if_scx.c revision 1.13 1 /* $NetBSD: if_scx.c,v 1.13 2020/03/25 01:39:49 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #define NOT_MP_SAFE 0
33
34 /*
35 * Socionext SC2A11 SynQuacer NetSec GbE driver
36 *
37 * (possibly incorrect notes to be removed eventually)
38 * - 32 byte descriptor for 64 bit paddr design.
39 * - multiple rings seems available. There are special descriptor fields
40 * to designify ring number from which to arrive or to which go.
41 * - memory mapped EEPROM to hold MAC address. The rest of the area is
42 * occupied by a set of ucode for two DMA engines and one packet engine.
43 * - The size of frame address filter is unknown. Might be 16 or even 128.
44 * - The first slot is my own station address. Always enabled to perform
45 * to identify oneself.
46 * - 1~16 are for supplimental MAC addresses. Independently enabled for
47 * use. Good to catch multicast. Byte-wise selective match available.
48 * Use the mask to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
49 * - 16~128 might be exact match without byte-mask.
50 * - The size of multicast hash filter store is unknown. Might be 256 bit.
51 * - Socionext/Linaro "NetSec" code makes many cut shorts. Some constants
52 * are left unexplained. The values should be handled via external
53 * controls like FDT descriptions. Fortunately, Intel/Altera CycloneV PDFs
54 * describe every detail of "such the instance of" DW EMAC IP and
55 * most of them are likely applicable to SC2A11 GbE.
56 */
57
58 #include <sys/cdefs.h>
59 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.13 2020/03/25 01:39:49 nisimura Exp $");
60
61 #include <sys/param.h>
62 #include <sys/bus.h>
63 #include <sys/intr.h>
64 #include <sys/device.h>
65 #include <sys/callout.h>
66 #include <sys/mbuf.h>
67 #include <sys/malloc.h>
68 #include <sys/errno.h>
69 #include <sys/rndsource.h>
70 #include <sys/kernel.h>
71 #include <sys/systm.h>
72
73 #include <net/if.h>
74 #include <net/if_media.h>
75 #include <net/if_dl.h>
76 #include <net/if_ether.h>
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <net/bpf.h>
80
81 #include <dev/fdt/fdtvar.h>
82 #include <dev/acpi/acpireg.h>
83 #include <dev/acpi/acpivar.h>
84 #include <dev/acpi/acpi_intr.h>
85
86 /* SC2A11 register block */
87 #define SWRESET 0x104
88 #define COMINIT 0x120
89 #define INTRST 0x200
90 #define IRQ_RX (1U<<1)
91 #define IRQ_TX (1U<<0)
92 #define INTREN 0x204
93 #define INTR_SET 0x234
94 #define INTR_CLR 0x238
95 #define TXINTST 0x400
96 #define TXINTEN 0x404
97 #define TXINT_SET 0x428
98 #define TXINT_CLR 0x42c
99 #define TXI_NTOWNR (1U<<17)
100 #define TXI_TR_ERR (1U<<16)
101 #define TXI_TXDONE (1U<<15)
102 #define TXI_TMREXP (1U<<14)
103 #define RXINTST 0x440
104 #define RXINTEN 0x444
105 #define RXINT_SET 0x468
106 #define RXINT_CLR 0x46c
107 #define RXI_RC_ERR (1U<<16)
108 #define RXI_PKTCNT (1U<<15)
109 #define RXI_TMREXP (1U<<14)
110 #define TXTIMER 0x41c
111 #define RXTIMER 0x45c
112 #define TXCOUNT 0x410
113 #define RXCOUNT 0x454
114 #define H2MENG 0x210 /* DMAC host2media ucode port */
115 #define M2HENG 0x21c /* DMAC media2host ucode port */
116 #define PKTENG 0x0d0 /* packet engine ucode port */
117 #define HWVER0 0x22c
118 #define HWVER1 0x230
119
120 #define MACSTAT 0x1024 /* gmac status */
121 #define MACDATA 0x11c0 /* gmac rd/wr data */
122 #define MACCMD 0x11c4 /* gmac operation */
123 #define CMD_IOWR (1U<<28) /* write op */
124 #define CMD_BUSY (1U<<31) /* busy bit */
125 #define DESCENG_INIT 0x11fc
126 #define DESCENG_SRST 0x1204
127
128 /* GMAC register block. use mac_write()/mac_read() to handle */
129 #define GMACMCR 0x0000 /* MAC configuration */
130 #define MCR_IBN (1U<<30) /* */
131 #define MCR_CST (1U<<25) /* strip CRC */
132 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
133 #define MCR_JE (1U<<20) /* ignore oversized >9018 condition */
134 #define MCR_USEMII (1U<<15) /* 1: RMII/MII, 0: RGMII */
135 #define MCR_SPD100 (1U<<14) /* force speed 100 */
136 #define MCR_USEFDX (1U<<11) /* force full duplex */
137 #define MCR_IPCKEN (1U<<10) /* handle checksum */
138 #define MCR_ACS (1U<<7) /* auto pad strip CRC */
139 #define MCR_TXE (1U<<3) /* start Tx DMA engine */
140 #define MCR_RXE (1U<<2) /* start Rx DMA engine */
141 #define _MCR_FDX 0x0000280c /* XXX TBD */
142 #define _MCR_HDX 0x0001a00c /* XXX TBD */
143 #define GMACAFR 0x0004 /* frame DA/SA address filter */
144 #define AFR_RA (1U<<31) /* receive block all on */
145 #define AFR_HPF (1U<<10) /* activate hash or perfect filter */
146 #define AFR_SAF (1U<<9) /* source address filter */
147 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
148 #define AFR_PCF (3U<<6) /* */
149 #define AFR_RB (1U<<5) /* reject broadcast frame */
150 #define AFR_AM (1U<<4) /* accept all multicast frame */
151 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
152 #define AFR_MHTE (1U<<2) /* use multicast hash table */
153 #define AFR_UHTE (1U<<1) /* use additional MAC addresses */
154 #define AFR_PM (1U<<0) /* run promisc mode */
155 #define _AFR 0x80000001 /* XXX TBD */
156 #define GMACMHTH 0x0008 /* XXX multicast hash table 63:32 */
157 #define GMACMHTL 0x000c /* XXX multicast hash table 31:0 */
158 #define GMACGAR 0x0010 /* MDIO operation */
159 #define GAR_PHY (11) /* mii phy 15:11 */
160 #define GAR_REG (6) /* mii reg 10:6 */
161 #define GAR_CTL (2) /* control 5:2 */
162 #define GAR_IOWR (1U<<1) /* MDIO write op */
163 #define GAR_BUSY (1U) /* busy bit */
164 #define GMACGDR 0x0014 /* MDIO rd/wr data */
165 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
166 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
167 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
168 #define GMACVTAG 0x001c /* VLAN tag control */
169 #define GMACIMPL 0x0020 /* implementation number XXXX.YYYY */
170 #define GMACMAH0 0x0040 /* MAC address 0 47:32 */
171 #define GMACMAL0 0x0044 /* MAC address 0 31:0 */
172 #define GMACMAH(i) ((i)*8+0x40) /* supplimental MAC addr 1 - 15 */
173 #define GMACMAL(i) ((i)*8+0x44)
174 #define GMACMIISR 0x00d8 /* resolved xMII link status */
175 /* 3 link up detected
176 * 2:1 resovled speed
177 * 0 2.5Mhz (10Mbps)
178 * 1 25Mhz (100bps)
179 * 2 125Mhz (1000Mbps)
180 * 1 full duplex detected */
181
182 #define GMACMHT0 0x0500 /* multicast hash table 0 - 7 */
183 #define GMACMHT(i) ((i)*4+0x500)
184 #define GMACVHT 0x0588 /* VLAN tag hash */
185 #define GMACAMAH(i) ((i)*8+0x800) /* supplimental MAC addr 16-127 */
186 #define GMACAMAL(i) ((i)*8+0x804)
187 #define GMACEVCNT(i) ((i)*4+0x114) /* event counter 0x114~284 */
188 #define GMACEVCTL 0x0100 /* clear event counter registers */
189
190 #define GMACBMR 0x1000 /* DMA bus mode control
191 * 24 4PBL
192 * 22:17 RPBL
193 * 16 fix burst
194 * 15:14 priority between Rx and Tx
195 * 3 rxtx ratio 41
196 * 2 rxtx ratio 31
197 * 1 rxtx ratio 21
198 * 0 rxtx ratio 11
199 * 13:8 PBL possible DMA burst len
200 * 0 reset op. self clear
201 */
202 #define _BMR 0x00412080 /* XXX TBD */
203 #define _BMR0 0x00020181 /* XXX TBD */
204 #define BMR_RST (1U<<0) /* reset op. self clear when done */
205 #define GMACTDS 0x1004 /* write any to resume tdes */
206 #define GMACRDS 0x1008 /* write any to resume rdes */
207 #define GMACRDLAR 0x100c /* rdes base address 32bit paddr */
208 #define _RDLAR 0x18000 /* XXX TBD system SRAM with CC ? */
209 #define GMACTDLAR 0x1010 /* tdes base address 32bit paddr */
210 #define _TDLAR 0x1c000 /* XXX TBD system SRAM with CC ? */
211 #define GMACOMR 0x1018 /* DMA operation */
212 #define OMR_TXE (1U<<13) /* start Tx DMA engine, 0 to stop */
213 #define OMR_RXE (1U<<1) /* start Rx DMA engine, 0 to stop */
214
215 /* descriptor format definition */
216 struct tdes {
217 uint32_t t0, t1, t2, t3;
218 };
219
220 struct rdes {
221 uint32_t r0, r1, r2, r3;
222 };
223
224 #define T0_OWN (1U<<31) /* desc is ready to Tx */
225 #define T0_EOD (1U<<30) /* end of descriptor array */
226 #define T0_DRID (24) /* 29:24 D-RID */
227 #define T0_PT (1U<<21) /* 23:21 PT */
228 #define T0_TRID (16) /* 20:16 T-RID */
229 #define T0_FS (1U<<9) /* first segment of frame */
230 #define T0_LS (1U<<8) /* last segment of frame */
231 #define T0_CSUM (1U<<7) /* enable check sum offload */
232 #define T0_SGOL (1U<<6) /* enable TCP segment offload */
233 #define T0_TRS (1U<<4) /* 5:4 TRS */
234 #define T0_IOC (0) /* XXX TBD interrupt when completed */
235 /* T1 segment address 63:32 */
236 /* T2 segment address 31:0 */
237 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
238 #define R0_OWN (1U<<31) /* desc is empty */
239 #define R0_EOD (1U<<30) /* end of descriptor array */
240 #define R0_SRID (24) /* 29:24 S-RID */
241 #define R0_FR (1U<<23) /* FR */
242 #define R0_ER (1U<<21) /* Rx error indication */
243 #define R0_ERR (3U<<16) /* 18:16 receive error code */
244 #define R0_TDRID (14) /* 15:14 TD-RID */
245 #define R0_FS (1U<<9) /* first segment of frame */
246 #define R0_LS (1U<<8) /* last segment of frame */
247 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
248 #define R0_CERR (2U<<6) /* 0 (undone), 1 (found ok), 2 (bad) */
249 /* R1 frame address 63:32 */
250 /* R2 frame address 31:0 */
251 /* R3 31:16 received frame length, 15:0 buffer length to receive */
252
253 #define MD_NTXSEGS 16 /* fixed */
254 #define MD_TXQUEUELEN 16 /* tunable */
255 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1)
256 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4)
257 #define MD_NTXDESC (MD_TXQUEUELEN * MD_NTXSEGS)
258 #define MD_NTXDESC_MASK (MD_NTXDESC - 1)
259 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK)
260 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK)
261
262 #define MD_NRXDESC 64 /* tunable */
263 #define MD_NRXDESC_MASK (MD_NRXDESC - 1)
264 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK)
265
266 #define SCX_INIT_RXDESC(sc, x) \
267 do { \
268 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
269 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
270 struct mbuf *__m = __rxs->rxs_mbuf; \
271 bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr; \
272 __m->m_data = __m->m_ext.ext_buf; \
273 __rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len; \
274 __rxd->r2 = htole32(BUS_ADDR_LO32(__paddr)); \
275 __rxd->r1 = htole32(BUS_ADDR_HI32(__paddr)); \
276 __rxd->r0 = R0_OWN | R0_FS | R0_LS; \
277 if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD; \
278 } while (/*CONSTCOND*/0)
279
280 struct control_data {
281 struct tdes cd_txdescs[MD_NTXDESC];
282 struct rdes cd_rxdescs[MD_NRXDESC];
283 };
284 #define SCX_CDOFF(x) offsetof(struct control_data, x)
285 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
286 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
287
288 struct scx_txsoft {
289 struct mbuf *txs_mbuf; /* head of our mbuf chain */
290 bus_dmamap_t txs_dmamap; /* our DMA map */
291 int txs_firstdesc; /* first descriptor in packet */
292 int txs_lastdesc; /* last descriptor in packet */
293 int txs_ndesc; /* # of descriptors used */
294 };
295
296 struct scx_rxsoft {
297 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
298 bus_dmamap_t rxs_dmamap; /* our DMA map */
299 };
300
301 struct scx_softc {
302 device_t sc_dev; /* generic device information */
303 bus_space_tag_t sc_st; /* bus space tag */
304 bus_space_handle_t sc_sh; /* bus space handle */
305 bus_size_t sc_sz; /* csr map size */
306 bus_space_handle_t sc_eesh; /* eeprom section handle */
307 bus_size_t sc_eesz; /* eeprom map size */
308 bus_dma_tag_t sc_dmat; /* bus DMA tag */
309 struct ethercom sc_ethercom; /* Ethernet common data */
310 struct mii_data sc_mii; /* MII */
311 callout_t sc_tick_ch; /* PHY monitor callout */
312 bus_dma_segment_t sc_seg; /* descriptor store seg */
313 int sc_nseg; /* descriptor store nseg */
314 void *sc_ih; /* interrupt cookie */
315 int sc_phy_id; /* PHY address */
316 int sc_flowflags; /* 802.3x PAUSE flow control */
317 uint32_t sc_mdclk; /* GAR 5:2 clock selection */
318 uint32_t sc_t0coso; /* T0_CSUM | T0_SGOL to run */
319 int sc_ucodeloaded; /* ucode for H2M/M2H/PKT */
320 int sc_100mii; /* 1 for RMII/MII, 0 for RGMII */
321 int sc_phandle; /* fdt phandle */
322
323 bus_dmamap_t sc_cddmamap; /* control data DMA map */
324 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
325
326 struct control_data *sc_control_data;
327 #define sc_txdescs sc_control_data->cd_txdescs
328 #define sc_rxdescs sc_control_data->cd_rxdescs
329
330 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
331 struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
332 int sc_txfree; /* number of free Tx descriptors */
333 int sc_txnext; /* next ready Tx descriptor */
334 int sc_txsfree; /* number of free Tx jobs */
335 int sc_txsnext; /* next ready Tx job */
336 int sc_txsdirty; /* dirty Tx jobs */
337 int sc_rxptr; /* next ready Rx descriptor/descsoft */
338
339 krndsource_t rnd_source; /* random source */
340 };
341
342 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
343 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
344
345 #define SCX_CDTXSYNC(sc, x, n, ops) \
346 do { \
347 int __x, __n; \
348 \
349 __x = (x); \
350 __n = (n); \
351 \
352 /* If it will wrap around, sync to the end of the ring. */ \
353 if ((__x + __n) > MD_NTXDESC) { \
354 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
355 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
356 (MD_NTXDESC - __x), (ops)); \
357 __n -= (MD_NTXDESC - __x); \
358 __x = 0; \
359 } \
360 \
361 /* Now sync whatever is left. */ \
362 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
363 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
364 } while (/*CONSTCOND*/0)
365
366 #define SCX_CDRXSYNC(sc, x, ops) \
367 do { \
368 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
369 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
370 } while (/*CONSTCOND*/0)
371
372 static int scx_fdt_match(device_t, cfdata_t, void *);
373 static void scx_fdt_attach(device_t, device_t, void *);
374 static int scx_acpi_match(device_t, cfdata_t, void *);
375 static void scx_acpi_attach(device_t, device_t, void *);
376
377 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
378 scx_fdt_match, scx_fdt_attach, NULL, NULL);
379
380 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
381 scx_acpi_match, scx_acpi_attach, NULL, NULL);
382
383 static void scx_attach_i(struct scx_softc *);
384 static void scx_reset(struct scx_softc *);
385 static int scx_init(struct ifnet *);
386 static void scx_start(struct ifnet *);
387 static void scx_stop(struct ifnet *, int);
388 static void scx_watchdog(struct ifnet *);
389 static int scx_ioctl(struct ifnet *, u_long, void *);
390 static void scx_set_rcvfilt(struct scx_softc *);
391 static int scx_ifmedia_upd(struct ifnet *);
392 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
393 static void mii_statchg(struct ifnet *);
394 static void phy_tick(void *);
395 static int mii_readreg(device_t, int, int, uint16_t *);
396 static int mii_writereg(device_t, int, int, uint16_t);
397 static int scx_intr(void *);
398 static void txreap(struct scx_softc *);
399 static void rxintr(struct scx_softc *);
400 static int add_rxbuf(struct scx_softc *, int);
401
402 static int get_mdioclk(uint32_t);
403 static int spin_waitfor(struct scx_softc *, int, int);
404 static int mac_read(struct scx_softc *, int);
405 static void mac_write(struct scx_softc *, int, int);
406 static void loaducode(struct scx_softc *);
407 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
408
409 #define CSR_READ(sc,off) \
410 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
411 #define CSR_WRITE(sc,off,val) \
412 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
413 #define EE_READ(sc,off) \
414 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
415
416 static int
417 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
418 {
419 static const char * compatible[] = {
420 "socionext,synquacer-netsec",
421 NULL
422 };
423 struct fdt_attach_args * const faa = aux;
424
425 return of_match_compatible(faa->faa_phandle, compatible);
426 }
427
428 static void
429 scx_fdt_attach(device_t parent, device_t self, void *aux)
430 {
431 struct scx_softc * const sc = device_private(self);
432 struct fdt_attach_args * const faa = aux;
433 const int phandle = faa->faa_phandle;
434 bus_space_tag_t bst = faa->faa_bst;
435 bus_space_handle_t bsh;
436 bus_space_handle_t eebsh;
437 bus_addr_t addr[2];
438 bus_size_t size[2];
439 char intrstr[128];
440 const char *phy_mode;
441
442 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
443 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
444 aprint_error(": unable to map device csr\n");
445 return;
446 }
447 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
448 aprint_error(": failed to decode interrupt\n");
449 goto fail;
450 }
451 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
452 NOT_MP_SAFE, scx_intr, sc);
453 if (sc->sc_ih == NULL) {
454 aprint_error_dev(self, "couldn't establish interrupt\n");
455 goto fail;
456 }
457 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
458 || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
459 aprint_error(": unable to map device eeprom\n");
460 goto fail;
461 }
462
463 phy_mode = fdtbus_get_string(phandle, "phy-mode");
464 if (phy_mode == NULL) {
465 aprint_error(": missing 'phy-mode' property\n");
466 phy_mode = "rgmii";
467 }
468
469 aprint_naive("\n");
470 aprint_normal(": Gigabit Ethernet Controller\n");
471 aprint_normal_dev(self, "interrupt on %s\n", intrstr);
472
473 sc->sc_dev = self;
474 sc->sc_st = bst;
475 sc->sc_sh = bsh;
476 sc->sc_sz = size[0];
477 sc->sc_eesh = eebsh;
478 sc->sc_eesz = size[1];
479 sc->sc_dmat = faa->faa_dmat;
480 sc->sc_phandle = phandle;
481 sc->sc_100mii = (strcmp(phy_mode, "rgmii") != 0);
482
483 scx_attach_i(sc);
484 return;
485 fail:
486 if (sc->sc_eesz)
487 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
488 if (sc->sc_sz)
489 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
490 return;
491 }
492
493 static int
494 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
495 {
496 static const char * compatible[] = {
497 "SCX0001",
498 NULL
499 };
500 struct acpi_attach_args *aa = aux;
501
502 if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
503 return 0;
504 return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
505 }
506
507 static void
508 scx_acpi_attach(device_t parent, device_t self, void *aux)
509 {
510 struct scx_softc * const sc = device_private(self);
511 struct acpi_attach_args * const aa = aux;
512 ACPI_HANDLE handle = aa->aa_node->ad_handle;
513 bus_space_tag_t bst = aa->aa_memt;
514 bus_space_handle_t bsh, eebsh;
515 struct acpi_resources res;
516 struct acpi_mem *mem;
517 struct acpi_irq *irq;
518 ACPI_STATUS rv;
519
520 rv = acpi_resource_parse(self, handle, "_CRS",
521 &res, &acpi_resource_parse_ops_default);
522 if (ACPI_FAILURE(rv))
523 return;
524 acpi_resource_print(self, &res);
525 mem = acpi_res_mem(&res, 0);
526 irq = acpi_res_irq(&res, 0);
527 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
528 aprint_error(": incomplete csr resources\n");
529 return;
530 }
531 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
532 aprint_error(": couldn't map registers\n");
533 return;
534 }
535 sc->sc_sz = mem->ar_length;
536 sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
537 NOT_MP_SAFE, scx_intr, sc, device_xname(self));
538 if (sc->sc_ih == NULL) {
539 aprint_error_dev(self, "couldn't establish interrupt\n");
540 goto fail;
541 }
542 mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
543 if (mem == NULL || mem->ar_length == 0) {
544 aprint_error(": incomplete eeprom resources\n");
545 goto fail;
546 }
547 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
548 aprint_error(": couldn't map registers\n");
549 goto fail;
550 }
551 sc->sc_eesz = mem->ar_length;
552
553 aprint_naive("\n");
554 aprint_normal(": Gigabit Ethernet Controller\n");
555
556 sc->sc_dev = self;
557 sc->sc_st = bst;
558 sc->sc_sh = bsh;
559 sc->sc_eesh = eebsh;
560 sc->sc_dmat = aa->aa_dmat64;
561
562 /* dig _DSD to see parameters. safe to assume RGMII/spd1000 though */
563
564 scx_attach_i(sc);
565
566 acpi_resource_cleanup(&res);
567 return;
568 fail:
569 if (sc->sc_eesz > 0)
570 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
571 if (sc->sc_sz > 0)
572 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
573 acpi_resource_cleanup(&res);
574 return;
575 }
576
577 static void
578 scx_attach_i(struct scx_softc *sc)
579 {
580 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
581 struct mii_data * const mii = &sc->sc_mii;
582 struct ifmedia * const ifm = &mii->mii_media;
583 uint32_t hwver, phyfreq;
584 uint8_t enaddr[ETHER_ADDR_LEN];
585 bus_dma_segment_t seg;
586 uint32_t csr;
587 int i, nseg, error = 0;
588
589 hwver = CSR_READ(sc, HWVER1);
590 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
591 enaddr[0] = csr >> 24;
592 enaddr[1] = csr >> 16;
593 enaddr[2] = csr >> 8;
594 enaddr[3] = csr;
595 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
596 enaddr[4] = csr >> 24;
597 enaddr[5] = csr >> 16;
598 csr = mac_read(sc, GMACIMPL);
599
600 aprint_normal_dev(sc->sc_dev, "NetSec GbE (%d.%d) impl (%x.%x)\n",
601 hwver >> 16, hwver & 0xffff, csr >> 16, csr & 0xffff);
602 aprint_normal_dev(sc->sc_dev,
603 "Ethernet address %s\n", ether_sprintf(enaddr));
604
605 phyfreq = 0;
606 sc->sc_phy_id = MII_PHY_ANY;
607 sc->sc_mdclk = get_mdioclk(phyfreq); /* 5:2 clk control */
608
609 sc->sc_flowflags = 0;
610
611 if (sc->sc_ucodeloaded == 0)
612 loaducode(sc);
613
614 mii->mii_ifp = ifp;
615 mii->mii_readreg = mii_readreg;
616 mii->mii_writereg = mii_writereg;
617 mii->mii_statchg = mii_statchg;
618
619 sc->sc_ethercom.ec_mii = mii;
620 ifmedia_init(ifm, 0, scx_ifmedia_upd, scx_ifmedia_sts);
621 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
622 MII_OFFSET_ANY, MIIF_DOPAUSE);
623 if (LIST_FIRST(&mii->mii_phys) == NULL) {
624 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
625 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
626 } else
627 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
628 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
629
630 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
631 ifp->if_softc = sc;
632 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
633 ifp->if_ioctl = scx_ioctl;
634 ifp->if_start = scx_start;
635 ifp->if_watchdog = scx_watchdog;
636 ifp->if_init = scx_init;
637 ifp->if_stop = scx_stop;
638 IFQ_SET_READY(&ifp->if_snd);
639
640 if_attach(ifp);
641 if_deferred_start_init(ifp, NULL);
642 ether_ifattach(ifp, enaddr);
643
644 callout_init(&sc->sc_tick_ch, 0);
645 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
646
647 /*
648 * Allocate the control data structures, and create and load the
649 * DMA map for it.
650 */
651 error = bus_dmamem_alloc(sc->sc_dmat,
652 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
653 if (error != 0) {
654 aprint_error_dev(sc->sc_dev,
655 "unable to allocate control data, error = %d\n", error);
656 goto fail_0;
657 }
658 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
659 sizeof(struct control_data), (void **)&sc->sc_control_data,
660 BUS_DMA_COHERENT);
661 if (error != 0) {
662 aprint_error_dev(sc->sc_dev,
663 "unable to map control data, error = %d\n", error);
664 goto fail_1;
665 }
666 error = bus_dmamap_create(sc->sc_dmat,
667 sizeof(struct control_data), 1,
668 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
669 if (error != 0) {
670 aprint_error_dev(sc->sc_dev,
671 "unable to create control data DMA map, "
672 "error = %d\n", error);
673 goto fail_2;
674 }
675 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
676 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
677 if (error != 0) {
678 aprint_error_dev(sc->sc_dev,
679 "unable to load control data DMA map, error = %d\n",
680 error);
681 goto fail_3;
682 }
683 for (i = 0; i < MD_TXQUEUELEN; i++) {
684 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
685 MD_NTXSEGS, MCLBYTES, 0, 0,
686 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
687 aprint_error_dev(sc->sc_dev,
688 "unable to create tx DMA map %d, error = %d\n",
689 i, error);
690 goto fail_4;
691 }
692 }
693 for (i = 0; i < MD_NRXDESC; i++) {
694 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
695 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
696 aprint_error_dev(sc->sc_dev,
697 "unable to create rx DMA map %d, error = %d\n",
698 i, error);
699 goto fail_5;
700 }
701 sc->sc_rxsoft[i].rxs_mbuf = NULL;
702 }
703 sc->sc_seg = seg;
704 sc->sc_nseg = nseg;
705 printf("bus_dmaseg ds_addr %08lx, ds_len %08lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
706
707 if (pmf_device_register(sc->sc_dev, NULL, NULL))
708 pmf_class_network_register(sc->sc_dev, ifp);
709 else
710 aprint_error_dev(sc->sc_dev,
711 "couldn't establish power handler\n");
712
713 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
714 RND_TYPE_NET, RND_FLAG_DEFAULT);
715
716 return;
717
718 fail_5:
719 for (i = 0; i < MD_NRXDESC; i++) {
720 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
721 bus_dmamap_destroy(sc->sc_dmat,
722 sc->sc_rxsoft[i].rxs_dmamap);
723 }
724 fail_4:
725 for (i = 0; i < MD_TXQUEUELEN; i++) {
726 if (sc->sc_txsoft[i].txs_dmamap != NULL)
727 bus_dmamap_destroy(sc->sc_dmat,
728 sc->sc_txsoft[i].txs_dmamap);
729 }
730 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
731 fail_3:
732 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
733 fail_2:
734 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
735 sizeof(struct control_data));
736 fail_1:
737 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
738 fail_0:
739 if (sc->sc_phandle)
740 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
741 else
742 acpi_intr_disestablish(sc->sc_ih);
743 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
744 return;
745 }
746
747 static void
748 scx_reset(struct scx_softc *sc)
749 {
750
751 mac_write(sc, GMACBMR, BMR_RST); /* may take for a while */
752 (void)spin_waitfor(sc, GMACBMR, BMR_RST);
753
754 CSR_WRITE(sc, DESCENG_SRST, 1);
755 CSR_WRITE(sc, DESCENG_INIT, 1);
756 mac_write(sc, GMACBMR, _BMR);
757 mac_write(sc, GMACRDLAR, _RDLAR);
758 mac_write(sc, GMACTDLAR, _TDLAR);
759 mac_write(sc, GMACAFR, _AFR);
760 mac_write(sc, GMACEVCTL, 1);
761 }
762
763 static int
764 scx_init(struct ifnet *ifp)
765 {
766 struct scx_softc *sc = ifp->if_softc;
767 const uint8_t *ea = CLLADDR(ifp->if_sadl);
768 uint32_t csr;
769 int i;
770
771 /* Cancel pending I/O. */
772 scx_stop(ifp, 0);
773
774 /* Reset the chip to a known state. */
775 scx_reset(sc);
776
777 /* set my address in perfect match slot 0 */
778 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
779 mac_write(sc, GMACMAL0, csr);
780 csr = (ea[5] << 8) | ea[4];
781 mac_write(sc, GMACMAH0, csr | 1U<<31); /* always valid? */
782
783 /* accept multicast frame or run promisc mode */
784 scx_set_rcvfilt(sc);
785
786 (void)scx_ifmedia_upd(ifp);
787
788 /* build sane Tx */
789 memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
790 sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
791 SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
792 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
793 sc->sc_txfree = MD_NTXDESC;
794 sc->sc_txnext = 0;
795 for (i = 0; i < MD_TXQUEUELEN; i++)
796 sc->sc_txsoft[i].txs_mbuf = NULL;
797 sc->sc_txsfree = MD_TXQUEUELEN;
798 sc->sc_txsnext = 0;
799 sc->sc_txsdirty = 0;
800
801 /* load Rx descriptors with fresh mbuf */
802 for (i = 0; i < MD_NRXDESC; i++)
803 (void)add_rxbuf(sc, i);
804 sc->sc_rxptr = 0;
805
806 /* XXX 32 bit paddr XXX hand Tx/Rx rings to HW XXX */
807 mac_write(sc, GMACTDLAR, SCX_CDTXADDR(sc, 0));
808 mac_write(sc, GMACRDLAR, SCX_CDRXADDR(sc, 0));
809
810 /* kick to start GMAC engine */
811 CSR_WRITE(sc, RXINT_CLR, ~0);
812 CSR_WRITE(sc, TXINT_CLR, ~0);
813 csr = mac_read(sc, GMACOMR);
814 mac_write(sc, GMACOMR, csr | OMR_RXE | OMR_TXE);
815
816 ifp->if_flags |= IFF_RUNNING;
817 ifp->if_flags &= ~IFF_OACTIVE;
818
819 /* start one second timer */
820 callout_schedule(&sc->sc_tick_ch, hz);
821
822 return 0;
823 }
824
825 static void
826 scx_stop(struct ifnet *ifp, int disable)
827 {
828 struct scx_softc *sc = ifp->if_softc;
829
830 /* Stop the one second clock. */
831 callout_stop(&sc->sc_tick_ch);
832
833 /* Down the MII. */
834 mii_down(&sc->sc_mii);
835
836 /* Mark the interface down and cancel the watchdog timer. */
837 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
838 ifp->if_timer = 0;
839 }
840
841 static void
842 scx_watchdog(struct ifnet *ifp)
843 {
844 struct scx_softc *sc = ifp->if_softc;
845
846 /*
847 * Since we're not interrupting every packet, sweep
848 * up before we report an error.
849 */
850 txreap(sc);
851
852 if (sc->sc_txfree != MD_NTXDESC) {
853 aprint_error_dev(sc->sc_dev,
854 "device timeout (txfree %d txsfree %d txnext %d)\n",
855 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
856 if_statinc(ifp, if_oerrors);
857
858 /* Reset the interface. */
859 scx_init(ifp);
860 }
861
862 scx_start(ifp);
863 }
864
865 static int
866 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
867 {
868 struct scx_softc *sc = ifp->if_softc;
869 struct ifreq *ifr = (struct ifreq *)data;
870 struct ifmedia *ifm;
871 int s, error;
872
873 s = splnet();
874
875 switch (cmd) {
876 case SIOCSIFMEDIA:
877 /* Flow control requires full-duplex mode. */
878 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
879 (ifr->ifr_media & IFM_FDX) == 0)
880 ifr->ifr_media &= ~IFM_ETH_FMASK;
881 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
882 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
883 /* We can do both TXPAUSE and RXPAUSE. */
884 ifr->ifr_media |=
885 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
886 }
887 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
888 }
889 ifm = &sc->sc_mii.mii_media;
890 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
891 break;
892 default:
893 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
894 break;
895
896 error = 0;
897
898 if (cmd == SIOCSIFCAP)
899 error = (*ifp->if_init)(ifp);
900 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
901 ;
902 else if (ifp->if_flags & IFF_RUNNING) {
903 /*
904 * Multicast list has changed; set the hardware filter
905 * accordingly.
906 */
907 scx_set_rcvfilt(sc);
908 }
909 break;
910 }
911
912 splx(s);
913 return error;
914 }
915
916 static void
917 scx_set_rcvfilt(struct scx_softc *sc)
918 {
919 struct ethercom * const ec = &sc->sc_ethercom;
920 struct ifnet * const ifp = &ec->ec_if;
921 struct ether_multistep step;
922 struct ether_multi *enm;
923 uint32_t mchash[8]; /* 8x 32 = 256 bit */
924 uint32_t csr, crc;
925 int i;
926
927 csr = mac_read(sc, GMACAFR);
928 csr &= ~(AFR_PM | AFR_AM | AFR_MHTE);
929 mac_write(sc, GMACAFR, csr);
930
931 ETHER_LOCK(ec);
932 if (ifp->if_flags & IFF_PROMISC) {
933 ec->ec_flags |= ETHER_F_ALLMULTI;
934 ETHER_UNLOCK(ec);
935 goto update;
936 }
937 ec->ec_flags &= ~ETHER_F_ALLMULTI;
938
939 /* clear 15 entry supplimental perfect match filter */
940 for (i = 1; i < 16; i++)
941 mac_write(sc, GMACMAH(i), 0);
942 /* build 256 bit multicast hash filter */
943 memset(mchash, 0, sizeof(mchash));
944 crc = 0;
945
946 ETHER_FIRST_MULTI(step, ec, enm);
947 i = 1; /* slot 0 is occupied */
948 while (enm != NULL) {
949 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
950 /*
951 * We must listen to a range of multicast addresses.
952 * For now, just accept all multicasts, rather than
953 * trying to set only those filter bits needed to match
954 * the range. (At this time, the only use of address
955 * ranges is for IP multicast routing, for which the
956 * range is big enough to require all bits set.)
957 */
958 ec->ec_flags |= ETHER_F_ALLMULTI;
959 ETHER_UNLOCK(ec);
960 goto update;
961 }
962 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
963 if (i < 16) {
964 /* use 15 entry perfect match filter */
965 uint32_t addr;
966 uint8_t *ep = enm->enm_addrlo;
967 addr = (ep[3] << 24) | (ep[2] << 16)
968 | (ep[1] << 8) | ep[0];
969 mac_write(sc, GMACMAL(i), addr);
970 addr = (ep[5] << 8) | ep[4];
971 mac_write(sc, GMACMAH(i), addr | 1U<<31);
972 } else {
973 /* use hash table when too many */
974 /* bit_reserve_32(~crc) !? */
975 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
976 /* 3(31:29) 5(28:24) bit sampling */
977 mchash[crc >> 29] |= 1 << ((crc >> 24) & 0x1f);
978 }
979 ETHER_NEXT_MULTI(step, enm);
980 i++;
981 }
982 ETHER_UNLOCK(ec);
983
984 if (crc)
985 csr |= AFR_MHTE;
986 for (i = 0; i < __arraycount(mchash); i++)
987 mac_write(sc, GMACMHT(i), mchash[i]);
988 mac_write(sc, GMACAFR, csr);
989 return;
990
991 update:
992 /* With PM or AM, MHTE/MHT0-7 are never consulted. really? */
993 if (ifp->if_flags & IFF_PROMISC)
994 csr |= AFR_PM; /* run promisc. mode */
995 else
996 csr |= AFR_AM; /* accept all multicast */
997 mac_write(sc, GMACAFR, csr);
998 return;
999 }
1000
1001 static int
1002 scx_ifmedia_upd(struct ifnet *ifp)
1003 {
1004 struct scx_softc *sc = ifp->if_softc;
1005 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1006
1007 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
1008 ; /* restart AN */
1009 ; /* enable AN */
1010 ; /* advertise flow control pause */
1011 ; /* adv. 100FDX,100HDX,10FDX,10HDX */
1012 } else {
1013 #if 1 /* XXX not sure to belong here XXX */
1014 uint32_t mcr = mac_read(sc, GMACMCR);
1015 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_1000_T)
1016 mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
1017 else {
1018 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX
1019 && sc->sc_100mii)
1020 mcr |= MCR_SPD100;
1021 mcr |= MCR_USEMII;
1022 }
1023 if (ifm->ifm_cur->ifm_media & IFM_FDX)
1024 mcr |= MCR_USEFDX;
1025 mcr |= MCR_CST | MCR_JE;
1026 if (sc->sc_100mii == 0)
1027 mcr |= MCR_IBN;
1028 mac_write(sc, GMACMCR, mcr);
1029 #endif
1030 }
1031 return 0;
1032 }
1033
1034 static void
1035 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1036 {
1037 struct scx_softc *sc = ifp->if_softc;
1038 struct mii_data *mii = &sc->sc_mii;
1039
1040 mii_pollstat(mii);
1041 ifmr->ifm_status = mii->mii_media_status;
1042 ifmr->ifm_active = sc->sc_flowflags |
1043 (mii->mii_media_active & ~IFM_ETH_FMASK);
1044 }
1045
1046 void
1047 mii_statchg(struct ifnet *ifp)
1048 {
1049 struct scx_softc *sc = ifp->if_softc;
1050 struct mii_data *mii = &sc->sc_mii;
1051 uint32_t fcr;
1052 #if 1
1053 /* decode MIISR register value */
1054 uint32_t miisr = mac_read(sc, GMACMIISR);
1055 int spd = (miisr >> 1) & 03;
1056 printf("xMII link status (0x%x) spd%d", miisr,
1057 (spd == 2) ? 1000 : (spd == 1) ? 100 : 10);
1058 if (miisr & 1)
1059 printf(",full-duplex");
1060 printf("\n");
1061 #endif
1062 /* Get flow control negotiation result. */
1063 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1064 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1065 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1066
1067 /* Adjust PAUSE flow control. */
1068 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1069 if (mii->mii_media_active & IFM_FDX) {
1070 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1071 fcr |= FCR_TFE;
1072 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1073 fcr |= FCR_RFE;
1074 }
1075 mac_write(sc, GMACFCR, fcr);
1076
1077 printf("%ctxfe, %crxfe\n",
1078 (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
1079 }
1080
1081 static void
1082 phy_tick(void *arg)
1083 {
1084 struct scx_softc *sc = arg;
1085 struct mii_data *mii = &sc->sc_mii;
1086 int s;
1087
1088 s = splnet();
1089 mii_tick(mii);
1090 splx(s);
1091
1092 callout_schedule(&sc->sc_tick_ch, hz);
1093 }
1094
1095 static int
1096 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1097 {
1098 struct scx_softc *sc = device_private(self);
1099 uint32_t miia;
1100 int error;
1101
1102 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1103 mac_write(sc, GMACGAR, miia | GAR_BUSY);
1104 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1105 if (error)
1106 return error;
1107 *val = mac_read(sc, GMACGDR);
1108 return 0;
1109 }
1110
1111 static int
1112 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1113 {
1114 struct scx_softc *sc = device_private(self);
1115 uint32_t miia;
1116 uint16_t dummy;
1117 int error;
1118
1119 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1120 mac_write(sc, GMACGDR, val);
1121 mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1122 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1123 if (error)
1124 return error;
1125 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1126 return 0;
1127 }
1128
1129 static void
1130 scx_start(struct ifnet *ifp)
1131 {
1132 struct scx_softc *sc = ifp->if_softc;
1133 struct mbuf *m0, *m;
1134 struct scx_txsoft *txs;
1135 bus_dmamap_t dmamap;
1136 int error, nexttx, lasttx, ofree, seg;
1137 uint32_t tdes0;
1138
1139 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1140 return;
1141
1142 /* Remember the previous number of free descriptors. */
1143 ofree = sc->sc_txfree;
1144
1145 /*
1146 * Loop through the send queue, setting up transmit descriptors
1147 * until we drain the queue, or use up all available transmit
1148 * descriptors.
1149 */
1150 for (;;) {
1151 IFQ_POLL(&ifp->if_snd, m0);
1152 if (m0 == NULL)
1153 break;
1154
1155 if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1156 txreap(sc);
1157 if (sc->sc_txsfree == 0)
1158 break;
1159 }
1160 txs = &sc->sc_txsoft[sc->sc_txsnext];
1161 dmamap = txs->txs_dmamap;
1162
1163 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1164 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1165 if (error) {
1166 if (error == EFBIG) {
1167 aprint_error_dev(sc->sc_dev,
1168 "Tx packet consumes too many "
1169 "DMA segments, dropping...\n");
1170 IFQ_DEQUEUE(&ifp->if_snd, m0);
1171 m_freem(m0);
1172 continue;
1173 }
1174 /* Short on resources, just stop for now. */
1175 break;
1176 }
1177
1178 if (dmamap->dm_nsegs > sc->sc_txfree) {
1179 /*
1180 * Not enough free descriptors to transmit this
1181 * packet. We haven't committed anything yet,
1182 * so just unload the DMA map, put the packet
1183 * back on the queue, and punt. Notify the upper
1184 * layer that there are not more slots left.
1185 */
1186 ifp->if_flags |= IFF_OACTIVE;
1187 bus_dmamap_unload(sc->sc_dmat, dmamap);
1188 break;
1189 }
1190
1191 IFQ_DEQUEUE(&ifp->if_snd, m0);
1192
1193 /*
1194 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1195 */
1196
1197 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1198 BUS_DMASYNC_PREWRITE);
1199
1200 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1201 lasttx = -1;
1202 for (nexttx = sc->sc_txnext, seg = 0;
1203 seg < dmamap->dm_nsegs;
1204 seg++, nexttx = MD_NEXTTX(nexttx)) {
1205 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1206 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1207 /*
1208 * If this is the first descriptor we're
1209 * enqueueing, don't set the OWN bit just
1210 * yet. That could cause a race condition.
1211 * We'll do it below.
1212 */
1213 tdes->t3 = dmamap->dm_segs[seg].ds_len;
1214 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1215 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1216 tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
1217 (15 << T0_TRID) | T0_PT |
1218 sc->sc_t0coso | T0_TRS;
1219 tdes0 = T0_OWN; /* 2nd and other segments */
1220 lasttx = nexttx;
1221 }
1222 /*
1223 * Outgoing NFS mbuf must be unloaded when Tx completed.
1224 * Without T1_IC NFS mbuf is left unack'ed for excessive
1225 * time and NFS stops to proceed until scx_watchdog()
1226 * calls txreap() to reclaim the unack'ed mbuf.
1227 * It's painful to traverse every mbuf chain to determine
1228 * whether someone is waiting for Tx completion.
1229 */
1230 m = m0;
1231 do {
1232 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1233 sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
1234 break;
1235 }
1236 } while ((m = m->m_next) != NULL);
1237
1238 /* Write deferred 1st segment T0_OWN at the final stage */
1239 sc->sc_txdescs[lasttx].t0 |= T0_LS;
1240 sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
1241 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1242 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1243
1244 /* Tell DMA start transmit */
1245 mac_write(sc, GMACTDS, 1);
1246
1247 txs->txs_mbuf = m0;
1248 txs->txs_firstdesc = sc->sc_txnext;
1249 txs->txs_lastdesc = lasttx;
1250 txs->txs_ndesc = dmamap->dm_nsegs;
1251
1252 sc->sc_txfree -= txs->txs_ndesc;
1253 sc->sc_txnext = nexttx;
1254 sc->sc_txsfree--;
1255 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1256 /*
1257 * Pass the packet to any BPF listeners.
1258 */
1259 bpf_mtap(ifp, m0, BPF_D_OUT);
1260 }
1261
1262 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1263 /* No more slots left; notify upper layer. */
1264 ifp->if_flags |= IFF_OACTIVE;
1265 }
1266 if (sc->sc_txfree != ofree) {
1267 /* Set a watchdog timer in case the chip flakes out. */
1268 ifp->if_timer = 5;
1269 }
1270 }
1271
1272 static int
1273 scx_intr(void *arg)
1274 {
1275 struct scx_softc *sc = arg;
1276 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1277
1278 (void)ifp;
1279 /* XXX decode interrupt cause to pick isr() XXX */
1280 rxintr(sc);
1281 txreap(sc);
1282 return 1;
1283 }
1284
1285 static void
1286 txreap(struct scx_softc *sc)
1287 {
1288 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1289 struct scx_txsoft *txs;
1290 uint32_t txstat;
1291 int i;
1292
1293 ifp->if_flags &= ~IFF_OACTIVE;
1294
1295 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1296 i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1297 txs = &sc->sc_txsoft[i];
1298
1299 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1300 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1301
1302 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1303 if (txstat & T0_OWN) /* desc is still in use */
1304 break;
1305
1306 /* There is no way to tell transmission status per frame */
1307
1308 if_statinc(ifp, if_opackets);
1309
1310 sc->sc_txfree += txs->txs_ndesc;
1311 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1312 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1313 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1314 m_freem(txs->txs_mbuf);
1315 txs->txs_mbuf = NULL;
1316 }
1317 sc->sc_txsdirty = i;
1318 if (sc->sc_txsfree == MD_TXQUEUELEN)
1319 ifp->if_timer = 0;
1320 }
1321
1322 static void
1323 rxintr(struct scx_softc *sc)
1324 {
1325 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1326 struct scx_rxsoft *rxs;
1327 struct mbuf *m;
1328 uint32_t rxstat;
1329 int i, len;
1330
1331 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1332 rxs = &sc->sc_rxsoft[i];
1333
1334 SCX_CDRXSYNC(sc, i,
1335 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1336
1337 rxstat = sc->sc_rxdescs[i].r0;
1338 if (rxstat & R0_OWN) /* desc is left empty */
1339 break;
1340
1341 /* R0_FS | R0_LS must have been marked for this desc */
1342
1343 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1344 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1345
1346 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1347 len -= ETHER_CRC_LEN; /* Trim CRC off */
1348 m = rxs->rxs_mbuf;
1349
1350 if (add_rxbuf(sc, i) != 0) {
1351 if_statinc(ifp, if_ierrors);
1352 SCX_INIT_RXDESC(sc, i);
1353 bus_dmamap_sync(sc->sc_dmat,
1354 rxs->rxs_dmamap, 0,
1355 rxs->rxs_dmamap->dm_mapsize,
1356 BUS_DMASYNC_PREREAD);
1357 continue;
1358 }
1359
1360 m_set_rcvif(m, ifp);
1361 m->m_pkthdr.len = m->m_len = len;
1362
1363 if (rxstat & R0_CSUM) {
1364 uint32_t csum = M_CSUM_IPv4;
1365 if (rxstat & R0_CERR)
1366 csum |= M_CSUM_IPv4_BAD;
1367 m->m_pkthdr.csum_flags |= csum;
1368 }
1369 if_percpuq_enqueue(ifp->if_percpuq, m);
1370 }
1371 sc->sc_rxptr = i;
1372 }
1373
1374 static int
1375 add_rxbuf(struct scx_softc *sc, int i)
1376 {
1377 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1378 struct mbuf *m;
1379 int error;
1380
1381 MGETHDR(m, M_DONTWAIT, MT_DATA);
1382 if (m == NULL)
1383 return ENOBUFS;
1384
1385 MCLGET(m, M_DONTWAIT);
1386 if ((m->m_flags & M_EXT) == 0) {
1387 m_freem(m);
1388 return ENOBUFS;
1389 }
1390
1391 if (rxs->rxs_mbuf != NULL)
1392 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1393
1394 rxs->rxs_mbuf = m;
1395
1396 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1397 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1398 if (error) {
1399 aprint_error_dev(sc->sc_dev,
1400 "can't load rx DMA map %d, error = %d\n", i, error);
1401 panic("add_rxbuf");
1402 }
1403
1404 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1405 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1406 SCX_INIT_RXDESC(sc, i);
1407
1408 return 0;
1409 }
1410
1411 static int
1412 spin_waitfor(struct scx_softc *sc, int reg, int exist)
1413 {
1414 int val, loop;
1415
1416 val = CSR_READ(sc, reg);
1417 if ((val & exist) == 0)
1418 return 0;
1419 loop = 3000;
1420 do {
1421 DELAY(10);
1422 val = CSR_READ(sc, reg);
1423 } while (--loop > 0 && (val & exist));
1424 return (loop > 0) ? 0 : ETIMEDOUT;
1425 }
1426
1427 /* GMAC register needs to use indirect rd/wr via memory mapped registers. */
1428
1429 static int
1430 mac_read(struct scx_softc *sc, int reg)
1431 {
1432
1433 CSR_WRITE(sc, MACCMD, reg);
1434 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1435 return CSR_READ(sc, MACDATA);
1436 }
1437
1438 static void
1439 mac_write(struct scx_softc *sc, int reg, int val)
1440 {
1441
1442 CSR_WRITE(sc, MACDATA, val);
1443 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
1444 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1445 }
1446
1447 /*
1448 * 3 independent uengines exist * to process host2media, media2host and
1449 * packet data flows.
1450 */
1451 static void
1452 loaducode(struct scx_softc *sc)
1453 {
1454 uint32_t up, lo, sz;
1455 uint64_t addr;
1456
1457 sc->sc_ucodeloaded = 1;
1458
1459 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1460 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1461 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1462 sz *= 4;
1463 addr = ((uint64_t)up << 32) | lo;
1464 aprint_normal_dev(sc->sc_dev, "H2M ucode %u\n", sz);
1465 injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
1466
1467 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1468 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1469 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1470 sz *= 4;
1471 addr = ((uint64_t)up << 32) | lo;
1472 injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
1473 aprint_normal_dev(sc->sc_dev, "M2H ucode %u\n", sz);
1474
1475 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1476 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1477 sz *= 4;
1478 injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
1479 aprint_normal_dev(sc->sc_dev, "PKT ucode %u\n", sz);
1480 }
1481
1482 static void
1483 injectucode(struct scx_softc *sc, int port,
1484 bus_addr_t addr, bus_size_t size)
1485 {
1486 bus_space_handle_t bsh;
1487 bus_size_t off;
1488 uint32_t ucode;
1489
1490 if (!bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1491 aprint_error_dev(sc->sc_dev,
1492 "eeprom map failure for ucode port 0x%x\n", port);
1493 return;
1494 }
1495 for (off = 0; off < size; off += 4) {
1496 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1497 CSR_WRITE(sc, port, ucode);
1498 }
1499 bus_space_unmap(sc->sc_st, bsh, size);
1500 }
1501
1502 /* bit selection to determine MDIO speed */
1503
1504 static int
1505 get_mdioclk(uint32_t freq)
1506 {
1507
1508 const struct {
1509 uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
1510 } mdioclk[] = {
1511 { 35, 2 }, /* 25-35 MHz */
1512 { 60, 3 }, /* 35-60 MHz */
1513 { 100, 0 }, /* 60-100 MHz */
1514 { 150, 1 }, /* 100-150 MHz */
1515 { 250, 4 }, /* 150-250 MHz */
1516 { 300, 5 }, /* 250-300 MHz */
1517 };
1518 int i;
1519
1520 /* convert MDIO clk to a divisor value */
1521 if (freq < mdioclk[0].freq)
1522 return mdioclk[0].bit;
1523 for (i = 1; i < __arraycount(mdioclk); i++) {
1524 if (freq < mdioclk[i].freq)
1525 return mdioclk[i-1].bit;
1526 }
1527 return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
1528 }
1529