue, setting up transmit descriptors
1092 * until we drain the queue, or use up all available transmit
1093 * descriptors.
1094 */
1095 for (;;) {
1096 IFQ_POLL(&ifp->if_snd, m0);
1097 if (m0 == NULL)
1098 break;
1099
1100 if (sc->sc_txsfree < SCX_TXQUEUE_GC) {
1101 txreap(sc);
1102 if (sc->sc_txsfree == 0)
1103 break;
1104 }
1105 txs = &sc->sc_txsoft[sc->sc_txsnext];
1106 dmamap = txs->txs_dmamap;
1107
1108 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1109 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1110 if (error) {
1111 if (error == EFBIG) {
1112 aprint_error_dev(sc->sc_dev,
1113 "Tx packet consumes too many "
1114 "DMA segments, dropping...\n");
1115 IFQ_DEQUEUE(&ifp->if_snd, m0);
1116 m_freem(m0);
1117 continue;
1118 }
1119 /* Short on resources, just stop for now. */
1120 break;
1121 }
1122
1123 if (dmamap->dm_nsegs > sc->sc_txfree) {
1124 /*
1125 * Not enough free descriptors to transmit this
1126 * packet. We haven't committed anything yet,
1127 * so just unload the DMA map, put the packet
1128 * back on the queue, and punt. Notify the upper
1129 * layer that there are not more slots left.
1130 */
1131 ifp->if_flags |= IFF_OACTIVE;
1132 bus_dmamap_unload(sc->sc_dmat, dmamap);
1133 break;
1134 }
1135
1136 IFQ_DEQUEUE(&ifp->if_snd, m0);
1137
1138 /*
1139 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1140 */
1141
1142 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1143 BUS_DMASYNC_PREWRITE);
1144
1145 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1146 lasttx = -1;
1147 for (nexttx = sc->sc_txnext, seg = 0;
1148 seg < dmamap->dm_nsegs;
1149 seg++, nexttx = SCX_NEXTTX(nexttx)) {
1150 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1151 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1152 /*
1153 * If this is the first descriptor we're
1154 * enqueueing, don't set the OWN bit just
1155 * yet. That could cause a race condition.
1156 * We'll do it below.
1157 */
1158 tdes->t3 = dmamap->dm_segs[seg].ds_len;
1159 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1160 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1161 tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
1162 (15 << T0_TRID) | T0_PT |
1163 sc->sc_t0coso | T0_TRS;
1164 tdes0 = T0_OWN; /* 2nd and other segments */
1165 lasttx = nexttx;
1166 }
1167 /*
1168 * Outgoing NFS mbuf must be unloaded when Tx completed.
1169 * Without T1_IC NFS mbuf is left unack'ed for excessive
1170 * time and NFS stops to proceed until scx_watchdog()
1171 * calls txreap() to reclaim the unack'ed mbuf.
1172 * It's painful to traverse every mbuf chain to determine
1173 * whether someone is waiting for Tx completion.
1174 */
1175 m = m0;
1176 do {
1177 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1178 sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
1179 break;
1180 }
1181 } while ((m = m->m_next) != NULL);
1182
1183 /* Write deferred 1st segment T0_OWN at the final stage */
1184 sc->sc_txdescs[lasttx].t0 |= T0_LS;
1185 sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
1186 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1187 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1188
1189 /* Tell DMA start transmit */
1190 /* CSR_WRITE(sc, MDTSC, 1); */
1191
1192 txs->txs_mbuf = m0;
1193 txs->txs_firstdesc = sc->sc_txnext;
1194 txs->txs_lastdesc = lasttx;
1195 txs->txs_ndesc = dmamap->dm_nsegs;
1196
1197 sc->sc_txfree -= txs->txs_ndesc;
1198 sc->sc_txnext = nexttx;
1199 sc->sc_txsfree--;
1200 sc->sc_txsnext = SCX_NEXTTXS(sc->sc_txsnext);
1201 /*
1202 * Pass the packet to any BPF listeners.
1203 */
1204 bpf_mtap(ifp, m0, BPF_D_OUT);
1205 }
1206
1207 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1208 /* No more slots left; notify upper layer. */
1209 ifp->if_flags |= IFF_OACTIVE;
1210 }
1211 if (sc->sc_txfree != ofree) {
1212 /* Set a watchdog timer in case the chip flakes out. */
1213 ifp->if_timer = 5;
1214 }
1215 }
1216
1217 static int
1218 scx_intr(void *arg)
1219 {
1220 struct scx_softc *sc = arg;
1221 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1222
1223 (void)ifp;
1224 rxintr(sc);
1225 txreap(sc);
1226 return 1;
1227 }
1228
1229 static void
1230 txreap(struct scx_softc *sc)
1231 {
1232 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1233 struct scx_txsoft *txs;
1234 uint32_t txstat;
1235 int i;
1236
1237 ifp->if_flags &= ~IFF_OACTIVE;
1238
1239 for (i = sc->sc_txsdirty; sc->sc_txsfree != SCX_TXQUEUELEN;
1240 i = SCX_NEXTTXS(i), sc->sc_txsfree++) {
1241 txs = &sc->sc_txsoft[i];
1242
1243 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1244 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1245
1246 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1247 if (txstat & T0_OWN) /* desc is still in use */
1248 break;
1249
1250 /* There is no way to tell transmission status per frame */
1251
1252 if_statinc(ifp, if_opackets);
1253
1254 sc->sc_txfree += txs->txs_ndesc;
1255 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1256 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1257 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1258 m_freem(txs->txs_mbuf);
1259 txs->txs_mbuf = NULL;
1260 }
1261 sc->sc_txsdirty = i;
1262 if (sc->sc_txsfree == SCX_TXQUEUELEN)
1263 ifp->if_timer = 0;
1264 }
1265
1266 static void
1267 rxintr(struct scx_softc *sc)
1268 {
1269 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1270 struct scx_rxsoft *rxs;
1271 struct mbuf *m;
1272 uint32_t rxstat;
1273 int i, len;
1274
1275 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = SCX_NEXTRX(i)) {
1276 rxs = &sc->sc_rxsoft[i];
1277
1278 SCX_CDRXSYNC(sc, i,
1279 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1280
1281 rxstat = sc->sc_rxdescs[i].r0;
1282 if (rxstat & R0_OWN) /* desc is left empty */
1283 break;
1284
1285 /* R0_FS | R0_LS must have been marked for this desc */
1286
1287 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1288 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1289
1290 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1291 len -= ETHER_CRC_LEN; /* Trim CRC off */
1292 m = rxs->rxs_mbuf;
1293
1294 if (add_rxbuf(sc, i) != 0) {
1295 if_statinc(ifp, if_ierrors);
1296 SCX_INIT_RXDESC(sc, i);
1297 bus_dmamap_sync(sc->sc_dmat,
1298 rxs->rxs_dmamap, 0,
1299 rxs->rxs_dmamap->dm_mapsize,
1300 BUS_DMASYNC_PREREAD);
1301 continue;
1302 }
1303
1304 m_set_rcvif(m, ifp);
1305 m->m_pkthdr.len = m->m_len = len;
1306
1307 if (rxstat & R0_CSUM) {
1308 uint32_t csum = M_CSUM_IPv4;
1309 if (rxstat & R0_CERR)
1310 csum |= M_CSUM_IPv4_BAD;
1311 m->m_pkthdr.csum_flags |= csum;
1312 }
1313 if_percpuq_enqueue(ifp->if_percpuq, m);
1314 }
1315 sc->sc_rxptr = i;
1316 }
1317
1318 static int
1319 add_rxbuf(struct scx_softc *sc, int i)
1320 {
1321 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1322 struct mbuf *m;
1323 int error;
1324
1325 MGETHDR(m, M_DONTWAIT, MT_DATA);
1326 if (m == NULL)
1327 return ENOBUFS;
1328
1329 MCLGET(m, M_DONTWAIT);
1330 if ((m->m_flags & M_EXT) == 0) {
1331 m_freem(m);
1332 return ENOBUFS;
1333 }
1334
1335 if (rxs->rxs_mbuf != NULL)
1336 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1337
1338 rxs->rxs_mbuf = m;
1339
1340 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1341 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1342 if (error) {
1343 aprint_error_dev(sc->sc_dev,
1344 "can't load rx DMA map %d, error = %d\n", i, error);
1345 panic("add_rxbuf");
1346 }
1347
1348 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1349 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1350 SCX_INIT_RXDESC(sc, i);
1351
1352 return 0;
1353 }
1354
1355 static int
1356 spin_waitfor(struct scx_softc *sc, int reg, int exist)
1357 {
1358 int val, loop;
1359
1360 val = CSR_READ(sc, reg);
1361 if ((val & exist) == 0)
1362 return 0;
1363 loop = 3000;
1364 do {
1365 DELAY(10);
1366 val = CSR_READ(sc, reg);
1367 } while (--loop > 0 && (val & exist) != 0);
1368 return (loop > 0) ? 0 : ETIMEDOUT;
1369 }
1370
1371 static int
1372 mac_read(struct scx_softc *sc, int reg)
1373 {
1374
1375 CSR_WRITE(sc, MACCMD, reg);
1376 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1377 return CSR_READ(sc, MACDATA);
1378 }
1379
1380 static void
1381 mac_write(struct scx_softc *sc, int reg, int val)
1382 {
1383
1384 CSR_WRITE(sc, MACDATA, val);
1385 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
1386 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1387 }
1388
1389 static int
1390 get_garclk(uint32_t freq)
1391 {
1392 int i;
1393
1394 for (i = 0; garclk[i].freq != 0; i++) {
1395 if (freq < garclk[i].freq)
1396 return garclk[i].bit;
1397 }
1398 return garclk[i - 1].bit;
1399 }
1400
1401 static void
1402 loaducode(struct scx_softc *sc)
1403 {
1404 uint32_t up, lo, sz;
1405 uint64_t addr;
1406
1407 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1408 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1409 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1410 addr = ((uint64_t)up << 32) | lo;
1411 aprint_normal_dev(sc->sc_dev, "H2M ucode %u\n", sz);
1412 injectucode(sc, DMACH2M, addr, sz);
1413 printf("H->M ucode %08x-%08x\n", up, lo);
1414
1415 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1416 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1417 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1418 addr = ((uint64_t)up << 32) | lo;
1419 aprint_normal_dev(sc->sc_dev, "M2H ucode %u\n", sz);
1420 injectucode(sc, DMACM2H, addr, sz);
1421 printf("M->H ucode %08x-%08x\n", up, lo);
1422
1423 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1424 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1425 aprint_normal_dev(sc->sc_dev, "PKT ucode %u\n", sz);
1426 injectucode(sc, DMACH2M, (uint64_t)lo, sz);
1427 printf("PKT ucode %08x-%08x\n", 0, lo);
1428 }
1429
1430 static void
1431 injectucode(struct scx_softc *sc, int port, uint64_t addr, uint32_t size)
1432 {
1433 uint32_t ucode;
1434 bus_size_t off;
1435 int i;
1436
1437 /* XXX addr is ucode paddr_t itself XXX */
1438 for (i = 0; i < size; i++) {
1439 off = addr + i * 4;
1440 off -= (bus_addr_t)sc->sc_eesh; /* XXX */
1441 ucode = bus_space_read_4(sc->sc_st, sc->sc_eesh, off);
1442 CSR_WRITE(sc, port, ucode);
1443 }
1444 }
1445