Home | History | Annotate | Line # | Download | only in sociox
if_scx.c revision 1.12
      1 /*	$NetBSD: if_scx.c,v 1.12 2020/03/24 13:44:21 nisimura Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #define NOT_MP_SAFE	0
     33 
     34 /*
     35  * Socionext SC2A11 SynQuacer NetSec GbE driver
     36  *
     37  *   (possibly incorrect notes to be removed eventually)
     38  * - 32 byte descriptor for 64 bit paddr design.
     39  * - multiple rings seems available. There are special descriptor fields
     40  *   to designify ring number from which to arrive or to which go.
     41  * - memory mapped EEPROM to hold MAC address. The rest of the area is
     42  *   occupied by a set of ucode for two DMA engines and one packet engine.
     43  * - The size of frame address filter is unknown. Might be 16 or even 128.
     44  * - The first slot is my own station address. Always enabled to perform
     45  *   to identify oneself.
     46  * - 1~16 are for supplimental MAC addresses. Independently enabled for
     47  *   use. Good to catch multicast. Byte-wise selective match available.
     48  *   Use the mask to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
     49  * - 16~128 might be exact match without byte-mask.
     50  * - The size of multicast hash filter store is unknown. Might be 256 bit.
     51  * - Socionext/Linaro "NetSec" code makes many cut shorts. Some constants
     52  *   are left unexplained. The values should be handled via external
     53  *   controls like FDT descriptions. Fortunately, Intel/Altera CycloneV PDFs
     54  *   describe every detail of "such the instance of" DW EMAC IP and
     55  *   most of them are likely applicable to SC2A11 GbE.
     56  */
     57 
     58 #include <sys/cdefs.h>
     59 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.12 2020/03/24 13:44:21 nisimura Exp $");
     60 
     61 #include <sys/param.h>
     62 #include <sys/bus.h>
     63 #include <sys/intr.h>
     64 #include <sys/device.h>
     65 #include <sys/callout.h>
     66 #include <sys/mbuf.h>
     67 #include <sys/malloc.h>
     68 #include <sys/errno.h>
     69 #include <sys/rndsource.h>
     70 #include <sys/kernel.h>
     71 #include <sys/systm.h>
     72 
     73 #include <net/if.h>
     74 #include <net/if_media.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_ether.h>
     77 #include <dev/mii/mii.h>
     78 #include <dev/mii/miivar.h>
     79 #include <net/bpf.h>
     80 
     81 #include <dev/fdt/fdtvar.h>
     82 #include <dev/acpi/acpireg.h>
     83 #include <dev/acpi/acpivar.h>
     84 #include <dev/acpi/acpi_intr.h>
     85 
     86 #define SWRESET		0x104
     87 #define COMINIT		0x120
     88 #define INTRST		0x200
     89 #define  IRQ_RX		(1U<<1)
     90 #define  IRQ_TX		(1U<<0)
     91 #define INTREN		0x204
     92 #define INTR_SET	0x234
     93 #define INTR_CLR	0x238
     94 #define TXINTST		0x400
     95 #define TXINTEN		0x404
     96 #define TXINT_SET	0x428
     97 #define TXINT_CLR	0x42c
     98 #define  TXI_NTOWNR	(1U<<17)
     99 #define  TXI_TR_ERR	(1U<<16)
    100 #define  TXI_TXDONE	(1U<<15)
    101 #define  TXI_TMREXP	(1U<<14)
    102 #define RXINTST		0x440
    103 #define RXINTEN		0x444
    104 #define RXINT_SET	0x468
    105 #define RXINT_CLR	0x46c
    106 #define  RXI_RC_ERR	(1U<<16)
    107 #define  RXI_PKTCNT	(1U<<15)
    108 #define  RXI_TMREXP	(1U<<14)
    109 #define TXTIMER		0x41c
    110 #define RXTIMER		0x45c
    111 #define TXCOUNT		0x410
    112 #define RXCOUNT		0x454
    113 #define H2MENG		0x210		/* DMAC host2media ucode port */
    114 #define M2HENG		0x21c		/* DMAC media2host ucode port */
    115 #define PKTENG		0x0d0		/* packet engine ucode port */
    116 #define HWVER0		0x22c
    117 #define HWVER1		0x230
    118 
    119 #define MACSTAT		0x1024		/* gmac status */
    120 #define MACDATA		0x11c0		/* gmac rd/wr data */
    121 #define MACCMD		0x11c4		/* gmac operation */
    122 #define  CMD_IOWR	(1U<<28)	/* write op */
    123 #define  CMD_BUSY	(1U<<31)	/* busy bit */
    124 #define DESCENG_INIT	0x11fc
    125 #define DESCENG_SRST	0x1204
    126 
    127 #define GMACMCR		0x0000		/* MAC configuration */
    128 #define  MCR_IBN	(1U<<30)	/* */
    129 #define  MCR_CST	(1U<<25)	/* strip CRC */
    130 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
    131 #define  MCR_JE		(1U<<20)	/* ignore oversized >9018 condition */
    132 #define  MCR_USEMII	(1U<<15)	/* 1: RMII/MII, 0: RGMII */
    133 #define  MCR_SPD100	(1U<<14)	/* force speed 100 */
    134 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
    135 #define  MCR_IPCKEN	(1U<<10)	/* handle checksum */
    136 #define  MCR_ACS	(1U<<7)		/* auto pad strip CRC */
    137 #define  MCR_TXE	(1U<<3)		/* start Tx DMA engine */
    138 #define  MCR_RXE	(1U<<2)		/* start Rx DMA engine */
    139 #define  _MCR_FDX	0x0000280c	/* XXX TBD */
    140 #define  _MCR_HDX	0x0001a00c	/* XXX TBD */
    141 #define GMACAFR		0x0004		/* frame DA/SA address filter */
    142 #define  AFR_RA		(1U<<31)	/* receive block all on */
    143 #define  AFR_HPF	(1U<<10)	/* activate hash or perfect filter */
    144 #define  AFR_SAF	(1U<<9)		/* source address filter */
    145 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
    146 #define  AFR_PCF	(3U<<6)		/* */
    147 #define  AFR_RB		(1U<<5)		/* reject broadcast frame */
    148 #define  AFR_AM		(1U<<4)		/* accept all multicast frame */
    149 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
    150 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
    151 #define  AFR_UHTE	(1U<<1)		/* use additional MAC addresses */
    152 #define  AFR_PM		(1U<<0)		/* run promisc mode */
    153 #define  _AFR		0x80000001	/* XXX TBD */
    154 #define GMACMHTH	0x0008		/* XXX multicast hash table 63:32 */
    155 #define GMACMHTL	0x000c		/* XXX multicast hash table 31:0 */
    156 #define GMACGAR		0x0010		/* MDIO operation */
    157 #define  GAR_PHY	(11)		/* mii phy 15:11 */
    158 #define  GAR_REG	(6)		/* mii reg 10:6 */
    159 #define  GAR_CTL	(2)		/* control 5:2 */
    160 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
    161 #define  GAR_BUSY	(1U)		/* busy bit */
    162 #define GMACGDR		0x0014		/* MDIO rd/wr data */
    163 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
    164 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
    165 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
    166 #define GMACVTAG	0x001c		/* VLAN tag control */
    167 #define GMACIMPL	0x0020		/* implementation number XXXX.YYYY */
    168 #define GMACMAH0	0x0040		/* MAC address 0 47:32 */
    169 #define GMACMAL0	0x0044		/* MAC address 0 31:0 */
    170 #define GMACMAH(i) 	((i)*8+0x40)	/* supplimental MAC addr 1 - 15 */
    171 #define GMACMAL(i) 	((i)*8+0x44)
    172 #define GMACMDSR	0x00d8		/* GMII/RGMII/MII command/status */
    173 #define GMACMHT0	0x0500		/* multicast hash table 0 - 7 */
    174 #define GMACMHT(i)	((i)*4+0x500)
    175 #define GMACVHT		0x0588		/* VLAN tag hash */
    176 #define GMACAMAH(i)	((i)*8+0x800)	/* supplimental MAC addr 16-127 */
    177 #define GMACAMAL(i)	((i)*8+0x804)
    178 #define GMACEVCNT(i)	((i)*4+0x114)	/* event counter 0x114~284 */
    179 
    180 #define GMACBMR		0x1000		/* DMA bus mode control
    181 					 * 24    4PBL
    182 					 * 22:17 RPBL
    183 					 * 16    fix burst
    184 					 * 15:14 priority between Rx and Tx
    185 					 *  3    rxtx ratio 41
    186 					 *  2    rxtx ratio 31
    187 					 *  1    rxtx ratio 21
    188 					 *  0    rxtx ratio 11
    189 					 * 13:8  PBL possible DMA burst len
    190 					 *  0    reset op. self clear
    191 					 */
    192 #define  _BMR		0x00412080	/* XXX TBD */
    193 #define  _BMR0		0x00020181	/* XXX TBD */
    194 #define  BMR_RST	(1U<<0)		/* reset op. self clear when done */
    195 #define GMACTDS		0x1004		/* write any to resume tdes */
    196 #define GMACRDS		0x1008		/* write any to resume rdes */
    197 #define GMACRDLAR	0x100c		/* rdes base address 32bit paddr */
    198 #define  _RDLAR		0x18000		/* XXX TBD system SRAM with CC ? */
    199 #define GMACTDLAR	0x1010		/* tdes base address 32bit paddr */
    200 #define  _TDLAR		0x1c000		/* XXX TBD system SRAM with CC ? */
    201 #define GMACOMR		0x1018		/* DMA operation */
    202 #define  OMR_TXE	(1U<<13)	/* start Tx DMA engine, 0 to stop */
    203 #define  OMR_RXE	(1U<<1)		/* start Rx DMA engine, 0 to stop */
    204 
    205 static int get_mdioclk(uint32_t);
    206 
    207 /* descriptor format definition */
    208 struct tdes {
    209 	uint32_t t0, t1, t2, t3;
    210 };
    211 
    212 struct rdes {
    213 	uint32_t r0, r1, r2, r3;
    214 };
    215 
    216 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    217 #define T0_EOD		(1U<<30)	/* end of descriptor array */
    218 #define T0_DRID		(24)		/* 29:24 D-RID */
    219 #define T0_PT		(1U<<21)	/* 23:21 PT */
    220 #define T0_TRID		(16)		/* 20:16 T-RID */
    221 #define T0_FS		(1U<<9)		/* first segment of frame */
    222 #define T0_LS		(1U<<8)		/* last segment of frame */
    223 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
    224 #define T0_SGOL		(1U<<6)		/* enable TCP segment offload */
    225 #define T0_TRS		(1U<<4)		/* 5:4 TRS */
    226 #define T0_IOC		(0)		/* XXX TBD interrupt when completed */
    227 /* T1 segment address 63:32 */
    228 /* T2 segment address 31:0 */
    229 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
    230 #define R0_OWN		(1U<<31)	/* desc is empty */
    231 #define R0_EOD		(1U<<30)	/* end of descriptor array */
    232 #define R0_SRID		(24)		/* 29:24 S-RID */
    233 #define R0_FR		(1U<<23)	/* FR */
    234 #define R0_ER		(1U<<21)	/* Rx error indication */
    235 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
    236 #define R0_TDRID	(14)		/* 15:14 TD-RID */
    237 #define R0_FS		(1U<<9)		/* first segment of frame */
    238 #define R0_LS		(1U<<8)		/* last segment of frame */
    239 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status */
    240 #define R0_CERR		(2U<<6)		/* 0 (undone), 1 (found ok), 2 (bad) */
    241 /* R1 frame address 63:32 */
    242 /* R2 frame address 31:0 */
    243 /* R3 31:16 received frame length, 15:0 buffer length to receive */
    244 
    245 #define MD_NTXSEGS		16		/* fixed */
    246 #define MD_TXQUEUELEN		16		/* tunable */
    247 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
    248 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
    249 #define MD_NTXDESC		(MD_TXQUEUELEN * MD_NTXSEGS)
    250 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
    251 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
    252 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
    253 
    254 #define MD_NRXDESC		64		/* tunable */
    255 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
    256 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
    257 
    258 #define SCX_INIT_RXDESC(sc, x)						\
    259 do {									\
    260 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    261 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    262 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    263 	bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
    264 	__m->m_data = __m->m_ext.ext_buf;				\
    265 	__rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
    266 	__rxd->r2 = htole32(BUS_ADDR_LO32(__paddr));			\
    267 	__rxd->r1 = htole32(BUS_ADDR_HI32(__paddr));			\
    268 	__rxd->r0 = R0_OWN | R0_FS | R0_LS;				\
    269 	if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD;			\
    270 } while (/*CONSTCOND*/0)
    271 
    272 struct control_data {
    273 	struct tdes cd_txdescs[MD_NTXDESC];
    274 	struct rdes cd_rxdescs[MD_NRXDESC];
    275 };
    276 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
    277 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
    278 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
    279 
    280 struct scx_txsoft {
    281 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    282 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    283 	int txs_firstdesc;		/* first descriptor in packet */
    284 	int txs_lastdesc;		/* last descriptor in packet */
    285 	int txs_ndesc;			/* # of descriptors used */
    286 };
    287 
    288 struct scx_rxsoft {
    289 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    290 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    291 };
    292 
    293 struct scx_softc {
    294 	device_t sc_dev;		/* generic device information */
    295 	bus_space_tag_t sc_st;		/* bus space tag */
    296 	bus_space_handle_t sc_sh;	/* bus space handle */
    297 	bus_size_t sc_sz;		/* csr map size */
    298 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
    299 	bus_size_t sc_eesz;		/* eeprom map size */
    300 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    301 	struct ethercom sc_ethercom;	/* Ethernet common data */
    302 	struct mii_data sc_mii;		/* MII */
    303 	callout_t sc_tick_ch;		/* PHY monitor callout */
    304 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
    305 	int sc_nseg;			/* descriptor store nseg */
    306 	void *sc_ih;			/* interrupt cookie */
    307 	int sc_phy_id;			/* PHY address */
    308 	int sc_flowflags;		/* 802.3x PAUSE flow control */
    309 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
    310 	uint32_t sc_t0coso;		/* T0_CSUM | T0_SGOL to run */
    311 	int sc_ucodeloaded;		/* ucode for H2M/M2H/PKT */
    312 	int sc_100mii;			/* 1 for RMII/MII, 0 for RGMII */
    313 	int sc_phandle;			/* fdt phandle */
    314 
    315 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    316 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    317 
    318 	struct control_data *sc_control_data;
    319 #define sc_txdescs	sc_control_data->cd_txdescs
    320 #define sc_rxdescs	sc_control_data->cd_rxdescs
    321 
    322 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
    323 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
    324 	int sc_txfree;			/* number of free Tx descriptors */
    325 	int sc_txnext;			/* next ready Tx descriptor */
    326 	int sc_txsfree;			/* number of free Tx jobs */
    327 	int sc_txsnext;			/* next ready Tx job */
    328 	int sc_txsdirty;		/* dirty Tx jobs */
    329 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    330 
    331 	krndsource_t rnd_source;	/* random source */
    332 };
    333 
    334 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
    335 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
    336 
    337 #define SCX_CDTXSYNC(sc, x, n, ops)					\
    338 do {									\
    339 	int __x, __n;							\
    340 									\
    341 	__x = (x);							\
    342 	__n = (n);							\
    343 									\
    344 	/* If it will wrap around, sync to the end of the ring. */	\
    345 	if ((__x + __n) > MD_NTXDESC) {				\
    346 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    347 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
    348 		    (MD_NTXDESC - __x), (ops));			\
    349 		__n -= (MD_NTXDESC - __x);				\
    350 		__x = 0;						\
    351 	}								\
    352 									\
    353 	/* Now sync whatever is left. */				\
    354 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    355 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    356 } while (/*CONSTCOND*/0)
    357 
    358 #define SCX_CDRXSYNC(sc, x, ops)					\
    359 do {									\
    360 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    361 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    362 } while (/*CONSTCOND*/0)
    363 
    364 static int scx_fdt_match(device_t, cfdata_t, void *);
    365 static void scx_fdt_attach(device_t, device_t, void *);
    366 static int scx_acpi_match(device_t, cfdata_t, void *);
    367 static void scx_acpi_attach(device_t, device_t, void *);
    368 
    369 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
    370     scx_fdt_match, scx_fdt_attach, NULL, NULL);
    371 
    372 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
    373     scx_acpi_match, scx_acpi_attach, NULL, NULL);
    374 
    375 static void scx_attach_i(struct scx_softc *);
    376 static void scx_reset(struct scx_softc *);
    377 static int scx_init(struct ifnet *);
    378 static void scx_start(struct ifnet *);
    379 static void scx_stop(struct ifnet *, int);
    380 static void scx_watchdog(struct ifnet *);
    381 static int scx_ioctl(struct ifnet *, u_long, void *);
    382 static void scx_set_rcvfilt(struct scx_softc *);
    383 static int scx_ifmedia_upd(struct ifnet *);
    384 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    385 static void mii_statchg(struct ifnet *);
    386 static void phy_tick(void *);
    387 static int mii_readreg(device_t, int, int, uint16_t *);
    388 static int mii_writereg(device_t, int, int, uint16_t);
    389 static int scx_intr(void *);
    390 static void txreap(struct scx_softc *);
    391 static void rxintr(struct scx_softc *);
    392 static int add_rxbuf(struct scx_softc *, int);
    393 static int spin_waitfor(struct scx_softc *, int, int);
    394 static int mac_read(struct scx_softc *, int);
    395 static void mac_write(struct scx_softc *, int, int);
    396 static void loaducode(struct scx_softc *);
    397 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
    398 
    399 #define CSR_READ(sc,off) \
    400 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
    401 #define CSR_WRITE(sc,off,val) \
    402 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
    403 #define EE_READ(sc,off) \
    404 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
    405 
    406 static int
    407 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
    408 {
    409 	static const char * compatible[] = {
    410 		"socionext,synquacer-netsec",
    411 		NULL
    412 	};
    413 	struct fdt_attach_args * const faa = aux;
    414 
    415 	return of_match_compatible(faa->faa_phandle, compatible);
    416 }
    417 
    418 static void
    419 scx_fdt_attach(device_t parent, device_t self, void *aux)
    420 {
    421 	struct scx_softc * const sc = device_private(self);
    422 	struct fdt_attach_args * const faa = aux;
    423 	const int phandle = faa->faa_phandle;
    424 	bus_space_tag_t bst = faa->faa_bst;
    425 	bus_space_handle_t bsh;
    426 	bus_space_handle_t eebsh;
    427 	bus_addr_t addr[2];
    428 	bus_size_t size[2];
    429 	char intrstr[128];
    430 	const char *phy_mode;
    431 
    432 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
    433 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
    434 		aprint_error(": unable to map device csr\n");
    435 		return;
    436 	}
    437 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
    438 		aprint_error(": failed to decode interrupt\n");
    439 		goto fail;
    440 	}
    441 	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
    442 		NOT_MP_SAFE, scx_intr, sc);
    443 	if (sc->sc_ih == NULL) {
    444 		aprint_error_dev(self, "couldn't establish interrupt\n");
    445 		goto fail;
    446 	}
    447 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
    448 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
    449 		aprint_error(": unable to map device eeprom\n");
    450 		goto fail;
    451 	}
    452 
    453 	phy_mode = fdtbus_get_string(phandle, "phy-mode");
    454 	if (phy_mode == NULL) {
    455 		aprint_error(": missing 'phy-mode' property\n");
    456 		phy_mode = "rgmii";
    457 	}
    458 
    459 	aprint_naive("\n");
    460 	aprint_normal(": Gigabit Ethernet Controller\n");
    461 	aprint_normal_dev(self, "interrupt on %s\n", intrstr);
    462 
    463 	sc->sc_dev = self;
    464 	sc->sc_st = bst;
    465 	sc->sc_sh = bsh;
    466 	sc->sc_sz = size[0];
    467 	sc->sc_eesh = eebsh;
    468 	sc->sc_eesz = size[1];
    469 	sc->sc_dmat = faa->faa_dmat;
    470 	sc->sc_phandle = phandle;
    471 	sc->sc_100mii = (strcmp(phy_mode, "rgmii") != 0);
    472 
    473 	scx_attach_i(sc);
    474 	return;
    475  fail:
    476 	if (sc->sc_eesz)
    477 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    478 	if (sc->sc_sz)
    479 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    480 	return;
    481 }
    482 
    483 static int
    484 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
    485 {
    486 	static const char * compatible[] = {
    487 		"SCX0001",
    488 		NULL
    489 	};
    490 	struct acpi_attach_args *aa = aux;
    491 
    492 	if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
    493 		return 0;
    494 	return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
    495 }
    496 
    497 static void
    498 scx_acpi_attach(device_t parent, device_t self, void *aux)
    499 {
    500 	struct scx_softc * const sc = device_private(self);
    501 	struct acpi_attach_args * const aa = aux;
    502 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
    503 	bus_space_tag_t bst = aa->aa_memt;
    504 	bus_space_handle_t bsh, eebsh;
    505 	struct acpi_resources res;
    506 	struct acpi_mem *mem;
    507 	struct acpi_irq *irq;
    508 	ACPI_STATUS rv;
    509 
    510 	rv = acpi_resource_parse(self, handle, "_CRS",
    511 	    &res, &acpi_resource_parse_ops_default);
    512 	if (ACPI_FAILURE(rv))
    513 		return;
    514 acpi_resource_print(self, &res);
    515 	mem = acpi_res_mem(&res, 0);
    516 	irq = acpi_res_irq(&res, 0);
    517 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
    518 		aprint_error(": incomplete csr resources\n");
    519 		return;
    520 	}
    521 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
    522 		aprint_error(": couldn't map registers\n");
    523 		return;
    524 	}
    525 	sc->sc_sz = mem->ar_length;
    526 	sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
    527 	    NOT_MP_SAFE, scx_intr, sc, device_xname(self));
    528 	if (sc->sc_ih == NULL) {
    529 		aprint_error_dev(self, "couldn't establish interrupt\n");
    530 		goto fail;
    531 	}
    532 	mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
    533 	if (mem == NULL || mem->ar_length == 0) {
    534 		aprint_error(": incomplete eeprom resources\n");
    535 		goto fail;
    536 	}
    537 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
    538 		aprint_error(": couldn't map registers\n");
    539 		goto fail;
    540 	}
    541 	sc->sc_eesz = mem->ar_length;
    542 
    543 	aprint_naive("\n");
    544 	aprint_normal(": Gigabit Ethernet Controller\n");
    545 
    546 	sc->sc_dev = self;
    547 	sc->sc_st = bst;
    548 	sc->sc_sh = bsh;
    549 	sc->sc_eesh = eebsh;
    550 	sc->sc_dmat = aa->aa_dmat64;
    551 
    552 /* dig _DSD to see parameters. safe to assume RGMII/spd1000 though */
    553 
    554 	scx_attach_i(sc);
    555 
    556 	acpi_resource_cleanup(&res);
    557 	return;
    558  fail:
    559 	if (sc->sc_eesz > 0)
    560 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    561 	if (sc->sc_sz > 0)
    562 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    563 	acpi_resource_cleanup(&res);
    564 	return;
    565 }
    566 
    567 static void
    568 scx_attach_i(struct scx_softc *sc)
    569 {
    570 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
    571 	struct mii_data * const mii = &sc->sc_mii;
    572 	struct ifmedia * const ifm = &mii->mii_media;
    573 	uint32_t hwver, phyfreq;
    574 	uint8_t enaddr[ETHER_ADDR_LEN];
    575 	bus_dma_segment_t seg;
    576 	uint32_t csr;
    577 	int i, nseg, error = 0;
    578 
    579 	hwver = CSR_READ(sc, HWVER1);
    580 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
    581 	enaddr[0] = csr >> 24;
    582 	enaddr[1] = csr >> 16;
    583 	enaddr[2] = csr >> 8;
    584 	enaddr[3] = csr;
    585 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
    586 	enaddr[4] = csr >> 24;
    587 	enaddr[5] = csr >> 16;
    588 	csr = CSR_READ(sc, GMACIMPL);
    589 
    590 	aprint_normal_dev(sc->sc_dev, "NetSec GbE (%d.%d) impl (%x.%x)\n",
    591 	    hwver >> 16, hwver & 0xffff, csr >> 16, csr & 0xffff);
    592 	aprint_normal_dev(sc->sc_dev,
    593 	    "Ethernet address %s\n", ether_sprintf(enaddr));
    594 
    595 	phyfreq = 0;
    596 	sc->sc_phy_id = MII_PHY_ANY;
    597 	sc->sc_mdclk = get_mdioclk(phyfreq); /* 5:2 clk control */
    598 
    599 	sc->sc_flowflags = 0;
    600 
    601 	if (sc->sc_ucodeloaded == 0)
    602 		loaducode(sc);
    603 
    604 	mii->mii_ifp = ifp;
    605 	mii->mii_readreg = mii_readreg;
    606 	mii->mii_writereg = mii_writereg;
    607 	mii->mii_statchg = mii_statchg;
    608 
    609 	sc->sc_ethercom.ec_mii = mii;
    610 	ifmedia_init(ifm, 0, scx_ifmedia_upd, scx_ifmedia_sts);
    611 	mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
    612 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    613 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    614 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    615 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    616 	} else
    617 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    618 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
    619 
    620 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    621 	ifp->if_softc = sc;
    622 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    623 	ifp->if_ioctl = scx_ioctl;
    624 	ifp->if_start = scx_start;
    625 	ifp->if_watchdog = scx_watchdog;
    626 	ifp->if_init = scx_init;
    627 	ifp->if_stop = scx_stop;
    628 	IFQ_SET_READY(&ifp->if_snd);
    629 
    630 	if_attach(ifp);
    631 	if_deferred_start_init(ifp, NULL);
    632 	ether_ifattach(ifp, enaddr);
    633 
    634 	callout_init(&sc->sc_tick_ch, 0);
    635 	callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
    636 
    637 	/*
    638 	 * Allocate the control data structures, and create and load the
    639 	 * DMA map for it.
    640 	 */
    641 	error = bus_dmamem_alloc(sc->sc_dmat,
    642 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    643 	if (error != 0) {
    644 		aprint_error_dev(sc->sc_dev,
    645 		    "unable to allocate control data, error = %d\n", error);
    646 		goto fail_0;
    647 	}
    648 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    649 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
    650 	    BUS_DMA_COHERENT);
    651 	if (error != 0) {
    652 		aprint_error_dev(sc->sc_dev,
    653 		    "unable to map control data, error = %d\n", error);
    654 		goto fail_1;
    655 	}
    656 	error = bus_dmamap_create(sc->sc_dmat,
    657 	    sizeof(struct control_data), 1,
    658 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
    659 	if (error != 0) {
    660 		aprint_error_dev(sc->sc_dev,
    661 		    "unable to create control data DMA map, "
    662 		    "error = %d\n", error);
    663 		goto fail_2;
    664 	}
    665 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    666 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
    667 	if (error != 0) {
    668 		aprint_error_dev(sc->sc_dev,
    669 		    "unable to load control data DMA map, error = %d\n",
    670 		    error);
    671 		goto fail_3;
    672 	}
    673 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    674 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    675 		    MD_NTXSEGS, MCLBYTES, 0, 0,
    676 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    677 			aprint_error_dev(sc->sc_dev,
    678 			    "unable to create tx DMA map %d, error = %d\n",
    679 			    i, error);
    680 			goto fail_4;
    681 		}
    682 	}
    683 	for (i = 0; i < MD_NRXDESC; i++) {
    684 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    685 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    686 			aprint_error_dev(sc->sc_dev,
    687 			    "unable to create rx DMA map %d, error = %d\n",
    688 			    i, error);
    689 			goto fail_5;
    690 		}
    691 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    692 	}
    693 	sc->sc_seg = seg;
    694 	sc->sc_nseg = nseg;
    695 printf("bus_dmaseg ds_addr %08lx, ds_len %08lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
    696 
    697 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    698 		pmf_class_network_register(sc->sc_dev, ifp);
    699 	else
    700 		aprint_error_dev(sc->sc_dev,
    701 			"couldn't establish power handler\n");
    702 
    703 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    704 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    705 
    706 	return;
    707 
    708   fail_5:
    709 	for (i = 0; i < MD_NRXDESC; i++) {
    710 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    711 			bus_dmamap_destroy(sc->sc_dmat,
    712 			    sc->sc_rxsoft[i].rxs_dmamap);
    713 	}
    714   fail_4:
    715 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    716 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    717 			bus_dmamap_destroy(sc->sc_dmat,
    718 			    sc->sc_txsoft[i].txs_dmamap);
    719 	}
    720 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    721   fail_3:
    722 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    723   fail_2:
    724 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    725 	    sizeof(struct control_data));
    726   fail_1:
    727 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    728   fail_0:
    729 	if (sc->sc_phandle)
    730 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
    731 	else
    732 		acpi_intr_disestablish(sc->sc_ih);
    733 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    734 	return;
    735 }
    736 
    737 static void
    738 scx_reset(struct scx_softc *sc)
    739 {
    740 
    741 	mac_write(sc, GMACBMR, BMR_RST); /* may take for a while */
    742 	(void)spin_waitfor(sc, GMACBMR, BMR_RST);
    743 
    744 	CSR_WRITE(sc, DESCENG_SRST, 1);
    745 	CSR_WRITE(sc, DESCENG_INIT, 1);
    746 	mac_write(sc, GMACBMR, _BMR);
    747 	mac_write(sc, GMACRDLAR, _RDLAR);
    748 	mac_write(sc, GMACTDLAR, _TDLAR);
    749 	mac_write(sc, GMACAFR, _AFR);
    750 }
    751 
    752 static int
    753 scx_init(struct ifnet *ifp)
    754 {
    755 	struct scx_softc *sc = ifp->if_softc;
    756 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
    757 	uint32_t csr;
    758 	int i;
    759 
    760 	/* Cancel pending I/O. */
    761 	scx_stop(ifp, 0);
    762 
    763 	/* Reset the chip to a known state. */
    764 	scx_reset(sc);
    765 
    766 	/* build sane Tx and load Rx descriptors with mbuf */
    767 	for (i = 0; i < MD_NTXDESC; i++)
    768 		sc->sc_txdescs[i].t0 = T0_OWN;
    769 	sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
    770 	for (i = 0; i < MD_NRXDESC; i++)
    771 		(void)add_rxbuf(sc, i);
    772 
    773 	/* set my address in perfect match slot 0 */
    774 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
    775 	CSR_WRITE(sc, GMACMAL0, csr);
    776 	csr = (ea[5] << 8) | ea[4];
    777 	CSR_WRITE(sc, GMACMAH0, csr | 1U<<31); /* always valid? */
    778 
    779 	/* accept multicast frame or run promisc mode */
    780 	scx_set_rcvfilt(sc);
    781 
    782 	(void)scx_ifmedia_upd(ifp);
    783 
    784 	/* kick to start GMAC engine */
    785 	csr = mac_read(sc, GMACOMR);
    786 	CSR_WRITE(sc, RXINT_CLR, ~0);
    787 	CSR_WRITE(sc, TXINT_CLR, ~0);
    788 	mac_write(sc, GMACOMR, csr | OMR_RXE | OMR_TXE);
    789 
    790 	ifp->if_flags |= IFF_RUNNING;
    791 	ifp->if_flags &= ~IFF_OACTIVE;
    792 
    793 	/* start one second timer */
    794 	callout_schedule(&sc->sc_tick_ch, hz);
    795 
    796 	return 0;
    797 }
    798 
    799 static void
    800 scx_stop(struct ifnet *ifp, int disable)
    801 {
    802 	struct scx_softc *sc = ifp->if_softc;
    803 
    804 	/* Stop the one second clock. */
    805 	callout_stop(&sc->sc_tick_ch);
    806 
    807 	/* Down the MII. */
    808 	mii_down(&sc->sc_mii);
    809 
    810 	/* Mark the interface down and cancel the watchdog timer. */
    811 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    812 	ifp->if_timer = 0;
    813 }
    814 
    815 static void
    816 scx_watchdog(struct ifnet *ifp)
    817 {
    818 	struct scx_softc *sc = ifp->if_softc;
    819 
    820 	/*
    821 	 * Since we're not interrupting every packet, sweep
    822 	 * up before we report an error.
    823 	 */
    824 	txreap(sc);
    825 
    826 	if (sc->sc_txfree != MD_NTXDESC) {
    827 		aprint_error_dev(sc->sc_dev,
    828 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
    829 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
    830 		if_statinc(ifp, if_oerrors);
    831 
    832 		/* Reset the interface. */
    833 		scx_init(ifp);
    834 	}
    835 
    836 	scx_start(ifp);
    837 }
    838 
    839 static int
    840 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    841 {
    842 	struct scx_softc *sc = ifp->if_softc;
    843 	struct ifreq *ifr = (struct ifreq *)data;
    844 	struct ifmedia *ifm;
    845 	int s, error;
    846 
    847 	s = splnet();
    848 
    849 	switch (cmd) {
    850 	case SIOCSIFMEDIA:
    851 		/* Flow control requires full-duplex mode. */
    852 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
    853 		    (ifr->ifr_media & IFM_FDX) == 0)
    854 			ifr->ifr_media &= ~IFM_ETH_FMASK;
    855 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
    856 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
    857 				/* We can do both TXPAUSE and RXPAUSE. */
    858 				ifr->ifr_media |=
    859 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
    860 			}
    861 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
    862 		}
    863 		ifm = &sc->sc_mii.mii_media;
    864 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
    865 		break;
    866 	default:
    867 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    868 			break;
    869 
    870 		error = 0;
    871 
    872 		if (cmd == SIOCSIFCAP)
    873 			error = (*ifp->if_init)(ifp);
    874 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    875 			;
    876 		else if (ifp->if_flags & IFF_RUNNING) {
    877 			/*
    878 			 * Multicast list has changed; set the hardware filter
    879 			 * accordingly.
    880 			 */
    881 			scx_set_rcvfilt(sc);
    882 		}
    883 		break;
    884 	}
    885 
    886 	splx(s);
    887 	return error;
    888 }
    889 
    890 static void
    891 scx_set_rcvfilt(struct scx_softc *sc)
    892 {
    893 	struct ethercom * const ec = &sc->sc_ethercom;
    894 	struct ifnet * const ifp = &ec->ec_if;
    895 	struct ether_multistep step;
    896 	struct ether_multi *enm;
    897 	uint32_t mchash[8]; 	/* 8x 32 = 256 bit */
    898 	uint32_t csr, crc;
    899 	int i;
    900 
    901 	csr = CSR_READ(sc, GMACAFR);
    902 	csr &= ~(AFR_PM | AFR_AM | AFR_MHTE);
    903 	CSR_WRITE(sc, GMACAFR, csr);
    904 
    905 	ETHER_LOCK(ec);
    906 	if (ifp->if_flags & IFF_PROMISC) {
    907 		ec->ec_flags |= ETHER_F_ALLMULTI;
    908 		ETHER_UNLOCK(ec);
    909 		goto update;
    910 	}
    911 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
    912 
    913 	/* clear 15 entry supplimental perfect match filter */
    914 	for (i = 1; i < 16; i++)
    915 		 CSR_WRITE(sc, GMACMAH(i), 0);
    916 	/* build 256 bit multicast hash filter */
    917 	memset(mchash, 0, sizeof(mchash));
    918 	crc = 0;
    919 
    920 	ETHER_FIRST_MULTI(step, ec, enm);
    921 	i = 1; /* slot 0 is occupied */
    922 	while (enm != NULL) {
    923 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    924 			/*
    925 			 * We must listen to a range of multicast addresses.
    926 			 * For now, just accept all multicasts, rather than
    927 			 * trying to set only those filter bits needed to match
    928 			 * the range.  (At this time, the only use of address
    929 			 * ranges is for IP multicast routing, for which the
    930 			 * range is big enough to require all bits set.)
    931 			 */
    932 			ec->ec_flags |= ETHER_F_ALLMULTI;
    933 			ETHER_UNLOCK(ec);
    934 			goto update;
    935 		}
    936 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
    937 		if (i < 16) {
    938 			/* use 15 entry perfect match filter */
    939 			uint32_t addr;
    940 			uint8_t *ep = enm->enm_addrlo;
    941 			addr = (ep[3] << 24) | (ep[2] << 16)
    942 			     | (ep[1] <<  8) |  ep[0];
    943 			CSR_WRITE(sc, GMACMAL(i), addr);
    944 			addr = (ep[5] << 8) | ep[4];
    945 			CSR_WRITE(sc, GMACMAH(i), addr | 1U<<31);
    946 		} else {
    947 			/* use hash table when too many */
    948 			/* bit_reserve_32(~crc) !? */
    949 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
    950 			/* 3(31:29) 5(28:24) bit sampling */
    951 			mchash[crc >> 29] |= 1 << ((crc >> 24) & 0x1f);
    952 		}
    953 		ETHER_NEXT_MULTI(step, enm);
    954 		i++;
    955 	}
    956 	ETHER_UNLOCK(ec);
    957 
    958 	if (crc)
    959 		csr |= AFR_MHTE;
    960 	for (i = 0; i < __arraycount(mchash); i++)
    961 		CSR_WRITE(sc, GMACMHT(i), mchash[i]);
    962 	CSR_WRITE(sc, GMACAFR, csr);
    963 	return;
    964 
    965  update:
    966 	/* With PM or AM, MHTE/MHT0-7 are never consulted. really? */
    967 	if (ifp->if_flags & IFF_PROMISC)
    968 		csr |= AFR_PM;	/* run promisc. mode */
    969 	else
    970 		csr |= AFR_AM;	/* accept all multicast */
    971 	CSR_WRITE(sc, GMACAFR, csr);
    972 	return;
    973 }
    974 
    975 static int
    976 scx_ifmedia_upd(struct ifnet *ifp)
    977 {
    978 	struct scx_softc *sc = ifp->if_softc;
    979 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    980 
    981 	if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
    982 		; /* restart AN */
    983 		; /* enable AN */
    984 		; /* advertise flow control pause */
    985 		; /* adv. 100FDX,100HDX,10FDX,10HDX */
    986 	} else {
    987 #if 1 /* XXX not sure to belong here XXX */
    988 		uint32_t mcr = mac_read(sc, GMACMCR);
    989 		if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_1000_T)
    990 			mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
    991 		else {
    992 			if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX
    993 			    && sc->sc_100mii)
    994 				mcr |= MCR_SPD100;
    995 			mcr |= MCR_USEMII;
    996 		}
    997 		if (ifm->ifm_cur->ifm_media & IFM_FDX)
    998 			mcr |= MCR_USEFDX;
    999 		mcr |= MCR_CST | MCR_JE;
   1000 		if (sc->sc_100mii == 0)
   1001 			mcr |= MCR_IBN;
   1002 		mac_write(sc, GMACMCR, mcr);
   1003 #endif
   1004 	}
   1005 	return 0;
   1006 }
   1007 
   1008 static void
   1009 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1010 {
   1011 	struct scx_softc *sc = ifp->if_softc;
   1012 	struct mii_data *mii = &sc->sc_mii;
   1013 
   1014 	mii_pollstat(mii);
   1015 	ifmr->ifm_status = mii->mii_media_status;
   1016 	ifmr->ifm_active = sc->sc_flowflags |
   1017 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
   1018 }
   1019 
   1020 void
   1021 mii_statchg(struct ifnet *ifp)
   1022 {
   1023 	struct scx_softc *sc = ifp->if_softc;
   1024 	struct mii_data *mii = &sc->sc_mii;
   1025 	uint32_t fcr;
   1026 
   1027 	/* Get flow control negotiation result. */
   1028 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1029 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
   1030 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1031 
   1032 	/* Adjust PAUSE flow control. */
   1033 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
   1034 	if (mii->mii_media_active & IFM_FDX) {
   1035 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   1036 			fcr |= FCR_TFE;
   1037 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   1038 			fcr |= FCR_RFE;
   1039 	}
   1040 	mac_write(sc, GMACFCR, fcr);
   1041 
   1042 printf("%ctxfe, %crxfe\n",
   1043      (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
   1044 }
   1045 
   1046 static void
   1047 phy_tick(void *arg)
   1048 {
   1049 	struct scx_softc *sc = arg;
   1050 	struct mii_data *mii = &sc->sc_mii;
   1051 	int s;
   1052 
   1053 	s = splnet();
   1054 	mii_tick(mii);
   1055 	splx(s);
   1056 
   1057 	callout_schedule(&sc->sc_tick_ch, hz);
   1058 }
   1059 
   1060 static int
   1061 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1062 {
   1063 	struct scx_softc *sc = device_private(self);
   1064 	uint32_t miia;
   1065 	int error;
   1066 
   1067 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1068 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
   1069 	error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
   1070 	if (error)
   1071 		return error;
   1072 	*val = mac_read(sc, GMACGDR);
   1073 	return 0;
   1074 }
   1075 
   1076 static int
   1077 mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1078 {
   1079 	struct scx_softc *sc = device_private(self);
   1080 	uint32_t miia;
   1081 	uint16_t dummy;
   1082 	int error;
   1083 
   1084 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1085 	mac_write(sc, GMACGDR, val);
   1086 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
   1087 	error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
   1088 	if (error)
   1089 		return error;
   1090 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
   1091 	return 0;
   1092 }
   1093 
   1094 static void
   1095 scx_start(struct ifnet *ifp)
   1096 {
   1097 	struct scx_softc *sc = ifp->if_softc;
   1098 	struct mbuf *m0, *m;
   1099 	struct scx_txsoft *txs;
   1100 	bus_dmamap_t dmamap;
   1101 	int error, nexttx, lasttx, ofree, seg;
   1102 	uint32_t tdes0;
   1103 
   1104 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1105 		return;
   1106 
   1107 	/* Remember the previous number of free descriptors. */
   1108 	ofree = sc->sc_txfree;
   1109 
   1110 	/*
   1111 	 * Loop through the send queue, setting up transmit descriptors
   1112 	 * until we drain the queue, or use up all available transmit
   1113 	 * descriptors.
   1114 	 */
   1115 	for (;;) {
   1116 		IFQ_POLL(&ifp->if_snd, m0);
   1117 		if (m0 == NULL)
   1118 			break;
   1119 
   1120 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
   1121 			txreap(sc);
   1122 			if (sc->sc_txsfree == 0)
   1123 				break;
   1124 		}
   1125 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1126 		dmamap = txs->txs_dmamap;
   1127 
   1128 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1129 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1130 		if (error) {
   1131 			if (error == EFBIG) {
   1132 				aprint_error_dev(sc->sc_dev,
   1133 				    "Tx packet consumes too many "
   1134 				    "DMA segments, dropping...\n");
   1135 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
   1136 				    m_freem(m0);
   1137 				    continue;
   1138 			}
   1139 			/* Short on resources, just stop for now. */
   1140 			break;
   1141 		}
   1142 
   1143 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   1144 			/*
   1145 			 * Not enough free descriptors to transmit this
   1146 			 * packet.  We haven't committed anything yet,
   1147 			 * so just unload the DMA map, put the packet
   1148 			 * back on the queue, and punt.	 Notify the upper
   1149 			 * layer that there are not more slots left.
   1150 			 */
   1151 			ifp->if_flags |= IFF_OACTIVE;
   1152 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1153 			break;
   1154 		}
   1155 
   1156 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1157 
   1158 		/*
   1159 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1160 		 */
   1161 
   1162 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1163 		    BUS_DMASYNC_PREWRITE);
   1164 
   1165 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
   1166 		lasttx = -1;
   1167 		for (nexttx = sc->sc_txnext, seg = 0;
   1168 		     seg < dmamap->dm_nsegs;
   1169 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
   1170 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
   1171 			bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
   1172 			/*
   1173 			 * If this is the first descriptor we're
   1174 			 * enqueueing, don't set the OWN bit just
   1175 			 * yet.	 That could cause a race condition.
   1176 			 * We'll do it below.
   1177 			 */
   1178 			tdes->t3 = dmamap->dm_segs[seg].ds_len;
   1179 			tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
   1180 			tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
   1181 			tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
   1182 					(15 << T0_TRID) | T0_PT |
   1183 					sc->sc_t0coso | T0_TRS;
   1184 			tdes0 = T0_OWN; /* 2nd and other segments */
   1185 			lasttx = nexttx;
   1186 		}
   1187 		/*
   1188 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
   1189 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
   1190 		 * time and NFS stops to proceed until scx_watchdog()
   1191 		 * calls txreap() to reclaim the unack'ed mbuf.
   1192 		 * It's painful to traverse every mbuf chain to determine
   1193 		 * whether someone is waiting for Tx completion.
   1194 		 */
   1195 		m = m0;
   1196 		do {
   1197 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
   1198 				sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
   1199 				break;
   1200 			}
   1201 		} while ((m = m->m_next) != NULL);
   1202 
   1203 		/* Write deferred 1st segment T0_OWN at the final stage */
   1204 		sc->sc_txdescs[lasttx].t0 |= T0_LS;
   1205 		sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
   1206 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1207 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1208 
   1209 		/* Tell DMA start transmit */
   1210 		/* CSR_WRITE(sc, GMACTDS, 1); */
   1211 
   1212 		txs->txs_mbuf = m0;
   1213 		txs->txs_firstdesc = sc->sc_txnext;
   1214 		txs->txs_lastdesc = lasttx;
   1215 		txs->txs_ndesc = dmamap->dm_nsegs;
   1216 
   1217 		sc->sc_txfree -= txs->txs_ndesc;
   1218 		sc->sc_txnext = nexttx;
   1219 		sc->sc_txsfree--;
   1220 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
   1221 		/*
   1222 		 * Pass the packet to any BPF listeners.
   1223 		 */
   1224 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1225 	}
   1226 
   1227 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1228 		/* No more slots left; notify upper layer. */
   1229 		ifp->if_flags |= IFF_OACTIVE;
   1230 	}
   1231 	if (sc->sc_txfree != ofree) {
   1232 		/* Set a watchdog timer in case the chip flakes out. */
   1233 		ifp->if_timer = 5;
   1234 	}
   1235 }
   1236 
   1237 static int
   1238 scx_intr(void *arg)
   1239 {
   1240 	struct scx_softc *sc = arg;
   1241 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1242 
   1243 	(void)ifp;
   1244 	rxintr(sc);
   1245 	txreap(sc);
   1246 	return 1;
   1247 }
   1248 
   1249 static void
   1250 txreap(struct scx_softc *sc)
   1251 {
   1252 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1253 	struct scx_txsoft *txs;
   1254 	uint32_t txstat;
   1255 	int i;
   1256 
   1257 	ifp->if_flags &= ~IFF_OACTIVE;
   1258 
   1259 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
   1260 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
   1261 		txs = &sc->sc_txsoft[i];
   1262 
   1263 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1264 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1265 
   1266 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1267 		if (txstat & T0_OWN) /* desc is still in use */
   1268 			break;
   1269 
   1270 		/* There is no way to tell transmission status per frame */
   1271 
   1272 		if_statinc(ifp, if_opackets);
   1273 
   1274 		sc->sc_txfree += txs->txs_ndesc;
   1275 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1276 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1277 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1278 		m_freem(txs->txs_mbuf);
   1279 		txs->txs_mbuf = NULL;
   1280 	}
   1281 	sc->sc_txsdirty = i;
   1282 	if (sc->sc_txsfree == MD_TXQUEUELEN)
   1283 		ifp->if_timer = 0;
   1284 }
   1285 
   1286 static void
   1287 rxintr(struct scx_softc *sc)
   1288 {
   1289 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1290 	struct scx_rxsoft *rxs;
   1291 	struct mbuf *m;
   1292 	uint32_t rxstat;
   1293 	int i, len;
   1294 
   1295 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
   1296 		rxs = &sc->sc_rxsoft[i];
   1297 
   1298 		SCX_CDRXSYNC(sc, i,
   1299 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1300 
   1301 		rxstat = sc->sc_rxdescs[i].r0;
   1302 		if (rxstat & R0_OWN) /* desc is left empty */
   1303 			break;
   1304 
   1305 		/* R0_FS | R0_LS must have been marked for this desc */
   1306 
   1307 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1308 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1309 
   1310 		len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
   1311 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
   1312 		m = rxs->rxs_mbuf;
   1313 
   1314 		if (add_rxbuf(sc, i) != 0) {
   1315 			if_statinc(ifp, if_ierrors);
   1316 			SCX_INIT_RXDESC(sc, i);
   1317 			bus_dmamap_sync(sc->sc_dmat,
   1318 			    rxs->rxs_dmamap, 0,
   1319 			    rxs->rxs_dmamap->dm_mapsize,
   1320 			    BUS_DMASYNC_PREREAD);
   1321 			continue;
   1322 		}
   1323 
   1324 		m_set_rcvif(m, ifp);
   1325 		m->m_pkthdr.len = m->m_len = len;
   1326 
   1327 		if (rxstat & R0_CSUM) {
   1328 			uint32_t csum = M_CSUM_IPv4;
   1329 			if (rxstat & R0_CERR)
   1330 				csum |= M_CSUM_IPv4_BAD;
   1331 			m->m_pkthdr.csum_flags |= csum;
   1332 		}
   1333 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1334 	}
   1335 	sc->sc_rxptr = i;
   1336 }
   1337 
   1338 static int
   1339 add_rxbuf(struct scx_softc *sc, int i)
   1340 {
   1341 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
   1342 	struct mbuf *m;
   1343 	int error;
   1344 
   1345 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1346 	if (m == NULL)
   1347 		return ENOBUFS;
   1348 
   1349 	MCLGET(m, M_DONTWAIT);
   1350 	if ((m->m_flags & M_EXT) == 0) {
   1351 		m_freem(m);
   1352 		return ENOBUFS;
   1353 	}
   1354 
   1355 	if (rxs->rxs_mbuf != NULL)
   1356 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1357 
   1358 	rxs->rxs_mbuf = m;
   1359 
   1360 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1361 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1362 	if (error) {
   1363 		aprint_error_dev(sc->sc_dev,
   1364 		    "can't load rx DMA map %d, error = %d\n", i, error);
   1365 		panic("add_rxbuf");
   1366 	}
   1367 
   1368 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1369 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1370 	SCX_INIT_RXDESC(sc, i);
   1371 
   1372 	return 0;
   1373 }
   1374 
   1375 static int
   1376 spin_waitfor(struct scx_softc *sc, int reg, int exist)
   1377 {
   1378 	int val, loop;
   1379 
   1380 	val = CSR_READ(sc, reg);
   1381 	if ((val & exist) == 0)
   1382 		return 0;
   1383 	loop = 3000;
   1384 	do {
   1385 		DELAY(10);
   1386 		val = CSR_READ(sc, reg);
   1387 	} while (--loop > 0 && (val & exist));
   1388 	return (loop > 0) ? 0 : ETIMEDOUT;
   1389 }
   1390 
   1391 static int
   1392 mac_read(struct scx_softc *sc, int reg)
   1393 {
   1394 
   1395 	CSR_WRITE(sc, MACCMD, reg);
   1396 	(void)spin_waitfor(sc, MACCMD, CMD_BUSY);
   1397 	return CSR_READ(sc, MACDATA);
   1398 }
   1399 
   1400 static void
   1401 mac_write(struct scx_softc *sc, int reg, int val)
   1402 {
   1403 
   1404 	CSR_WRITE(sc, MACDATA, val);
   1405 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
   1406 	(void)spin_waitfor(sc, MACCMD, CMD_BUSY);
   1407 }
   1408 
   1409 static int
   1410 get_mdioclk(uint32_t freq)
   1411 {
   1412 
   1413 	const struct {
   1414 		uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
   1415 	} mdioclk[] = {
   1416 		{ 35,	2 },	/* 25-35 MHz */
   1417 		{ 60,	3 },	/* 35-60 MHz */
   1418 		{ 100,	0 },	/* 60-100 MHz */
   1419 		{ 150,	1 },	/* 100-150 MHz */
   1420 		{ 250,	4 },	/* 150-250 MHz */
   1421 		{ 300,	5 },	/* 250-300 MHz */
   1422 	};
   1423 	int i;
   1424 
   1425 	/* convert MDIO clk to a divisor value */
   1426 	if (freq < mdioclk[0].freq)
   1427 		return mdioclk[0].bit;
   1428 	for (i = 1; i < __arraycount(mdioclk); i++) {
   1429 		if (freq < mdioclk[i].freq)
   1430 			return mdioclk[i-1].bit;
   1431 	}
   1432 	return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
   1433 }
   1434 
   1435 static void
   1436 loaducode(struct scx_softc *sc)
   1437 {
   1438 	uint32_t up, lo, sz;
   1439 	uint64_t addr;
   1440 
   1441 	sc->sc_ucodeloaded = 1;
   1442 
   1443 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
   1444 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
   1445 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
   1446 	sz *= 4;
   1447 	addr = ((uint64_t)up << 32) | lo;
   1448 	aprint_normal_dev(sc->sc_dev, "H2M ucode %u\n", sz);
   1449 	injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
   1450 
   1451 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
   1452 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
   1453 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
   1454 	sz *= 4;
   1455 	addr = ((uint64_t)up << 32) | lo;
   1456 	injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
   1457 	aprint_normal_dev(sc->sc_dev, "M2H ucode %u\n", sz);
   1458 
   1459 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
   1460 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
   1461 	sz *= 4;
   1462 	injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
   1463 	aprint_normal_dev(sc->sc_dev, "PKT ucode %u\n", sz);
   1464 }
   1465 
   1466 static void
   1467 injectucode(struct scx_softc *sc, int port,
   1468 	bus_addr_t addr, bus_size_t size)
   1469 {
   1470 	bus_space_handle_t bsh;
   1471 	bus_size_t off;
   1472 	uint32_t ucode;
   1473 
   1474 	if (!bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
   1475 		aprint_error_dev(sc->sc_dev,
   1476 		    "eeprom map failure for ucode port 0x%x\n", port);
   1477 		return;
   1478 	}
   1479 	for (off = 0; off < size; off += 4) {
   1480 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
   1481 		CSR_WRITE(sc, port, ucode);
   1482 	}
   1483 	bus_space_unmap(sc->sc_st, bsh, size);
   1484 }
   1485