Home | History | Annotate | Line # | Download | only in sociox
if_scx.c revision 1.14
      1 /*	$NetBSD: if_scx.c,v 1.14 2020/03/25 20:19:46 nisimura Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #define NOT_MP_SAFE	0
     33 
     34 /*
     35  * Socionext SC2A11 SynQuacer NetSec GbE driver
     36  *
     37  *   (possibly incorrect notes to be removed eventually)
     38  * - 32 byte descriptor for 64 bit paddr design.
     39  * - multiple rings seems available. There are special descriptor fields
     40  *   to designify ring number from which to arrive or to which go.
     41  * - memory mapped EEPROM to hold MAC address. The rest of the area is
     42  *   occupied by a set of ucode for two DMA engines and one packet engine.
     43  * - The size of frame address filter is unknown. Might be 16 or even 128.
     44  * - The first slot is my own station address. Always enabled to perform
     45  *   to identify oneself.
     46  * - 1~16 are for supplimental MAC addresses. Independently enabled for
     47  *   use. Good to catch multicast. Byte-wise selective match available.
     48  *   Use the mask to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
     49  * - 16~128 might be exact match without byte-mask.
     50  * - The size of multicast hash filter store is unknown. Might be 256 bit.
     51  * - Socionext/Linaro "NetSec" code makes many cut shorts. Some constants
     52  *   are left unexplained. The values should be handled via external
     53  *   controls like FDT descriptions. Fortunately, Intel/Altera CycloneV PDFs
     54  *   describe every detail of "such the instance of" DW EMAC IP and
     55  *   most of them are likely applicable to SC2A11 GbE.
     56  * - DW EMAC implmentation (0x20) is 0x10.0x36
     57  */
     58 
     59 #include <sys/cdefs.h>
     60 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.14 2020/03/25 20:19:46 nisimura Exp $");
     61 
     62 #include <sys/param.h>
     63 #include <sys/bus.h>
     64 #include <sys/intr.h>
     65 #include <sys/device.h>
     66 #include <sys/callout.h>
     67 #include <sys/mbuf.h>
     68 #include <sys/malloc.h>
     69 #include <sys/errno.h>
     70 #include <sys/rndsource.h>
     71 #include <sys/kernel.h>
     72 #include <sys/systm.h>
     73 
     74 #include <net/if.h>
     75 #include <net/if_media.h>
     76 #include <net/if_dl.h>
     77 #include <net/if_ether.h>
     78 #include <dev/mii/mii.h>
     79 #include <dev/mii/miivar.h>
     80 #include <net/bpf.h>
     81 
     82 #include <dev/fdt/fdtvar.h>
     83 #include <dev/acpi/acpireg.h>
     84 #include <dev/acpi/acpivar.h>
     85 #include <dev/acpi/acpi_intr.h>
     86 
     87 /* SC2A11 register block */
     88 #define SWRESET		0x104
     89 #define COMINIT		0x120
     90 #define INTRST		0x200
     91 #define  IRQ_RX		(1U<<1)
     92 #define  IRQ_TX		(1U<<0)
     93 #define INTREN		0x204
     94 #define INTR_SET	0x234
     95 #define INTR_CLR	0x238
     96 #define TXINTST		0x400
     97 #define TXINTEN		0x404
     98 #define TXINT_SET	0x428
     99 #define TXINT_CLR	0x42c
    100 #define  TXI_NTOWNR	(1U<<17)
    101 #define  TXI_TR_ERR	(1U<<16)
    102 #define  TXI_TXDONE	(1U<<15)
    103 #define  TXI_TMREXP	(1U<<14)
    104 #define RXINTST		0x440
    105 #define RXINTEN		0x444
    106 #define RXINT_SET	0x468
    107 #define RXINT_CLR	0x46c
    108 #define  RXI_RC_ERR	(1U<<16)
    109 #define  RXI_PKTCNT	(1U<<15)
    110 #define  RXI_TMREXP	(1U<<14)
    111 #define TXTIMER		0x41c
    112 #define RXTIMER		0x45c
    113 #define TXCOUNT		0x410
    114 #define RXCOUNT		0x454
    115 #define H2MENG		0x210		/* DMAC host2media ucode port */
    116 #define M2HENG		0x21c		/* DMAC media2host ucode port */
    117 #define PKTENG		0x0d0		/* packet engine ucode port */
    118 #define HWVER0		0x22c
    119 #define HWVER1		0x230
    120 
    121 #define MACSTAT		0x1024		/* gmac status */
    122 #define MACDATA		0x11c0		/* gmac rd/wr data */
    123 #define MACCMD		0x11c4		/* gmac operation */
    124 #define  CMD_IOWR	(1U<<28)	/* write op */
    125 #define  CMD_BUSY	(1U<<31)	/* busy bit */
    126 #define DESCENG_INIT	0x11fc
    127 #define DESCENG_SRST	0x1204
    128 
    129 /* GMAC register block. use mac_write()/mac_read() to handle */
    130 #define GMACMCR		0x0000		/* MAC configuration */
    131 #define  MCR_IBN	(1U<<30)	/* */
    132 #define  MCR_CST	(1U<<25)	/* strip CRC */
    133 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
    134 #define  MCR_JE		(1U<<20)	/* ignore oversized >9018 condition */
    135 #define  MCR_USEMII	(1U<<15)	/* 1: RMII/MII, 0: RGMII */
    136 #define  MCR_SPD100	(1U<<14)	/* force speed 100 */
    137 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
    138 #define  MCR_IPCKEN	(1U<<10)	/* handle checksum */
    139 #define  MCR_ACS	(1U<<7)		/* auto pad strip CRC */
    140 #define  MCR_TXE	(1U<<3)		/* start Tx DMA engine */
    141 #define  MCR_RXE	(1U<<2)		/* start Rx DMA engine */
    142 #define  _MCR_FDX	0x0000280c	/* XXX TBD */
    143 #define  _MCR_HDX	0x0001a00c	/* XXX TBD */
    144 #define GMACAFR		0x0004		/* frame DA/SA address filter */
    145 #define  AFR_RA		(1U<<31)	/* receive block all on */
    146 #define  AFR_HPF	(1U<<10)	/* activate hash or perfect filter */
    147 #define  AFR_SAF	(1U<<9)		/* source address filter */
    148 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
    149 #define  AFR_PCF	(3U<<6)		/* */
    150 #define  AFR_RB		(1U<<5)		/* reject broadcast frame */
    151 #define  AFR_AM		(1U<<4)		/* accept all multicast frame */
    152 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
    153 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
    154 #define  AFR_UHTE	(1U<<1)		/* use additional MAC addresses */
    155 #define  AFR_PM		(1U<<0)		/* run promisc mode */
    156 #define  _AFR		0x80000001	/* XXX TBD */
    157 #define GMACMHTH	0x0008		/* XXX multicast hash table 63:32 */
    158 #define GMACMHTL	0x000c		/* XXX multicast hash table 31:0 */
    159 #define GMACGAR		0x0010		/* MDIO operation */
    160 #define  GAR_PHY	(11)		/* mii phy 15:11 */
    161 #define  GAR_REG	(6)		/* mii reg 10:6 */
    162 #define  GAR_CTL	(2)		/* control 5:2 */
    163 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
    164 #define  GAR_BUSY	(1U)		/* busy bit */
    165 #define GMACGDR		0x0014		/* MDIO rd/wr data */
    166 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
    167 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
    168 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
    169 #define GMACVTAG	0x001c		/* VLAN tag control */
    170 #define GMACIMPL	0x0020		/* implementation number XX.YY */
    171 #define GMACMAH0	0x0040		/* MAC address 0 47:32 */
    172 #define GMACMAL0	0x0044		/* MAC address 0 31:0 */
    173 #define GMACMAH(i) 	((i)*8+0x40)	/* supplimental MAC addr 1 - 15 */
    174 #define GMACMAL(i) 	((i)*8+0x44)
    175 #define GMACMIISR	0x00d8		/* resolved xMII link status */
    176 					/*  3   link up detected
    177 					 *  2:1 resovled speed
    178 					 *      0 2.5Mhz (10Mbps)
    179 					 *	1 25Mhz  (100bps)
    180 					 *	2 125Mhz (1000Mbps)
    181 					 *  1   full duplex detected */
    182 
    183 #define GMACMHT0	0x0500		/* multicast hash table 0 - 7 */
    184 #define GMACMHT(i)	((i)*4+0x500)
    185 #define GMACVHT		0x0588		/* VLAN tag hash */
    186 #define GMACAMAH(i)	((i)*8+0x800)	/* supplimental MAC addr 16-127 */
    187 #define GMACAMAL(i)	((i)*8+0x804)
    188 #define GMACEVCNT(i)	((i)*4+0x114)	/* event counter 0x114~284 */
    189 #define GMACEVCTL	0x0100		/* clear event counter registers */
    190 
    191 #define GMACBMR		0x1000		/* DMA bus mode control
    192 					 * 24    4PBL
    193 					 * 22:17 RPBL
    194 					 * 16    fix burst
    195 					 * 15:14 priority between Rx and Tx
    196 					 *  3    rxtx ratio 41
    197 					 *  2    rxtx ratio 31
    198 					 *  1    rxtx ratio 21
    199 					 *  0    rxtx ratio 11
    200 					 * 13:8  PBL possible DMA burst len
    201 					 *  0    reset op. self clear
    202 					 */
    203 #define  _BMR		0x00412080	/* XXX TBD */
    204 #define  _BMR0		0x00020181	/* XXX TBD */
    205 #define  BMR_RST	(1U<<0)		/* reset op. self clear when done */
    206 #define GMACTDS		0x1004		/* write any to resume tdes */
    207 #define GMACRDS		0x1008		/* write any to resume rdes */
    208 #define GMACRDLAR	0x100c		/* rdes base address 32bit paddr */
    209 #define  _RDLAR		0x18000		/* XXX TBD system SRAM with CC ? */
    210 #define GMACTDLAR	0x1010		/* tdes base address 32bit paddr */
    211 #define  _TDLAR		0x1c000		/* XXX TBD system SRAM with CC ? */
    212 #define GMACOMR		0x1018		/* DMA operation */
    213 #define  OMR_TXE	(1U<<13)	/* start Tx DMA engine, 0 to stop */
    214 #define  OMR_RXE	(1U<<1)		/* start Rx DMA engine, 0 to stop */
    215 
    216 /* descriptor format definition */
    217 struct tdes {
    218 	uint32_t t0, t1, t2, t3;
    219 };
    220 
    221 struct rdes {
    222 	uint32_t r0, r1, r2, r3;
    223 };
    224 
    225 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    226 #define T0_EOD		(1U<<30)	/* end of descriptor array */
    227 #define T0_DRID		(24)		/* 29:24 D-RID */
    228 #define T0_PT		(1U<<21)	/* 23:21 PT */
    229 #define T0_TRID		(16)		/* 20:16 T-RID */
    230 #define T0_FS		(1U<<9)		/* first segment of frame */
    231 #define T0_LS		(1U<<8)		/* last segment of frame */
    232 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
    233 #define T0_SGOL		(1U<<6)		/* enable TCP segment offload */
    234 #define T0_TRS		(1U<<4)		/* 5:4 TRS */
    235 #define T0_IOC		(0)		/* XXX TBD interrupt when completed */
    236 /* T1 segment address 63:32 */
    237 /* T2 segment address 31:0 */
    238 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
    239 #define R0_OWN		(1U<<31)	/* desc is empty */
    240 #define R0_EOD		(1U<<30)	/* end of descriptor array */
    241 #define R0_SRID		(24)		/* 29:24 S-RID */
    242 #define R0_FR		(1U<<23)	/* FR */
    243 #define R0_ER		(1U<<21)	/* Rx error indication */
    244 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
    245 #define R0_TDRID	(14)		/* 15:14 TD-RID */
    246 #define R0_FS		(1U<<9)		/* first segment of frame */
    247 #define R0_LS		(1U<<8)		/* last segment of frame */
    248 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status */
    249 #define R0_CERR		(2U<<6)		/* 0 (undone), 1 (found ok), 2 (bad) */
    250 /* R1 frame address 63:32 */
    251 /* R2 frame address 31:0 */
    252 /* R3 31:16 received frame length, 15:0 buffer length to receive */
    253 
    254 #define MD_NTXSEGS		16		/* fixed */
    255 #define MD_TXQUEUELEN		16		/* tunable */
    256 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
    257 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
    258 #define MD_NTXDESC		(MD_TXQUEUELEN * MD_NTXSEGS)
    259 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
    260 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
    261 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
    262 
    263 #define MD_NRXDESC		64		/* tunable */
    264 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
    265 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
    266 
    267 #define SCX_INIT_RXDESC(sc, x)						\
    268 do {									\
    269 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    270 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    271 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    272 	bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
    273 	__m->m_data = __m->m_ext.ext_buf;				\
    274 	__rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
    275 	__rxd->r2 = htole32(BUS_ADDR_LO32(__paddr));			\
    276 	__rxd->r1 = htole32(BUS_ADDR_HI32(__paddr));			\
    277 	__rxd->r0 = R0_OWN | R0_FS | R0_LS;				\
    278 	if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD;			\
    279 } while (/*CONSTCOND*/0)
    280 
    281 struct control_data {
    282 	struct tdes cd_txdescs[MD_NTXDESC];
    283 	struct rdes cd_rxdescs[MD_NRXDESC];
    284 };
    285 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
    286 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
    287 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
    288 
    289 struct scx_txsoft {
    290 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    291 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    292 	int txs_firstdesc;		/* first descriptor in packet */
    293 	int txs_lastdesc;		/* last descriptor in packet */
    294 	int txs_ndesc;			/* # of descriptors used */
    295 };
    296 
    297 struct scx_rxsoft {
    298 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    299 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    300 };
    301 
    302 struct scx_softc {
    303 	device_t sc_dev;		/* generic device information */
    304 	bus_space_tag_t sc_st;		/* bus space tag */
    305 	bus_space_handle_t sc_sh;	/* bus space handle */
    306 	bus_size_t sc_sz;		/* csr map size */
    307 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
    308 	bus_size_t sc_eesz;		/* eeprom map size */
    309 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    310 	bus_dma_tag_t sc_dmat32;
    311 	struct ethercom sc_ethercom;	/* Ethernet common data */
    312 	struct mii_data sc_mii;		/* MII */
    313 	callout_t sc_tick_ch;		/* PHY monitor callout */
    314 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
    315 	int sc_nseg;			/* descriptor store nseg */
    316 	void *sc_ih;			/* interrupt cookie */
    317 	int sc_phy_id;			/* PHY address */
    318 	int sc_flowflags;		/* 802.3x PAUSE flow control */
    319 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
    320 	uint32_t sc_t0coso;		/* T0_CSUM | T0_SGOL to run */
    321 	int sc_ucodeloaded;		/* ucode for H2M/M2H/PKT */
    322 	int sc_100mii;			/* 1 for RMII/MII, 0 for RGMII */
    323 	int sc_phandle;			/* fdt phandle */
    324 	uint64_t sc_freq;
    325 
    326 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    327 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    328 
    329 	struct control_data *sc_control_data;
    330 #define sc_txdescs	sc_control_data->cd_txdescs
    331 #define sc_rxdescs	sc_control_data->cd_rxdescs
    332 
    333 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
    334 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
    335 	int sc_txfree;			/* number of free Tx descriptors */
    336 	int sc_txnext;			/* next ready Tx descriptor */
    337 	int sc_txsfree;			/* number of free Tx jobs */
    338 	int sc_txsnext;			/* next ready Tx job */
    339 	int sc_txsdirty;		/* dirty Tx jobs */
    340 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    341 
    342 	krndsource_t rnd_source;	/* random source */
    343 };
    344 
    345 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
    346 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
    347 
    348 #define SCX_CDTXSYNC(sc, x, n, ops)					\
    349 do {									\
    350 	int __x, __n;							\
    351 									\
    352 	__x = (x);							\
    353 	__n = (n);							\
    354 									\
    355 	/* If it will wrap around, sync to the end of the ring. */	\
    356 	if ((__x + __n) > MD_NTXDESC) {				\
    357 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    358 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
    359 		    (MD_NTXDESC - __x), (ops));			\
    360 		__n -= (MD_NTXDESC - __x);				\
    361 		__x = 0;						\
    362 	}								\
    363 									\
    364 	/* Now sync whatever is left. */				\
    365 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    366 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    367 } while (/*CONSTCOND*/0)
    368 
    369 #define SCX_CDRXSYNC(sc, x, ops)					\
    370 do {									\
    371 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    372 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    373 } while (/*CONSTCOND*/0)
    374 
    375 static int scx_fdt_match(device_t, cfdata_t, void *);
    376 static void scx_fdt_attach(device_t, device_t, void *);
    377 static int scx_acpi_match(device_t, cfdata_t, void *);
    378 static void scx_acpi_attach(device_t, device_t, void *);
    379 
    380 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
    381     scx_fdt_match, scx_fdt_attach, NULL, NULL);
    382 
    383 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
    384     scx_acpi_match, scx_acpi_attach, NULL, NULL);
    385 
    386 static void scx_attach_i(struct scx_softc *);
    387 static void scx_reset(struct scx_softc *);
    388 static int scx_init(struct ifnet *);
    389 static void scx_start(struct ifnet *);
    390 static void scx_stop(struct ifnet *, int);
    391 static void scx_watchdog(struct ifnet *);
    392 static int scx_ioctl(struct ifnet *, u_long, void *);
    393 static void scx_set_rcvfilt(struct scx_softc *);
    394 static int scx_ifmedia_upd(struct ifnet *);
    395 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    396 static void mii_statchg(struct ifnet *);
    397 static void phy_tick(void *);
    398 static int mii_readreg(device_t, int, int, uint16_t *);
    399 static int mii_writereg(device_t, int, int, uint16_t);
    400 static int scx_intr(void *);
    401 static void txreap(struct scx_softc *);
    402 static void rxintr(struct scx_softc *);
    403 static int add_rxbuf(struct scx_softc *, int);
    404 
    405 static int spin_waitfor(struct scx_softc *, int, int);
    406 static int mac_read(struct scx_softc *, int);
    407 static void mac_write(struct scx_softc *, int, int);
    408 static void loaducode(struct scx_softc *);
    409 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
    410 static int get_mdioclk(uint32_t);
    411 
    412 #define CSR_READ(sc,off) \
    413 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
    414 #define CSR_WRITE(sc,off,val) \
    415 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
    416 #define EE_READ(sc,off) \
    417 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
    418 
    419 static int
    420 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
    421 {
    422 	static const char * compatible[] = {
    423 		"socionext,synquacer-netsec",
    424 		NULL
    425 	};
    426 	struct fdt_attach_args * const faa = aux;
    427 
    428 	return of_match_compatible(faa->faa_phandle, compatible);
    429 }
    430 
    431 static void
    432 scx_fdt_attach(device_t parent, device_t self, void *aux)
    433 {
    434 	struct scx_softc * const sc = device_private(self);
    435 	struct fdt_attach_args * const faa = aux;
    436 	const int phandle = faa->faa_phandle;
    437 	bus_space_tag_t bst = faa->faa_bst;
    438 	bus_space_handle_t bsh;
    439 	bus_space_handle_t eebsh;
    440 	bus_addr_t addr[2];
    441 	bus_size_t size[2];
    442 	char intrstr[128];
    443 	const char *phy_mode;
    444 
    445 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
    446 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
    447 		aprint_error(": unable to map device csr\n");
    448 		return;
    449 	}
    450 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
    451 		aprint_error(": failed to decode interrupt\n");
    452 		goto fail;
    453 	}
    454 	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
    455 		NOT_MP_SAFE, scx_intr, sc);
    456 	if (sc->sc_ih == NULL) {
    457 		aprint_error_dev(self, "couldn't establish interrupt\n");
    458 		goto fail;
    459 	}
    460 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
    461 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
    462 		aprint_error(": unable to map device eeprom\n");
    463 		goto fail;
    464 	}
    465 
    466 
    467 	aprint_naive("\n");
    468 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
    469 	aprint_normal_dev(self, "interrupt on %s\n", intrstr);
    470 
    471 	sc->sc_dev = self;
    472 	sc->sc_st = bst;
    473 	sc->sc_sh = bsh;
    474 	sc->sc_sz = size[0];
    475 	sc->sc_eesh = eebsh;
    476 	sc->sc_eesz = size[1];
    477 	sc->sc_dmat = faa->faa_dmat;
    478 	sc->sc_phandle = phandle;
    479 
    480 	phy_mode = fdtbus_get_string(phandle, "phy-mode");
    481 	if (phy_mode == NULL)
    482 		aprint_error(": missing 'phy-mode' property\n");
    483 	sc->sc_100mii = (phy_mode != NULL && strcmp(phy_mode, "rgmii") != 0);
    484 sc->sc_phy_id = 7; /* XXX */
    485 sc->sc_freq = 250 * 1000 * 1000; /* XXX */
    486 aprint_normal_dev(self,
    487 "phy mode %s, phy id %d, freq %ld\n", phy_mode, sc->sc_phy_id, sc->sc_freq);
    488 
    489 	scx_attach_i(sc);
    490 	return;
    491  fail:
    492 	if (sc->sc_eesz)
    493 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    494 	if (sc->sc_sz)
    495 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    496 	return;
    497 }
    498 
    499 static int
    500 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
    501 {
    502 	static const char * compatible[] = {
    503 		"SCX0001",
    504 		NULL
    505 	};
    506 	struct acpi_attach_args *aa = aux;
    507 
    508 	if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
    509 		return 0;
    510 	return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
    511 }
    512 
    513 static void
    514 scx_acpi_attach(device_t parent, device_t self, void *aux)
    515 {
    516 	struct scx_softc * const sc = device_private(self);
    517 	struct acpi_attach_args * const aa = aux;
    518 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
    519 	bus_space_tag_t bst = aa->aa_memt;
    520 	bus_space_handle_t bsh, eebsh;
    521 	struct acpi_resources res;
    522 	struct acpi_mem *mem;
    523 	struct acpi_irq *irq;
    524 	char *phy_mode;
    525 	ACPI_INTEGER acpi_phy, acpi_freq;
    526 	ACPI_STATUS rv;
    527 
    528 	rv = acpi_resource_parse(self, handle, "_CRS",
    529 	    &res, &acpi_resource_parse_ops_default);
    530 	if (ACPI_FAILURE(rv))
    531 		return;
    532 	mem = acpi_res_mem(&res, 0);
    533 	irq = acpi_res_irq(&res, 0);
    534 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
    535 		aprint_error(": incomplete csr resources\n");
    536 		return;
    537 	}
    538 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
    539 		aprint_error(": couldn't map registers\n");
    540 		return;
    541 	}
    542 	sc->sc_sz = mem->ar_length;
    543 	sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
    544 	    NOT_MP_SAFE, scx_intr, sc, device_xname(self));
    545 	if (sc->sc_ih == NULL) {
    546 		aprint_error_dev(self, "couldn't establish interrupt\n");
    547 		goto fail;
    548 	}
    549 	mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
    550 	if (mem == NULL || mem->ar_length == 0) {
    551 		aprint_error(": incomplete eeprom resources\n");
    552 		goto fail;
    553 	}
    554 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
    555 		aprint_error(": couldn't map registers\n");
    556 		goto fail;
    557 	}
    558 	sc->sc_eesz = mem->ar_length;
    559 
    560 	rv = acpi_dsd_string(handle, "phy-mode", &phy_mode);
    561 	if (ACPI_FAILURE(rv)) {
    562 		aprint_error(": missing 'phy-mode' property\n");
    563 		phy_mode = NULL;
    564 	}
    565 	rv = acpi_dsd_integer(handle, "phy-channel", &acpi_phy);
    566 	if (ACPI_FAILURE(rv))
    567 		acpi_phy = 31;
    568 	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
    569 			&acpi_freq);
    570 	if (ACPI_FAILURE(rv))
    571 		acpi_freq = 999;
    572 
    573 	aprint_naive("\n");
    574 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
    575 
    576 	sc->sc_dev = self;
    577 	sc->sc_st = bst;
    578 	sc->sc_sh = bsh;
    579 	sc->sc_eesh = eebsh;
    580 	sc->sc_dmat = aa->aa_dmat64;
    581 	sc->sc_dmat32 = aa->aa_dmat;	/* descriptor needs dma32 */
    582 
    583 aprint_normal_dev(self,
    584 "phy mode %s, phy id %d, freq %ld\n", phy_mode, (int)acpi_phy, acpi_freq);
    585 	sc->sc_100mii = (phy_mode && strcmp(phy_mode, "rgmii") != 0);
    586 	sc->sc_freq = acpi_freq;
    587 	sc->sc_phy_id = (int)acpi_phy;
    588 
    589 	scx_attach_i(sc);
    590 
    591 	acpi_resource_cleanup(&res);
    592 	return;
    593  fail:
    594 	if (sc->sc_eesz > 0)
    595 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    596 	if (sc->sc_sz > 0)
    597 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    598 	acpi_resource_cleanup(&res);
    599 	return;
    600 }
    601 
    602 static void
    603 scx_attach_i(struct scx_softc *sc)
    604 {
    605 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
    606 	struct mii_data * const mii = &sc->sc_mii;
    607 	struct ifmedia * const ifm = &mii->mii_media;
    608 	uint32_t hwver;
    609 	uint8_t enaddr[ETHER_ADDR_LEN];
    610 	bus_dma_segment_t seg;
    611 	uint32_t csr;
    612 	int i, nseg, error = 0;
    613 
    614 	hwver = CSR_READ(sc, HWVER1);
    615 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
    616 	enaddr[0] = csr >> 24;
    617 	enaddr[1] = csr >> 16;
    618 	enaddr[2] = csr >> 8;
    619 	enaddr[3] = csr;
    620 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
    621 	enaddr[4] = csr >> 24;
    622 	enaddr[5] = csr >> 16;
    623 	csr = mac_read(sc, GMACIMPL);
    624 
    625 	aprint_normal_dev(sc->sc_dev,
    626 	    "Socionext NetSec GbE hw %d.%d impl 0x%x\n",
    627 	    hwver >> 16, hwver & 0xffff, csr);
    628 	aprint_normal_dev(sc->sc_dev,
    629 	    "Ethernet address %s\n", ether_sprintf(enaddr));
    630 
    631 	sc->sc_phy_id = MII_PHY_ANY;
    632 	sc->sc_mdclk = get_mdioclk(sc->sc_freq); /* 5:2 clk control */
    633 sc->sc_mdclk = 5; /* XXX */
    634 aprint_normal_dev(sc->sc_dev, "using %d for mdclk\n", sc->sc_mdclk);
    635 sc->sc_mdclk <<= 2;
    636 
    637 	sc->sc_flowflags = 0;
    638 
    639 	if (sc->sc_ucodeloaded == 0)
    640 		loaducode(sc);
    641 
    642 	mii->mii_ifp = ifp;
    643 	mii->mii_readreg = mii_readreg;
    644 	mii->mii_writereg = mii_writereg;
    645 	mii->mii_statchg = mii_statchg;
    646 
    647 	sc->sc_ethercom.ec_mii = mii;
    648 	ifmedia_init(ifm, 0, scx_ifmedia_upd, scx_ifmedia_sts);
    649 	mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
    650 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    651 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    652 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    653 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    654 	} else
    655 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    656 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
    657 
    658 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    659 	ifp->if_softc = sc;
    660 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    661 	ifp->if_ioctl = scx_ioctl;
    662 	ifp->if_start = scx_start;
    663 	ifp->if_watchdog = scx_watchdog;
    664 	ifp->if_init = scx_init;
    665 	ifp->if_stop = scx_stop;
    666 	IFQ_SET_READY(&ifp->if_snd);
    667 
    668 	if_attach(ifp);
    669 	if_deferred_start_init(ifp, NULL);
    670 	ether_ifattach(ifp, enaddr);
    671 
    672 	callout_init(&sc->sc_tick_ch, 0);
    673 	callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
    674 
    675 	/*
    676 	 * Allocate the control data structures, and create and load the
    677 	 * DMA map for it.
    678 	 */
    679 	error = bus_dmamem_alloc(sc->sc_dmat32,
    680 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    681 	if (error != 0) {
    682 		aprint_error_dev(sc->sc_dev,
    683 		    "unable to allocate control data, error = %d\n", error);
    684 		goto fail_0;
    685 	}
    686 	error = bus_dmamem_map(sc->sc_dmat32, &seg, nseg,
    687 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
    688 	    BUS_DMA_COHERENT);
    689 	if (error != 0) {
    690 		aprint_error_dev(sc->sc_dev,
    691 		    "unable to map control data, error = %d\n", error);
    692 		goto fail_1;
    693 	}
    694 	error = bus_dmamap_create(sc->sc_dmat32,
    695 	    sizeof(struct control_data), 1,
    696 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
    697 	if (error != 0) {
    698 		aprint_error_dev(sc->sc_dev,
    699 		    "unable to create control data DMA map, "
    700 		    "error = %d\n", error);
    701 		goto fail_2;
    702 	}
    703 	error = bus_dmamap_load(sc->sc_dmat32, sc->sc_cddmamap,
    704 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
    705 	if (error != 0) {
    706 		aprint_error_dev(sc->sc_dev,
    707 		    "unable to load control data DMA map, error = %d\n",
    708 		    error);
    709 		goto fail_3;
    710 	}
    711 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    712 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
    713 		    MD_NTXSEGS, MCLBYTES, 0, 0,
    714 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    715 			aprint_error_dev(sc->sc_dev,
    716 			    "unable to create tx DMA map %d, error = %d\n",
    717 			    i, error);
    718 			goto fail_4;
    719 		}
    720 	}
    721 	for (i = 0; i < MD_NRXDESC; i++) {
    722 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
    723 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    724 			aprint_error_dev(sc->sc_dev,
    725 			    "unable to create rx DMA map %d, error = %d\n",
    726 			    i, error);
    727 			goto fail_5;
    728 		}
    729 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    730 	}
    731 	sc->sc_seg = seg;
    732 	sc->sc_nseg = nseg;
    733 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
    734 
    735 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    736 		pmf_class_network_register(sc->sc_dev, ifp);
    737 	else
    738 		aprint_error_dev(sc->sc_dev,
    739 			"couldn't establish power handler\n");
    740 
    741 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    742 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    743 
    744 	return;
    745 
    746   fail_5:
    747 	for (i = 0; i < MD_NRXDESC; i++) {
    748 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    749 			bus_dmamap_destroy(sc->sc_dmat,
    750 			    sc->sc_rxsoft[i].rxs_dmamap);
    751 	}
    752   fail_4:
    753 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    754 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    755 			bus_dmamap_destroy(sc->sc_dmat,
    756 			    sc->sc_txsoft[i].txs_dmamap);
    757 	}
    758 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    759   fail_3:
    760 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    761   fail_2:
    762 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    763 	    sizeof(struct control_data));
    764   fail_1:
    765 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    766   fail_0:
    767 	if (sc->sc_phandle)
    768 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
    769 	else
    770 		acpi_intr_disestablish(sc->sc_ih);
    771 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    772 	return;
    773 }
    774 
    775 static void
    776 scx_reset(struct scx_softc *sc)
    777 {
    778 
    779 	mac_write(sc, GMACBMR, BMR_RST); /* may take for a while */
    780 	(void)spin_waitfor(sc, GMACBMR, BMR_RST);
    781 
    782 	CSR_WRITE(sc, DESCENG_SRST, 1);
    783 	CSR_WRITE(sc, DESCENG_INIT, 1);
    784 	mac_write(sc, GMACBMR, _BMR);
    785 	mac_write(sc, GMACRDLAR, _RDLAR);
    786 	mac_write(sc, GMACTDLAR, _TDLAR);
    787 	mac_write(sc, GMACAFR, _AFR);
    788 	mac_write(sc, GMACEVCTL, 1);
    789 }
    790 
    791 static int
    792 scx_init(struct ifnet *ifp)
    793 {
    794 	struct scx_softc *sc = ifp->if_softc;
    795 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
    796 	uint32_t csr;
    797 	int i;
    798 
    799 	/* Cancel pending I/O. */
    800 	scx_stop(ifp, 0);
    801 
    802 	/* Reset the chip to a known state. */
    803 	scx_reset(sc);
    804 
    805 	/* set my address in perfect match slot 0 */
    806 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
    807 	mac_write(sc, GMACMAL0, csr);
    808 	csr = (ea[5] << 8) | ea[4];
    809 	mac_write(sc, GMACMAH0, csr | 1U<<31); /* always valid? */
    810 
    811 	/* accept multicast frame or run promisc mode */
    812 	scx_set_rcvfilt(sc);
    813 
    814 	(void)scx_ifmedia_upd(ifp);
    815 
    816 	/* build sane Tx */
    817 	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
    818 	sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
    819 	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
    820 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    821 	sc->sc_txfree = MD_NTXDESC;
    822 	sc->sc_txnext = 0;
    823 	for (i = 0; i < MD_TXQUEUELEN; i++)
    824 		sc->sc_txsoft[i].txs_mbuf = NULL;
    825 	sc->sc_txsfree = MD_TXQUEUELEN;
    826 	sc->sc_txsnext = 0;
    827 	sc->sc_txsdirty = 0;
    828 
    829 	/* load Rx descriptors with fresh mbuf */
    830 	for (i = 0; i < MD_NRXDESC; i++)
    831 		(void)add_rxbuf(sc, i);
    832 	sc->sc_rxptr = 0;
    833 
    834 	/* XXX 32 bit paddr XXX hand Tx/Rx rings to HW XXX */
    835 	mac_write(sc, GMACTDLAR, SCX_CDTXADDR(sc, 0));
    836 	mac_write(sc, GMACRDLAR, SCX_CDRXADDR(sc, 0));
    837 
    838 	/* kick to start GMAC engine */
    839 	CSR_WRITE(sc, RXINT_CLR, ~0);
    840 	CSR_WRITE(sc, TXINT_CLR, ~0);
    841 	csr = mac_read(sc, GMACOMR);
    842 	mac_write(sc, GMACOMR, csr | OMR_RXE | OMR_TXE);
    843 
    844 	ifp->if_flags |= IFF_RUNNING;
    845 	ifp->if_flags &= ~IFF_OACTIVE;
    846 
    847 	/* start one second timer */
    848 	callout_schedule(&sc->sc_tick_ch, hz);
    849 
    850 	return 0;
    851 }
    852 
    853 static void
    854 scx_stop(struct ifnet *ifp, int disable)
    855 {
    856 	struct scx_softc *sc = ifp->if_softc;
    857 
    858 	/* Stop the one second clock. */
    859 	callout_stop(&sc->sc_tick_ch);
    860 
    861 	/* Down the MII. */
    862 	mii_down(&sc->sc_mii);
    863 
    864 	/* Mark the interface down and cancel the watchdog timer. */
    865 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    866 	ifp->if_timer = 0;
    867 }
    868 
    869 static void
    870 scx_watchdog(struct ifnet *ifp)
    871 {
    872 	struct scx_softc *sc = ifp->if_softc;
    873 
    874 	/*
    875 	 * Since we're not interrupting every packet, sweep
    876 	 * up before we report an error.
    877 	 */
    878 	txreap(sc);
    879 
    880 	if (sc->sc_txfree != MD_NTXDESC) {
    881 		aprint_error_dev(sc->sc_dev,
    882 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
    883 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
    884 		if_statinc(ifp, if_oerrors);
    885 
    886 		/* Reset the interface. */
    887 		scx_init(ifp);
    888 	}
    889 
    890 	scx_start(ifp);
    891 }
    892 
    893 static int
    894 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    895 {
    896 	struct scx_softc *sc = ifp->if_softc;
    897 	struct ifreq *ifr = (struct ifreq *)data;
    898 	struct ifmedia *ifm;
    899 	int s, error;
    900 
    901 	s = splnet();
    902 
    903 	switch (cmd) {
    904 	case SIOCSIFMEDIA:
    905 		/* Flow control requires full-duplex mode. */
    906 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
    907 		    (ifr->ifr_media & IFM_FDX) == 0)
    908 			ifr->ifr_media &= ~IFM_ETH_FMASK;
    909 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
    910 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
    911 				/* We can do both TXPAUSE and RXPAUSE. */
    912 				ifr->ifr_media |=
    913 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
    914 			}
    915 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
    916 		}
    917 		ifm = &sc->sc_mii.mii_media;
    918 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
    919 		break;
    920 	default:
    921 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    922 			break;
    923 
    924 		error = 0;
    925 
    926 		if (cmd == SIOCSIFCAP)
    927 			error = (*ifp->if_init)(ifp);
    928 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    929 			;
    930 		else if (ifp->if_flags & IFF_RUNNING) {
    931 			/*
    932 			 * Multicast list has changed; set the hardware filter
    933 			 * accordingly.
    934 			 */
    935 			scx_set_rcvfilt(sc);
    936 		}
    937 		break;
    938 	}
    939 
    940 	splx(s);
    941 	return error;
    942 }
    943 
    944 static void
    945 scx_set_rcvfilt(struct scx_softc *sc)
    946 {
    947 	struct ethercom * const ec = &sc->sc_ethercom;
    948 	struct ifnet * const ifp = &ec->ec_if;
    949 	struct ether_multistep step;
    950 	struct ether_multi *enm;
    951 	uint32_t mchash[8]; 	/* 8x 32 = 256 bit */
    952 	uint32_t csr, crc;
    953 	int i;
    954 
    955 	csr = mac_read(sc, GMACAFR);
    956 	csr &= ~(AFR_PM | AFR_AM | AFR_MHTE);
    957 	mac_write(sc, GMACAFR, csr);
    958 
    959 	ETHER_LOCK(ec);
    960 	if (ifp->if_flags & IFF_PROMISC) {
    961 		ec->ec_flags |= ETHER_F_ALLMULTI;
    962 		ETHER_UNLOCK(ec);
    963 		goto update;
    964 	}
    965 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
    966 
    967 	/* clear 15 entry supplimental perfect match filter */
    968 	for (i = 1; i < 16; i++)
    969 		 mac_write(sc, GMACMAH(i), 0);
    970 	/* build 256 bit multicast hash filter */
    971 	memset(mchash, 0, sizeof(mchash));
    972 	crc = 0;
    973 
    974 	ETHER_FIRST_MULTI(step, ec, enm);
    975 	i = 1; /* slot 0 is occupied */
    976 	while (enm != NULL) {
    977 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    978 			/*
    979 			 * We must listen to a range of multicast addresses.
    980 			 * For now, just accept all multicasts, rather than
    981 			 * trying to set only those filter bits needed to match
    982 			 * the range.  (At this time, the only use of address
    983 			 * ranges is for IP multicast routing, for which the
    984 			 * range is big enough to require all bits set.)
    985 			 */
    986 			ec->ec_flags |= ETHER_F_ALLMULTI;
    987 			ETHER_UNLOCK(ec);
    988 			goto update;
    989 		}
    990 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
    991 		if (i < 16) {
    992 			/* use 15 entry perfect match filter */
    993 			uint32_t addr;
    994 			uint8_t *ep = enm->enm_addrlo;
    995 			addr = (ep[3] << 24) | (ep[2] << 16)
    996 			     | (ep[1] <<  8) |  ep[0];
    997 			mac_write(sc, GMACMAL(i), addr);
    998 			addr = (ep[5] << 8) | ep[4];
    999 			mac_write(sc, GMACMAH(i), addr | 1U<<31);
   1000 		} else {
   1001 			/* use hash table when too many */
   1002 			/* bit_reserve_32(~crc) !? */
   1003 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1004 			/* 3(31:29) 5(28:24) bit sampling */
   1005 			mchash[crc >> 29] |= 1 << ((crc >> 24) & 0x1f);
   1006 		}
   1007 		ETHER_NEXT_MULTI(step, enm);
   1008 		i++;
   1009 	}
   1010 	ETHER_UNLOCK(ec);
   1011 
   1012 	if (crc)
   1013 		csr |= AFR_MHTE;
   1014 	for (i = 0; i < __arraycount(mchash); i++)
   1015 		mac_write(sc, GMACMHT(i), mchash[i]);
   1016 	mac_write(sc, GMACAFR, csr);
   1017 	return;
   1018 
   1019  update:
   1020 	/* With PM or AM, MHTE/MHT0-7 are never consulted. really? */
   1021 	if (ifp->if_flags & IFF_PROMISC)
   1022 		csr |= AFR_PM;	/* run promisc. mode */
   1023 	else
   1024 		csr |= AFR_AM;	/* accept all multicast */
   1025 	mac_write(sc, GMACAFR, csr);
   1026 	return;
   1027 }
   1028 
   1029 static int
   1030 scx_ifmedia_upd(struct ifnet *ifp)
   1031 {
   1032 	struct scx_softc *sc = ifp->if_softc;
   1033 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
   1034 
   1035 	if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
   1036 		; /* restart AN */
   1037 		; /* enable AN */
   1038 		; /* advertise flow control pause */
   1039 		; /* adv. 100FDX,100HDX,10FDX,10HDX */
   1040 	} else {
   1041 #if 1 /* XXX not sure to belong here XXX */
   1042 		uint32_t mcr = mac_read(sc, GMACMCR);
   1043 		if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_1000_T)
   1044 			mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
   1045 		else {
   1046 			if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX
   1047 			    && sc->sc_100mii)
   1048 				mcr |= MCR_SPD100;
   1049 			mcr |= MCR_USEMII;
   1050 		}
   1051 		if (ifm->ifm_cur->ifm_media & IFM_FDX)
   1052 			mcr |= MCR_USEFDX;
   1053 		mcr |= MCR_CST | MCR_JE;
   1054 		if (sc->sc_100mii == 0)
   1055 			mcr |= MCR_IBN;
   1056 		mac_write(sc, GMACMCR, mcr);
   1057 #endif
   1058 	}
   1059 	return 0;
   1060 }
   1061 
   1062 static void
   1063 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1064 {
   1065 	struct scx_softc *sc = ifp->if_softc;
   1066 	struct mii_data *mii = &sc->sc_mii;
   1067 
   1068 	mii_pollstat(mii);
   1069 	ifmr->ifm_status = mii->mii_media_status;
   1070 	ifmr->ifm_active = sc->sc_flowflags |
   1071 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
   1072 }
   1073 
   1074 void
   1075 mii_statchg(struct ifnet *ifp)
   1076 {
   1077 	struct scx_softc *sc = ifp->if_softc;
   1078 	struct mii_data *mii = &sc->sc_mii;
   1079 	uint32_t fcr;
   1080 #if 1
   1081 	/* decode MIISR register value */
   1082 	uint32_t miisr = mac_read(sc, GMACMIISR);
   1083 	int spd = (miisr >> 1) & 03;
   1084 	printf("MII link status (0x%x) %s",
   1085 	    miisr, (miisr & 8) ? "up" : "down");
   1086 	if (miisr & 8) {
   1087 		printf(" spd%d", (spd == 2) ? 1000 : (spd == 1) ? 100 : 10);
   1088 		if (miisr & 1)
   1089 			printf(",full-duplex");
   1090 	}
   1091 	printf("\n");
   1092 #endif
   1093 	/* Get flow control negotiation result. */
   1094 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1095 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
   1096 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1097 
   1098 	/* Adjust PAUSE flow control. */
   1099 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
   1100 	if (mii->mii_media_active & IFM_FDX) {
   1101 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   1102 			fcr |= FCR_TFE;
   1103 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   1104 			fcr |= FCR_RFE;
   1105 	}
   1106 	mac_write(sc, GMACFCR, fcr);
   1107 
   1108 printf("%ctxfe, %crxfe\n",
   1109      (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
   1110 }
   1111 
   1112 static void
   1113 phy_tick(void *arg)
   1114 {
   1115 	struct scx_softc *sc = arg;
   1116 	struct mii_data *mii = &sc->sc_mii;
   1117 	int s;
   1118 
   1119 	s = splnet();
   1120 	mii_tick(mii);
   1121 	splx(s);
   1122 
   1123 	callout_schedule(&sc->sc_tick_ch, hz);
   1124 }
   1125 
   1126 static int
   1127 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1128 {
   1129 	struct scx_softc *sc = device_private(self);
   1130 	uint32_t miia;
   1131 	int error;
   1132 
   1133 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1134 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
   1135 	error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
   1136 	if (error)
   1137 		return error;
   1138 	*val = mac_read(sc, GMACGDR);
   1139 	return 0;
   1140 }
   1141 
   1142 static int
   1143 mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1144 {
   1145 	struct scx_softc *sc = device_private(self);
   1146 	uint32_t miia;
   1147 	uint16_t dummy;
   1148 	int error;
   1149 
   1150 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1151 	mac_write(sc, GMACGDR, val);
   1152 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
   1153 	error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
   1154 	if (error)
   1155 		return error;
   1156 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
   1157 	return 0;
   1158 }
   1159 
   1160 static void
   1161 scx_start(struct ifnet *ifp)
   1162 {
   1163 	struct scx_softc *sc = ifp->if_softc;
   1164 	struct mbuf *m0, *m;
   1165 	struct scx_txsoft *txs;
   1166 	bus_dmamap_t dmamap;
   1167 	int error, nexttx, lasttx, ofree, seg;
   1168 	uint32_t tdes0;
   1169 
   1170 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1171 		return;
   1172 
   1173 	/* Remember the previous number of free descriptors. */
   1174 	ofree = sc->sc_txfree;
   1175 
   1176 	/*
   1177 	 * Loop through the send queue, setting up transmit descriptors
   1178 	 * until we drain the queue, or use up all available transmit
   1179 	 * descriptors.
   1180 	 */
   1181 	for (;;) {
   1182 		IFQ_POLL(&ifp->if_snd, m0);
   1183 		if (m0 == NULL)
   1184 			break;
   1185 
   1186 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
   1187 			txreap(sc);
   1188 			if (sc->sc_txsfree == 0)
   1189 				break;
   1190 		}
   1191 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1192 		dmamap = txs->txs_dmamap;
   1193 
   1194 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1195 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1196 		if (error) {
   1197 			if (error == EFBIG) {
   1198 				aprint_error_dev(sc->sc_dev,
   1199 				    "Tx packet consumes too many "
   1200 				    "DMA segments, dropping...\n");
   1201 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
   1202 				    m_freem(m0);
   1203 				    continue;
   1204 			}
   1205 			/* Short on resources, just stop for now. */
   1206 			break;
   1207 		}
   1208 
   1209 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   1210 			/*
   1211 			 * Not enough free descriptors to transmit this
   1212 			 * packet.  We haven't committed anything yet,
   1213 			 * so just unload the DMA map, put the packet
   1214 			 * back on the queue, and punt.	 Notify the upper
   1215 			 * layer that there are not more slots left.
   1216 			 */
   1217 			ifp->if_flags |= IFF_OACTIVE;
   1218 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1219 			break;
   1220 		}
   1221 
   1222 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1223 
   1224 		/*
   1225 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1226 		 */
   1227 
   1228 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1229 		    BUS_DMASYNC_PREWRITE);
   1230 
   1231 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
   1232 		lasttx = -1;
   1233 		for (nexttx = sc->sc_txnext, seg = 0;
   1234 		     seg < dmamap->dm_nsegs;
   1235 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
   1236 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
   1237 			bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
   1238 			/*
   1239 			 * If this is the first descriptor we're
   1240 			 * enqueueing, don't set the OWN bit just
   1241 			 * yet.	 That could cause a race condition.
   1242 			 * We'll do it below.
   1243 			 */
   1244 			tdes->t3 = dmamap->dm_segs[seg].ds_len;
   1245 			tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
   1246 			tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
   1247 			tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
   1248 					(15 << T0_TRID) | T0_PT |
   1249 					sc->sc_t0coso | T0_TRS;
   1250 			tdes0 = T0_OWN; /* 2nd and other segments */
   1251 			lasttx = nexttx;
   1252 		}
   1253 		/*
   1254 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
   1255 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
   1256 		 * time and NFS stops to proceed until scx_watchdog()
   1257 		 * calls txreap() to reclaim the unack'ed mbuf.
   1258 		 * It's painful to traverse every mbuf chain to determine
   1259 		 * whether someone is waiting for Tx completion.
   1260 		 */
   1261 		m = m0;
   1262 		do {
   1263 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
   1264 				sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
   1265 				break;
   1266 			}
   1267 		} while ((m = m->m_next) != NULL);
   1268 
   1269 		/* Write deferred 1st segment T0_OWN at the final stage */
   1270 		sc->sc_txdescs[lasttx].t0 |= T0_LS;
   1271 		sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
   1272 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1273 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1274 
   1275 		/* Tell DMA start transmit */
   1276 		mac_write(sc, GMACTDS, 1);
   1277 
   1278 		txs->txs_mbuf = m0;
   1279 		txs->txs_firstdesc = sc->sc_txnext;
   1280 		txs->txs_lastdesc = lasttx;
   1281 		txs->txs_ndesc = dmamap->dm_nsegs;
   1282 
   1283 		sc->sc_txfree -= txs->txs_ndesc;
   1284 		sc->sc_txnext = nexttx;
   1285 		sc->sc_txsfree--;
   1286 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
   1287 		/*
   1288 		 * Pass the packet to any BPF listeners.
   1289 		 */
   1290 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1291 	}
   1292 
   1293 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1294 		/* No more slots left; notify upper layer. */
   1295 		ifp->if_flags |= IFF_OACTIVE;
   1296 	}
   1297 	if (sc->sc_txfree != ofree) {
   1298 		/* Set a watchdog timer in case the chip flakes out. */
   1299 		ifp->if_timer = 5;
   1300 	}
   1301 }
   1302 
   1303 static int
   1304 scx_intr(void *arg)
   1305 {
   1306 	struct scx_softc *sc = arg;
   1307 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1308 
   1309 	(void)ifp;
   1310 	/* XXX decode interrupt cause to pick isr() XXX */
   1311 	rxintr(sc);
   1312 	txreap(sc);
   1313 	return 1;
   1314 }
   1315 
   1316 static void
   1317 txreap(struct scx_softc *sc)
   1318 {
   1319 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1320 	struct scx_txsoft *txs;
   1321 	uint32_t txstat;
   1322 	int i;
   1323 
   1324 	ifp->if_flags &= ~IFF_OACTIVE;
   1325 
   1326 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
   1327 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
   1328 		txs = &sc->sc_txsoft[i];
   1329 
   1330 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1331 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1332 
   1333 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1334 		if (txstat & T0_OWN) /* desc is still in use */
   1335 			break;
   1336 
   1337 		/* There is no way to tell transmission status per frame */
   1338 
   1339 		if_statinc(ifp, if_opackets);
   1340 
   1341 		sc->sc_txfree += txs->txs_ndesc;
   1342 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1343 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1344 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1345 		m_freem(txs->txs_mbuf);
   1346 		txs->txs_mbuf = NULL;
   1347 	}
   1348 	sc->sc_txsdirty = i;
   1349 	if (sc->sc_txsfree == MD_TXQUEUELEN)
   1350 		ifp->if_timer = 0;
   1351 }
   1352 
   1353 static void
   1354 rxintr(struct scx_softc *sc)
   1355 {
   1356 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1357 	struct scx_rxsoft *rxs;
   1358 	struct mbuf *m;
   1359 	uint32_t rxstat;
   1360 	int i, len;
   1361 
   1362 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
   1363 		rxs = &sc->sc_rxsoft[i];
   1364 
   1365 		SCX_CDRXSYNC(sc, i,
   1366 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1367 
   1368 		rxstat = sc->sc_rxdescs[i].r0;
   1369 		if (rxstat & R0_OWN) /* desc is left empty */
   1370 			break;
   1371 
   1372 		/* R0_FS | R0_LS must have been marked for this desc */
   1373 
   1374 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1375 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1376 
   1377 		len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
   1378 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
   1379 		m = rxs->rxs_mbuf;
   1380 
   1381 		if (add_rxbuf(sc, i) != 0) {
   1382 			if_statinc(ifp, if_ierrors);
   1383 			SCX_INIT_RXDESC(sc, i);
   1384 			bus_dmamap_sync(sc->sc_dmat,
   1385 			    rxs->rxs_dmamap, 0,
   1386 			    rxs->rxs_dmamap->dm_mapsize,
   1387 			    BUS_DMASYNC_PREREAD);
   1388 			continue;
   1389 		}
   1390 
   1391 		m_set_rcvif(m, ifp);
   1392 		m->m_pkthdr.len = m->m_len = len;
   1393 
   1394 		if (rxstat & R0_CSUM) {
   1395 			uint32_t csum = M_CSUM_IPv4;
   1396 			if (rxstat & R0_CERR)
   1397 				csum |= M_CSUM_IPv4_BAD;
   1398 			m->m_pkthdr.csum_flags |= csum;
   1399 		}
   1400 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1401 	}
   1402 	sc->sc_rxptr = i;
   1403 }
   1404 
   1405 static int
   1406 add_rxbuf(struct scx_softc *sc, int i)
   1407 {
   1408 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
   1409 	struct mbuf *m;
   1410 	int error;
   1411 
   1412 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1413 	if (m == NULL)
   1414 		return ENOBUFS;
   1415 
   1416 	MCLGET(m, M_DONTWAIT);
   1417 	if ((m->m_flags & M_EXT) == 0) {
   1418 		m_freem(m);
   1419 		return ENOBUFS;
   1420 	}
   1421 
   1422 	if (rxs->rxs_mbuf != NULL)
   1423 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1424 
   1425 	rxs->rxs_mbuf = m;
   1426 
   1427 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1428 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1429 	if (error) {
   1430 		aprint_error_dev(sc->sc_dev,
   1431 		    "can't load rx DMA map %d, error = %d\n", i, error);
   1432 		panic("add_rxbuf");
   1433 	}
   1434 
   1435 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1436 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1437 	SCX_INIT_RXDESC(sc, i);
   1438 
   1439 	return 0;
   1440 }
   1441 
   1442 static int
   1443 spin_waitfor(struct scx_softc *sc, int reg, int exist)
   1444 {
   1445 	int val, loop;
   1446 
   1447 	val = CSR_READ(sc, reg);
   1448 	if ((val & exist) == 0)
   1449 		return 0;
   1450 	loop = 3000;
   1451 	do {
   1452 		DELAY(10);
   1453 		val = CSR_READ(sc, reg);
   1454 	} while (--loop > 0 && (val & exist));
   1455 	return (loop > 0) ? 0 : ETIMEDOUT;
   1456 }
   1457 
   1458 /* GMAC register needs to use indirect rd/wr via memory mapped registers. */
   1459 
   1460 static int
   1461 mac_read(struct scx_softc *sc, int reg)
   1462 {
   1463 
   1464 	CSR_WRITE(sc, MACCMD, reg);
   1465 	(void)spin_waitfor(sc, MACCMD, CMD_BUSY);
   1466 	return CSR_READ(sc, MACDATA);
   1467 }
   1468 
   1469 static void
   1470 mac_write(struct scx_softc *sc, int reg, int val)
   1471 {
   1472 
   1473 	CSR_WRITE(sc, MACDATA, val);
   1474 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
   1475 	(void)spin_waitfor(sc, MACCMD, CMD_BUSY);
   1476 }
   1477 
   1478 /*
   1479  * 3 independent uengines exist * to process host2media, media2host and
   1480  * packet data flows.
   1481  */
   1482 static void
   1483 loaducode(struct scx_softc *sc)
   1484 {
   1485 	uint32_t up, lo, sz;
   1486 	uint64_t addr;
   1487 
   1488 	sc->sc_ucodeloaded = 1;
   1489 
   1490 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
   1491 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
   1492 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
   1493 	sz *= 4;
   1494 	addr = ((uint64_t)up << 32) | lo;
   1495 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
   1496 	injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
   1497 
   1498 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
   1499 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
   1500 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
   1501 	sz *= 4;
   1502 	addr = ((uint64_t)up << 32) | lo;
   1503 	injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
   1504 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
   1505 
   1506 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
   1507 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
   1508 	sz *= 4;
   1509 	injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
   1510 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
   1511 }
   1512 
   1513 static void
   1514 injectucode(struct scx_softc *sc, int port,
   1515 	bus_addr_t addr, bus_size_t size)
   1516 {
   1517 	bus_space_handle_t bsh;
   1518 	bus_size_t off;
   1519 	uint32_t ucode;
   1520 
   1521 	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
   1522 		aprint_error_dev(sc->sc_dev,
   1523 		    "eeprom map failure for ucode port 0x%x\n", port);
   1524 		return;
   1525 	}
   1526 	for (off = 0; off < size; off += 4) {
   1527 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
   1528 		CSR_WRITE(sc, port, ucode);
   1529 	}
   1530 	bus_space_unmap(sc->sc_st, bsh, size);
   1531 }
   1532 
   1533 /* bit selection to determine MDIO speed */
   1534 
   1535 static int
   1536 get_mdioclk(uint32_t freq)
   1537 {
   1538 
   1539 	const struct {
   1540 		uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
   1541 	} mdioclk[] = {
   1542 		{ 35,	2 },	/* 25-35 MHz */
   1543 		{ 60,	3 },	/* 35-60 MHz */
   1544 		{ 100,	0 },	/* 60-100 MHz */
   1545 		{ 150,	1 },	/* 100-150 MHz */
   1546 		{ 250,	4 },	/* 150-250 MHz */
   1547 		{ 300,	5 },	/* 250-300 MHz */
   1548 	};
   1549 	int i;
   1550 
   1551 	freq /= 1000 * 1000;
   1552 	/* convert MDIO clk to a divisor value */
   1553 	if (freq < mdioclk[0].freq)
   1554 		return mdioclk[0].bit;
   1555 	for (i = 1; i < __arraycount(mdioclk); i++) {
   1556 		if (freq < mdioclk[i].freq)
   1557 			return mdioclk[i-1].bit;
   1558 	}
   1559 	return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
   1560 }
   1561