Home | History | Annotate | Line # | Download | only in sociox
if_scx.c revision 1.15
      1 /*	$NetBSD: if_scx.c,v 1.15 2020/03/26 01:05:26 nisimura Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #define NOT_MP_SAFE	0
     33 
     34 /*
     35  * Socionext SC2A11 SynQuacer NetSec GbE driver
     36  *
     37  *   (possibly incorrect notes to be removed eventually)
     38  * - 32 byte descriptor for 64 bit paddr design.
     39  * - multiple rings seems available. There are special descriptor fields
     40  *   to designify ring number from which to arrive or to which go.
     41  * - memory mapped EEPROM to hold MAC address. The rest of the area is
     42  *   occupied by a set of ucode for two DMA engines and one packet engine.
     43  * - The size of frame address filter is unknown. Might be 16 or even 128.
     44  * - The first slot is my own station address. Always enabled to perform
     45  *   to identify oneself.
     46  * - 1~16 are for supplimental MAC addresses. Independently enabled for
     47  *   use. Good to catch multicast. Byte-wise selective match available.
     48  *   Use the mask to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
     49  * - 16~128 might be exact match without byte-mask.
     50  * - The size of multicast hash filter store is unknown. Might be 256 bit.
     51  * - Socionext/Linaro "NetSec" code makes many cut shorts. Some constants
     52  *   are left unexplained. The values should be handled via external
     53  *   controls like FDT descriptions. Fortunately, Intel/Altera CycloneV PDFs
     54  *   describe every detail of "such the instance of" DW EMAC IP and
     55  *   most of them are likely applicable to SC2A11 GbE.
     56  * - DW EMAC implmentation (0x20) is 0x10.0x36
     57  */
     58 
     59 #include <sys/cdefs.h>
     60 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.15 2020/03/26 01:05:26 nisimura Exp $");
     61 
     62 #include <sys/param.h>
     63 #include <sys/bus.h>
     64 #include <sys/intr.h>
     65 #include <sys/device.h>
     66 #include <sys/callout.h>
     67 #include <sys/mbuf.h>
     68 #include <sys/malloc.h>
     69 #include <sys/errno.h>
     70 #include <sys/rndsource.h>
     71 #include <sys/kernel.h>
     72 #include <sys/systm.h>
     73 
     74 #include <net/if.h>
     75 #include <net/if_media.h>
     76 #include <net/if_dl.h>
     77 #include <net/if_ether.h>
     78 #include <dev/mii/mii.h>
     79 #include <dev/mii/miivar.h>
     80 #include <net/bpf.h>
     81 
     82 #include <dev/fdt/fdtvar.h>
     83 #include <dev/acpi/acpireg.h>
     84 #include <dev/acpi/acpivar.h>
     85 #include <dev/acpi/acpi_intr.h>
     86 
     87 /* SC2A11 register block */
     88 #define SWRESET		0x104
     89 #define COMINIT		0x120
     90 #define INTRST		0x200
     91 #define  IRQ_RX		(1U<<1)
     92 #define  IRQ_TX		(1U<<0)
     93 #define INTREN		0x204
     94 #define INTR_SET	0x234
     95 #define INTR_CLR	0x238
     96 #define TXINTST		0x400
     97 #define TXINTEN		0x404
     98 #define TXINT_SET	0x428
     99 #define TXINT_CLR	0x42c
    100 #define  TXI_NTOWNR	(1U<<17)
    101 #define  TXI_TR_ERR	(1U<<16)
    102 #define  TXI_TXDONE	(1U<<15)
    103 #define  TXI_TMREXP	(1U<<14)
    104 #define RXINTST		0x440
    105 #define RXINTEN		0x444
    106 #define RXINT_SET	0x468
    107 #define RXINT_CLR	0x46c
    108 #define  RXI_RC_ERR	(1U<<16)
    109 #define  RXI_PKTCNT	(1U<<15)
    110 #define  RXI_TMREXP	(1U<<14)
    111 #define TXTIMER		0x41c
    112 #define RXTIMER		0x45c
    113 #define TXCOUNT		0x410
    114 #define RXCOUNT		0x454
    115 #define H2MENG		0x210		/* DMAC host2media ucode port */
    116 #define M2HENG		0x21c		/* DMAC media2host ucode port */
    117 #define PKTENG		0x0d0		/* packet engine ucode port */
    118 #define HWVER0		0x22c
    119 #define HWVER1		0x230
    120 
    121 #define MACSTAT		0x1024		/* gmac status */
    122 #define MACDATA		0x11c0		/* gmac rd/wr data */
    123 #define MACCMD		0x11c4		/* gmac operation */
    124 #define  CMD_IOWR	(1U<<28)	/* write op */
    125 #define  CMD_BUSY	(1U<<31)	/* busy bit */
    126 #define DESCENG_INIT	0x11fc
    127 #define DESCENG_SRST	0x1204
    128 
    129 /* GMAC register block. use mac_write()/mac_read() to handle */
    130 #define GMACMCR		0x0000		/* MAC configuration */
    131 #define  MCR_IBN	(1U<<30)	/* */
    132 #define  MCR_CST	(1U<<25)	/* strip CRC */
    133 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
    134 #define  MCR_JE		(1U<<20)	/* ignore oversized >9018 condition */
    135 #define  MCR_USEMII	(1U<<15)	/* 1: RMII/MII, 0: RGMII */
    136 #define  MCR_SPD100	(1U<<14)	/* force speed 100 */
    137 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
    138 #define  MCR_IPCKEN	(1U<<10)	/* handle checksum */
    139 #define  MCR_ACS	(1U<<7)		/* auto pad strip CRC */
    140 #define  MCR_TXE	(1U<<3)		/* start Tx DMA engine */
    141 #define  MCR_RXE	(1U<<2)		/* start Rx DMA engine */
    142 #define  _MCR_FDX	0x0000280c	/* XXX TBD */
    143 #define  _MCR_HDX	0x0001a00c	/* XXX TBD */
    144 #define GMACAFR		0x0004		/* frame DA/SA address filter */
    145 #define  AFR_RA		(1U<<31)	/* receive block all on */
    146 #define  AFR_HPF	(1U<<10)	/* activate hash or perfect filter */
    147 #define  AFR_SAF	(1U<<9)		/* source address filter */
    148 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
    149 #define  AFR_PCF	(3U<<6)		/* */
    150 #define  AFR_RB		(1U<<5)		/* reject broadcast frame */
    151 #define  AFR_AM		(1U<<4)		/* accept all multicast frame */
    152 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
    153 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
    154 #define  AFR_UHTE	(1U<<1)		/* use additional MAC addresses */
    155 #define  AFR_PM		(1U<<0)		/* run promisc mode */
    156 #define  _AFR		0x80000001	/* XXX TBD */
    157 #define GMACMHTH	0x0008		/* XXX multicast hash table 63:32 */
    158 #define GMACMHTL	0x000c		/* XXX multicast hash table 31:0 */
    159 #define GMACGAR		0x0010		/* MDIO operation */
    160 #define  GAR_PHY	(11)		/* mii phy 15:11 */
    161 #define  GAR_REG	(6)		/* mii reg 10:6 */
    162 #define  GAR_CTL	(2)		/* control 5:2 */
    163 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
    164 #define  GAR_BUSY	(1U)		/* busy bit */
    165 #define GMACGDR		0x0014		/* MDIO rd/wr data */
    166 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
    167 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
    168 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
    169 #define GMACVTAG	0x001c		/* VLAN tag control */
    170 #define GMACIMPL	0x0020		/* implementation number XX.YY */
    171 #define GMACMAH0	0x0040		/* MAC address 0 47:32 */
    172 #define GMACMAL0	0x0044		/* MAC address 0 31:0 */
    173 #define GMACMAH(i) 	((i)*8+0x40)	/* supplimental MAC addr 1 - 15 */
    174 #define GMACMAL(i) 	((i)*8+0x44)
    175 #define GMACMIISR	0x00d8		/* resolved xMII link status */
    176 					/*  3   link up detected
    177 					 *  2:1 resovled speed
    178 					 *      0 2.5Mhz (10Mbps)
    179 					 *	1 25Mhz  (100Mbps)
    180 					 *	2 125Mhz (1000Mbps)
    181 					 *  1   full duplex detected */
    182 
    183 #define GMACMHT0	0x0500		/* multicast hash table 0 - 7 */
    184 #define GMACMHT(i)	((i)*4+0x500)
    185 #define GMACVHT		0x0588		/* VLAN tag hash */
    186 #define GMACAMAH(i)	((i)*8+0x800)	/* supplimental MAC addr 16-127 */
    187 #define GMACAMAL(i)	((i)*8+0x804)
    188 #define GMACEVCNT(i)	((i)*4+0x114)	/* event counter 0x114~284 */
    189 #define GMACEVCTL	0x0100		/* clear event counter registers */
    190 
    191 #define GMACBMR		0x1000		/* DMA bus mode control
    192 					 * 24    4PBL
    193 					 * 22:17 RPBL
    194 					 * 16    fix burst
    195 					 * 15:14 priority between Rx and Tx
    196 					 *  3    rxtx ratio 41
    197 					 *  2    rxtx ratio 31
    198 					 *  1    rxtx ratio 21
    199 					 *  0    rxtx ratio 11
    200 					 * 13:8  PBL possible DMA burst len
    201 					 *  0    reset op. self clear
    202 					 */
    203 #define  _BMR		0x00412080	/* XXX TBD */
    204 #define  _BMR0		0x00020181	/* XXX TBD */
    205 #define  BMR_RST	(1U<<0)		/* reset op. self clear when done */
    206 #define GMACTDS		0x1004		/* write any to resume tdes */
    207 #define GMACRDS		0x1008		/* write any to resume rdes */
    208 #define GMACRDLAR	0x100c		/* rdes base address 32bit paddr */
    209 #define  _RDLAR		0x18000		/* XXX TBD system SRAM with CC ? */
    210 #define GMACTDLAR	0x1010		/* tdes base address 32bit paddr */
    211 #define  _TDLAR		0x1c000		/* XXX TBD system SRAM with CC ? */
    212 #define GMACOMR		0x1018		/* DMA operation */
    213 #define  OMR_TXE	(1U<<13)	/* start Tx DMA engine, 0 to stop */
    214 #define  OMR_RXE	(1U<<1)		/* start Rx DMA engine, 0 to stop */
    215 
    216 /* descriptor format definition */
    217 struct tdes {
    218 	uint32_t t0, t1, t2, t3;
    219 };
    220 
    221 struct rdes {
    222 	uint32_t r0, r1, r2, r3;
    223 };
    224 
    225 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    226 #define T0_EOD		(1U<<30)	/* end of descriptor array */
    227 #define T0_DRID		(24)		/* 29:24 D-RID */
    228 #define T0_PT		(1U<<21)	/* 23:21 PT */
    229 #define T0_TRID		(16)		/* 20:16 T-RID */
    230 #define T0_FS		(1U<<9)		/* first segment of frame */
    231 #define T0_LS		(1U<<8)		/* last segment of frame */
    232 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
    233 #define T0_SGOL		(1U<<6)		/* enable TCP segment offload */
    234 #define T0_TRS		(1U<<4)		/* 5:4 TRS */
    235 #define T0_IOC		(0)		/* XXX TBD interrupt when completed */
    236 /* T1 segment address 63:32 */
    237 /* T2 segment address 31:0 */
    238 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
    239 #define R0_OWN		(1U<<31)	/* desc is empty */
    240 #define R0_EOD		(1U<<30)	/* end of descriptor array */
    241 #define R0_SRID		(24)		/* 29:24 S-RID */
    242 #define R0_FR		(1U<<23)	/* FR */
    243 #define R0_ER		(1U<<21)	/* Rx error indication */
    244 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
    245 #define R0_TDRID	(14)		/* 15:14 TD-RID */
    246 #define R0_FS		(1U<<9)		/* first segment of frame */
    247 #define R0_LS		(1U<<8)		/* last segment of frame */
    248 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status */
    249 #define R0_CERR		(2U<<6)		/* 0 (undone), 1 (found ok), 2 (bad) */
    250 /* R1 frame address 63:32 */
    251 /* R2 frame address 31:0 */
    252 /* R3 31:16 received frame length, 15:0 buffer length to receive */
    253 
    254 #define MD_NTXSEGS		16		/* fixed */
    255 #define MD_TXQUEUELEN		16		/* tunable */
    256 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
    257 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
    258 #define MD_NTXDESC		(MD_TXQUEUELEN * MD_NTXSEGS)
    259 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
    260 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
    261 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
    262 
    263 #define MD_NRXDESC		64		/* tunable */
    264 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
    265 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
    266 
    267 #define SCX_INIT_RXDESC(sc, x)						\
    268 do {									\
    269 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    270 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    271 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    272 	bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
    273 	__m->m_data = __m->m_ext.ext_buf;				\
    274 	__rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
    275 	__rxd->r2 = htole32(BUS_ADDR_LO32(__paddr));			\
    276 	__rxd->r1 = htole32(BUS_ADDR_HI32(__paddr));			\
    277 	__rxd->r0 = R0_OWN | R0_FS | R0_LS;				\
    278 	if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD;			\
    279 } while (/*CONSTCOND*/0)
    280 
    281 struct control_data {
    282 	struct tdes cd_txdescs[MD_NTXDESC];
    283 	struct rdes cd_rxdescs[MD_NRXDESC];
    284 };
    285 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
    286 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
    287 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
    288 
    289 struct scx_txsoft {
    290 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    291 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    292 	int txs_firstdesc;		/* first descriptor in packet */
    293 	int txs_lastdesc;		/* last descriptor in packet */
    294 	int txs_ndesc;			/* # of descriptors used */
    295 };
    296 
    297 struct scx_rxsoft {
    298 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    299 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    300 };
    301 
    302 struct scx_softc {
    303 	device_t sc_dev;		/* generic device information */
    304 	bus_space_tag_t sc_st;		/* bus space tag */
    305 	bus_space_handle_t sc_sh;	/* bus space handle */
    306 	bus_size_t sc_sz;		/* csr map size */
    307 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
    308 	bus_size_t sc_eesz;		/* eeprom map size */
    309 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    310 	bus_dma_tag_t sc_dmat32;
    311 	struct ethercom sc_ethercom;	/* Ethernet common data */
    312 	struct mii_data sc_mii;		/* MII */
    313 	callout_t sc_tick_ch;		/* PHY monitor callout */
    314 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
    315 	int sc_nseg;			/* descriptor store nseg */
    316 	void *sc_ih;			/* interrupt cookie */
    317 	int sc_phy_id;			/* PHY address */
    318 	int sc_flowflags;		/* 802.3x PAUSE flow control */
    319 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
    320 	uint32_t sc_t0coso;		/* T0_CSUM | T0_SGOL to run */
    321 	int sc_ucodeloaded;		/* ucode for H2M/M2H/PKT */
    322 	int sc_100mii;			/* 1 for RMII/MII, 0 for RGMII */
    323 	int sc_phandle;			/* fdt phandle */
    324 	uint64_t sc_freq;
    325 
    326 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    327 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    328 
    329 	struct control_data *sc_control_data;
    330 #define sc_txdescs	sc_control_data->cd_txdescs
    331 #define sc_rxdescs	sc_control_data->cd_rxdescs
    332 
    333 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
    334 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
    335 	int sc_txfree;			/* number of free Tx descriptors */
    336 	int sc_txnext;			/* next ready Tx descriptor */
    337 	int sc_txsfree;			/* number of free Tx jobs */
    338 	int sc_txsnext;			/* next ready Tx job */
    339 	int sc_txsdirty;		/* dirty Tx jobs */
    340 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    341 
    342 	krndsource_t rnd_source;	/* random source */
    343 };
    344 
    345 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
    346 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
    347 
    348 #define SCX_CDTXSYNC(sc, x, n, ops)					\
    349 do {									\
    350 	int __x, __n;							\
    351 									\
    352 	__x = (x);							\
    353 	__n = (n);							\
    354 									\
    355 	/* If it will wrap around, sync to the end of the ring. */	\
    356 	if ((__x + __n) > MD_NTXDESC) {				\
    357 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    358 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
    359 		    (MD_NTXDESC - __x), (ops));			\
    360 		__n -= (MD_NTXDESC - __x);				\
    361 		__x = 0;						\
    362 	}								\
    363 									\
    364 	/* Now sync whatever is left. */				\
    365 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    366 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    367 } while (/*CONSTCOND*/0)
    368 
    369 #define SCX_CDRXSYNC(sc, x, ops)					\
    370 do {									\
    371 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    372 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    373 } while (/*CONSTCOND*/0)
    374 
    375 static int scx_fdt_match(device_t, cfdata_t, void *);
    376 static void scx_fdt_attach(device_t, device_t, void *);
    377 static int scx_acpi_match(device_t, cfdata_t, void *);
    378 static void scx_acpi_attach(device_t, device_t, void *);
    379 
    380 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
    381     scx_fdt_match, scx_fdt_attach, NULL, NULL);
    382 
    383 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
    384     scx_acpi_match, scx_acpi_attach, NULL, NULL);
    385 
    386 static void scx_attach_i(struct scx_softc *);
    387 static void scx_reset(struct scx_softc *);
    388 static int scx_init(struct ifnet *);
    389 static void scx_start(struct ifnet *);
    390 static void scx_stop(struct ifnet *, int);
    391 static void scx_watchdog(struct ifnet *);
    392 static int scx_ioctl(struct ifnet *, u_long, void *);
    393 static void scx_set_rcvfilt(struct scx_softc *);
    394 static int scx_ifmedia_upd(struct ifnet *);
    395 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    396 static void mii_statchg(struct ifnet *);
    397 static void phy_tick(void *);
    398 static int mii_readreg(device_t, int, int, uint16_t *);
    399 static int mii_writereg(device_t, int, int, uint16_t);
    400 static int scx_intr(void *);
    401 static void txreap(struct scx_softc *);
    402 static void rxintr(struct scx_softc *);
    403 static int add_rxbuf(struct scx_softc *, int);
    404 
    405 static int spin_waitfor(struct scx_softc *, int, int);
    406 static int mac_read(struct scx_softc *, int);
    407 static void mac_write(struct scx_softc *, int, int);
    408 static void loaducode(struct scx_softc *);
    409 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
    410 static int get_mdioclk(uint32_t);
    411 
    412 #define CSR_READ(sc,off) \
    413 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
    414 #define CSR_WRITE(sc,off,val) \
    415 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
    416 #define EE_READ(sc,off) \
    417 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
    418 
    419 static int
    420 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
    421 {
    422 	static const char * compatible[] = {
    423 		"socionext,synquacer-netsec",
    424 		NULL
    425 	};
    426 	struct fdt_attach_args * const faa = aux;
    427 
    428 	return of_match_compatible(faa->faa_phandle, compatible);
    429 }
    430 
    431 static void
    432 scx_fdt_attach(device_t parent, device_t self, void *aux)
    433 {
    434 	struct scx_softc * const sc = device_private(self);
    435 	struct fdt_attach_args * const faa = aux;
    436 	const int phandle = faa->faa_phandle;
    437 	bus_space_tag_t bst = faa->faa_bst;
    438 	bus_space_handle_t bsh;
    439 	bus_space_handle_t eebsh;
    440 	bus_addr_t addr[2];
    441 	bus_size_t size[2];
    442 	char intrstr[128];
    443 	const char *phy_mode;
    444 
    445 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
    446 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
    447 		aprint_error(": unable to map device csr\n");
    448 		return;
    449 	}
    450 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
    451 		aprint_error(": failed to decode interrupt\n");
    452 		goto fail;
    453 	}
    454 	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
    455 		NOT_MP_SAFE, scx_intr, sc);
    456 	if (sc->sc_ih == NULL) {
    457 		aprint_error_dev(self, "couldn't establish interrupt\n");
    458 		goto fail;
    459 	}
    460 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
    461 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
    462 		aprint_error(": unable to map device eeprom\n");
    463 		goto fail;
    464 	}
    465 
    466 	aprint_naive("\n");
    467 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
    468 	aprint_normal_dev(self, "interrupt on %s\n", intrstr);
    469 
    470 	sc->sc_dev = self;
    471 	sc->sc_st = bst;
    472 	sc->sc_sh = bsh;
    473 	sc->sc_sz = size[0];
    474 	sc->sc_eesh = eebsh;
    475 	sc->sc_eesz = size[1];
    476 	sc->sc_dmat = faa->faa_dmat;
    477 	sc->sc_dmat32 = faa->faa_dmat; /* XXX */
    478 	sc->sc_phandle = phandle;
    479 
    480 	phy_mode = fdtbus_get_string(phandle, "phy-mode");
    481 	if (phy_mode == NULL)
    482 		aprint_error(": missing 'phy-mode' property\n");
    483 	sc->sc_100mii = (phy_mode != NULL && strcmp(phy_mode, "rgmii") != 0);
    484 sc->sc_phy_id = 7; /* XXX */
    485 sc->sc_freq = 250 * 1000 * 1000; /* XXX */
    486 aprint_normal_dev(self,
    487 "phy mode %s, phy id %d, freq %ld\n", phy_mode, sc->sc_phy_id, sc->sc_freq);
    488 
    489 	scx_attach_i(sc);
    490 	return;
    491  fail:
    492 	if (sc->sc_eesz)
    493 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    494 	if (sc->sc_sz)
    495 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    496 	return;
    497 }
    498 
    499 static int
    500 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
    501 {
    502 	static const char * compatible[] = {
    503 		"SCX0001",
    504 		NULL
    505 	};
    506 	struct acpi_attach_args *aa = aux;
    507 
    508 	if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
    509 		return 0;
    510 	return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
    511 }
    512 
    513 static void
    514 scx_acpi_attach(device_t parent, device_t self, void *aux)
    515 {
    516 	struct scx_softc * const sc = device_private(self);
    517 	struct acpi_attach_args * const aa = aux;
    518 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
    519 	bus_space_tag_t bst = aa->aa_memt;
    520 	bus_space_handle_t bsh, eebsh;
    521 	struct acpi_resources res;
    522 	struct acpi_mem *mem;
    523 	struct acpi_irq *irq;
    524 	char *phy_mode;
    525 	ACPI_INTEGER acpi_phy, acpi_freq;
    526 	ACPI_STATUS rv;
    527 
    528 	rv = acpi_resource_parse(self, handle, "_CRS",
    529 	    &res, &acpi_resource_parse_ops_default);
    530 	if (ACPI_FAILURE(rv))
    531 		return;
    532 	mem = acpi_res_mem(&res, 0);
    533 	irq = acpi_res_irq(&res, 0);
    534 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
    535 		aprint_error(": incomplete csr resources\n");
    536 		return;
    537 	}
    538 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
    539 		aprint_error(": couldn't map registers\n");
    540 		return;
    541 	}
    542 	sc->sc_sz = mem->ar_length;
    543 	sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
    544 	    NOT_MP_SAFE, scx_intr, sc, device_xname(self));
    545 	if (sc->sc_ih == NULL) {
    546 		aprint_error_dev(self, "couldn't establish interrupt\n");
    547 		goto fail;
    548 	}
    549 	mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
    550 	if (mem == NULL || mem->ar_length == 0) {
    551 		aprint_error(": incomplete eeprom resources\n");
    552 		goto fail;
    553 	}
    554 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
    555 		aprint_error(": couldn't map registers\n");
    556 		goto fail;
    557 	}
    558 	sc->sc_eesz = mem->ar_length;
    559 
    560 	rv = acpi_dsd_string(handle, "phy-mode", &phy_mode);
    561 	if (ACPI_FAILURE(rv)) {
    562 		aprint_error(": missing 'phy-mode' property\n");
    563 		phy_mode = NULL;
    564 	}
    565 	rv = acpi_dsd_integer(handle, "phy-channel", &acpi_phy);
    566 	if (ACPI_FAILURE(rv))
    567 		acpi_phy = 31;
    568 	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
    569 			&acpi_freq);
    570 	if (ACPI_FAILURE(rv))
    571 		acpi_freq = 999;
    572 
    573 	aprint_naive("\n");
    574 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
    575 
    576 	sc->sc_dev = self;
    577 	sc->sc_st = bst;
    578 	sc->sc_sh = bsh;
    579 	sc->sc_eesh = eebsh;
    580 	sc->sc_dmat = aa->aa_dmat64;
    581 	sc->sc_dmat32 = aa->aa_dmat;	/* descriptor needs dma32 */
    582 
    583 aprint_normal_dev(self,
    584 "phy mode %s, phy id %d, freq %ld\n", phy_mode, (int)acpi_phy, acpi_freq);
    585 	sc->sc_100mii = (phy_mode && strcmp(phy_mode, "rgmii") != 0);
    586 	sc->sc_phy_id = (int)acpi_phy;
    587 	sc->sc_freq = acpi_freq;
    588 
    589 	scx_attach_i(sc);
    590 
    591 	acpi_resource_cleanup(&res);
    592 	return;
    593  fail:
    594 	if (sc->sc_eesz > 0)
    595 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    596 	if (sc->sc_sz > 0)
    597 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    598 	acpi_resource_cleanup(&res);
    599 	return;
    600 }
    601 
    602 static void
    603 scx_attach_i(struct scx_softc *sc)
    604 {
    605 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
    606 	struct mii_data * const mii = &sc->sc_mii;
    607 	struct ifmedia * const ifm = &mii->mii_media;
    608 	uint32_t hwver, dwimp;
    609 	uint8_t enaddr[ETHER_ADDR_LEN];
    610 	bus_dma_segment_t seg;
    611 	uint32_t csr;
    612 	int i, nseg, error = 0;
    613 
    614 	hwver = CSR_READ(sc, HWVER1);	/* Socionext HW */
    615 	/* stored in big endian order */
    616 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
    617 	enaddr[0] = csr >> 24;
    618 	enaddr[1] = csr >> 16;
    619 	enaddr[2] = csr >> 8;
    620 	enaddr[3] = csr;
    621 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
    622 	enaddr[4] = csr >> 24;
    623 	enaddr[5] = csr >> 16;
    624 	dwimp = mac_read(sc, GMACIMPL);	/* DW EMAC XX.YY */
    625 
    626 	aprint_normal_dev(sc->sc_dev,
    627 	    "Socionext NetSec GbE hw %d.%d impl 0x%x\n",
    628 	    hwver >> 16, hwver & 0xffff, dwimp);
    629 	aprint_normal_dev(sc->sc_dev,
    630 	    "Ethernet address %s\n", ether_sprintf(enaddr));
    631 
    632 sc->sc_phy_id = MII_PHY_ANY;
    633 	sc->sc_mdclk = get_mdioclk(sc->sc_freq); /* 5:2 clk control */
    634 sc->sc_mdclk = 5; /* XXX */
    635 aprint_normal_dev(sc->sc_dev, "using %d for mdclk\n", sc->sc_mdclk);
    636 sc->sc_mdclk <<= 2;
    637 
    638 	sc->sc_flowflags = 0;
    639 
    640 	if (sc->sc_ucodeloaded == 0)
    641 		loaducode(sc);
    642 
    643 	mii->mii_ifp = ifp;
    644 	mii->mii_readreg = mii_readreg;
    645 	mii->mii_writereg = mii_writereg;
    646 	mii->mii_statchg = mii_statchg;
    647 
    648 	sc->sc_ethercom.ec_mii = mii;
    649 	ifmedia_init(ifm, 0, scx_ifmedia_upd, scx_ifmedia_sts);
    650 	mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
    651 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    652 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    653 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    654 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    655 	} else
    656 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    657 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
    658 
    659 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    660 	ifp->if_softc = sc;
    661 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    662 	ifp->if_ioctl = scx_ioctl;
    663 	ifp->if_start = scx_start;
    664 	ifp->if_watchdog = scx_watchdog;
    665 	ifp->if_init = scx_init;
    666 	ifp->if_stop = scx_stop;
    667 	IFQ_SET_READY(&ifp->if_snd);
    668 
    669 	if_attach(ifp);
    670 	if_deferred_start_init(ifp, NULL);
    671 	ether_ifattach(ifp, enaddr);
    672 
    673 	callout_init(&sc->sc_tick_ch, 0);
    674 	callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
    675 
    676 	/*
    677 	 * Allocate the control data structures, and create and load the
    678 	 * DMA map for it.
    679 	 */
    680 	error = bus_dmamem_alloc(sc->sc_dmat32,
    681 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    682 	if (error != 0) {
    683 		aprint_error_dev(sc->sc_dev,
    684 		    "unable to allocate control data, error = %d\n", error);
    685 		goto fail_0;
    686 	}
    687 	error = bus_dmamem_map(sc->sc_dmat32, &seg, nseg,
    688 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
    689 	    BUS_DMA_COHERENT);
    690 	if (error != 0) {
    691 		aprint_error_dev(sc->sc_dev,
    692 		    "unable to map control data, error = %d\n", error);
    693 		goto fail_1;
    694 	}
    695 	error = bus_dmamap_create(sc->sc_dmat32,
    696 	    sizeof(struct control_data), 1,
    697 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
    698 	if (error != 0) {
    699 		aprint_error_dev(sc->sc_dev,
    700 		    "unable to create control data DMA map, "
    701 		    "error = %d\n", error);
    702 		goto fail_2;
    703 	}
    704 	error = bus_dmamap_load(sc->sc_dmat32, sc->sc_cddmamap,
    705 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
    706 	if (error != 0) {
    707 		aprint_error_dev(sc->sc_dev,
    708 		    "unable to load control data DMA map, error = %d\n",
    709 		    error);
    710 		goto fail_3;
    711 	}
    712 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    713 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
    714 		    MD_NTXSEGS, MCLBYTES, 0, 0,
    715 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    716 			aprint_error_dev(sc->sc_dev,
    717 			    "unable to create tx DMA map %d, error = %d\n",
    718 			    i, error);
    719 			goto fail_4;
    720 		}
    721 	}
    722 	for (i = 0; i < MD_NRXDESC; i++) {
    723 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
    724 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    725 			aprint_error_dev(sc->sc_dev,
    726 			    "unable to create rx DMA map %d, error = %d\n",
    727 			    i, error);
    728 			goto fail_5;
    729 		}
    730 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    731 	}
    732 	sc->sc_seg = seg;
    733 	sc->sc_nseg = nseg;
    734 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
    735 
    736 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    737 		pmf_class_network_register(sc->sc_dev, ifp);
    738 	else
    739 		aprint_error_dev(sc->sc_dev,
    740 			"couldn't establish power handler\n");
    741 
    742 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    743 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    744 
    745 	return;
    746 
    747   fail_5:
    748 	for (i = 0; i < MD_NRXDESC; i++) {
    749 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    750 			bus_dmamap_destroy(sc->sc_dmat,
    751 			    sc->sc_rxsoft[i].rxs_dmamap);
    752 	}
    753   fail_4:
    754 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    755 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    756 			bus_dmamap_destroy(sc->sc_dmat,
    757 			    sc->sc_txsoft[i].txs_dmamap);
    758 	}
    759 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    760   fail_3:
    761 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    762   fail_2:
    763 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    764 	    sizeof(struct control_data));
    765   fail_1:
    766 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    767   fail_0:
    768 	if (sc->sc_phandle)
    769 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
    770 	else
    771 		acpi_intr_disestablish(sc->sc_ih);
    772 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    773 	return;
    774 }
    775 
    776 static void
    777 scx_reset(struct scx_softc *sc)
    778 {
    779 
    780 	mac_write(sc, GMACBMR, BMR_RST); /* may take for a while */
    781 	(void)spin_waitfor(sc, GMACBMR, BMR_RST);
    782 
    783 	CSR_WRITE(sc, DESCENG_SRST, 1);
    784 	CSR_WRITE(sc, DESCENG_INIT, 1);
    785 	mac_write(sc, GMACBMR, _BMR);
    786 	mac_write(sc, GMACRDLAR, _RDLAR);
    787 	mac_write(sc, GMACTDLAR, _TDLAR);
    788 	mac_write(sc, GMACAFR, _AFR);
    789 	mac_write(sc, GMACEVCTL, 1);
    790 }
    791 
    792 static int
    793 scx_init(struct ifnet *ifp)
    794 {
    795 	struct scx_softc *sc = ifp->if_softc;
    796 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
    797 	uint32_t csr;
    798 	int i;
    799 
    800 	/* Cancel pending I/O. */
    801 	scx_stop(ifp, 0);
    802 
    803 	/* Reset the chip to a known state. */
    804 	scx_reset(sc);
    805 
    806 	/* set my address in perfect match slot 0. little endin order */
    807 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
    808 	mac_write(sc, GMACMAL0, csr);
    809 	csr = (ea[5] << 8) | ea[4];
    810 	mac_write(sc, GMACMAH0, csr | 1U<<31); /* always valid? */
    811 
    812 	/* accept multicast frame or run promisc mode */
    813 	scx_set_rcvfilt(sc);
    814 
    815 	(void)scx_ifmedia_upd(ifp);
    816 
    817 	/* build sane Tx */
    818 	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
    819 	sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
    820 	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
    821 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    822 	sc->sc_txfree = MD_NTXDESC;
    823 	sc->sc_txnext = 0;
    824 	for (i = 0; i < MD_TXQUEUELEN; i++)
    825 		sc->sc_txsoft[i].txs_mbuf = NULL;
    826 	sc->sc_txsfree = MD_TXQUEUELEN;
    827 	sc->sc_txsnext = 0;
    828 	sc->sc_txsdirty = 0;
    829 
    830 	/* load Rx descriptors with fresh mbuf */
    831 	for (i = 0; i < MD_NRXDESC; i++)
    832 		(void)add_rxbuf(sc, i);
    833 	sc->sc_rxptr = 0;
    834 
    835 	/* XXX 32 bit paddr XXX hand Tx/Rx rings to HW XXX */
    836 	mac_write(sc, GMACTDLAR, SCX_CDTXADDR(sc, 0));
    837 	mac_write(sc, GMACRDLAR, SCX_CDRXADDR(sc, 0));
    838 
    839 	/* kick to start GMAC engine */
    840 	CSR_WRITE(sc, RXINT_CLR, ~0);
    841 	CSR_WRITE(sc, TXINT_CLR, ~0);
    842 	csr = mac_read(sc, GMACOMR);
    843 	mac_write(sc, GMACOMR, csr | OMR_RXE | OMR_TXE);
    844 
    845 	ifp->if_flags |= IFF_RUNNING;
    846 	ifp->if_flags &= ~IFF_OACTIVE;
    847 
    848 	/* start one second timer */
    849 	callout_schedule(&sc->sc_tick_ch, hz);
    850 
    851 	return 0;
    852 }
    853 
    854 static void
    855 scx_stop(struct ifnet *ifp, int disable)
    856 {
    857 	struct scx_softc *sc = ifp->if_softc;
    858 
    859 	/* Stop the one second clock. */
    860 	callout_stop(&sc->sc_tick_ch);
    861 
    862 	/* Down the MII. */
    863 	mii_down(&sc->sc_mii);
    864 
    865 	/* Mark the interface down and cancel the watchdog timer. */
    866 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    867 	ifp->if_timer = 0;
    868 }
    869 
    870 static void
    871 scx_watchdog(struct ifnet *ifp)
    872 {
    873 	struct scx_softc *sc = ifp->if_softc;
    874 
    875 	/*
    876 	 * Since we're not interrupting every packet, sweep
    877 	 * up before we report an error.
    878 	 */
    879 	txreap(sc);
    880 
    881 	if (sc->sc_txfree != MD_NTXDESC) {
    882 		aprint_error_dev(sc->sc_dev,
    883 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
    884 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
    885 		if_statinc(ifp, if_oerrors);
    886 
    887 		/* Reset the interface. */
    888 		scx_init(ifp);
    889 	}
    890 
    891 	scx_start(ifp);
    892 }
    893 
    894 static int
    895 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    896 {
    897 	struct scx_softc *sc = ifp->if_softc;
    898 	struct ifreq *ifr = (struct ifreq *)data;
    899 	struct ifmedia *ifm;
    900 	int s, error;
    901 
    902 	s = splnet();
    903 
    904 	switch (cmd) {
    905 	case SIOCSIFMEDIA:
    906 		/* Flow control requires full-duplex mode. */
    907 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
    908 		    (ifr->ifr_media & IFM_FDX) == 0)
    909 			ifr->ifr_media &= ~IFM_ETH_FMASK;
    910 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
    911 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
    912 				/* We can do both TXPAUSE and RXPAUSE. */
    913 				ifr->ifr_media |=
    914 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
    915 			}
    916 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
    917 		}
    918 		ifm = &sc->sc_mii.mii_media;
    919 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
    920 		break;
    921 	default:
    922 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    923 			break;
    924 
    925 		error = 0;
    926 
    927 		if (cmd == SIOCSIFCAP)
    928 			error = (*ifp->if_init)(ifp);
    929 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    930 			;
    931 		else if (ifp->if_flags & IFF_RUNNING) {
    932 			/*
    933 			 * Multicast list has changed; set the hardware filter
    934 			 * accordingly.
    935 			 */
    936 			scx_set_rcvfilt(sc);
    937 		}
    938 		break;
    939 	}
    940 
    941 	splx(s);
    942 	return error;
    943 }
    944 
    945 static void
    946 scx_set_rcvfilt(struct scx_softc *sc)
    947 {
    948 	struct ethercom * const ec = &sc->sc_ethercom;
    949 	struct ifnet * const ifp = &ec->ec_if;
    950 	struct ether_multistep step;
    951 	struct ether_multi *enm;
    952 	uint32_t mchash[8]; 	/* 8x 32 = 256 bit */
    953 	uint32_t csr, crc;
    954 	int i;
    955 
    956 	csr = mac_read(sc, GMACAFR);
    957 	csr &= ~(AFR_PM | AFR_AM | AFR_MHTE);
    958 	mac_write(sc, GMACAFR, csr);
    959 
    960 	ETHER_LOCK(ec);
    961 	if (ifp->if_flags & IFF_PROMISC) {
    962 		ec->ec_flags |= ETHER_F_ALLMULTI;
    963 		ETHER_UNLOCK(ec);
    964 		goto update;
    965 	}
    966 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
    967 
    968 	/* clear 15 entry supplimental perfect match filter */
    969 	for (i = 1; i < 16; i++)
    970 		 mac_write(sc, GMACMAH(i), 0);
    971 	/* build 256 bit multicast hash filter */
    972 	memset(mchash, 0, sizeof(mchash));
    973 	crc = 0;
    974 
    975 	ETHER_FIRST_MULTI(step, ec, enm);
    976 	i = 1; /* slot 0 is occupied */
    977 	while (enm != NULL) {
    978 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    979 			/*
    980 			 * We must listen to a range of multicast addresses.
    981 			 * For now, just accept all multicasts, rather than
    982 			 * trying to set only those filter bits needed to match
    983 			 * the range.  (At this time, the only use of address
    984 			 * ranges is for IP multicast routing, for which the
    985 			 * range is big enough to require all bits set.)
    986 			 */
    987 			ec->ec_flags |= ETHER_F_ALLMULTI;
    988 			ETHER_UNLOCK(ec);
    989 			goto update;
    990 		}
    991 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
    992 		if (i < 16) {
    993 			/* use 15 entry perfect match filter */
    994 			uint32_t addr;
    995 			uint8_t *ep = enm->enm_addrlo;
    996 			addr = (ep[3] << 24) | (ep[2] << 16)
    997 			     | (ep[1] <<  8) |  ep[0];
    998 			mac_write(sc, GMACMAL(i), addr);
    999 			addr = (ep[5] << 8) | ep[4];
   1000 			mac_write(sc, GMACMAH(i), addr | 1U<<31);
   1001 		} else {
   1002 			/* use hash table when too many */
   1003 			/* bit_reserve_32(~crc) !? */
   1004 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1005 			/* 3(31:29) 5(28:24) bit sampling */
   1006 			mchash[crc >> 29] |= 1 << ((crc >> 24) & 0x1f);
   1007 		}
   1008 		ETHER_NEXT_MULTI(step, enm);
   1009 		i++;
   1010 	}
   1011 	ETHER_UNLOCK(ec);
   1012 
   1013 	if (crc)
   1014 		csr |= AFR_MHTE;
   1015 	for (i = 0; i < __arraycount(mchash); i++)
   1016 		mac_write(sc, GMACMHT(i), mchash[i]);
   1017 	mac_write(sc, GMACAFR, csr);
   1018 	return;
   1019 
   1020  update:
   1021 	/* With PM or AM, MHTE/MHT0-7 are never consulted. really? */
   1022 	if (ifp->if_flags & IFF_PROMISC)
   1023 		csr |= AFR_PM;	/* run promisc. mode */
   1024 	else
   1025 		csr |= AFR_AM;	/* accept all multicast */
   1026 	mac_write(sc, GMACAFR, csr);
   1027 	return;
   1028 }
   1029 
   1030 static int
   1031 scx_ifmedia_upd(struct ifnet *ifp)
   1032 {
   1033 	struct scx_softc *sc = ifp->if_softc;
   1034 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
   1035 
   1036 	if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
   1037 		; /* restart AN */
   1038 		; /* enable AN */
   1039 		; /* advertise flow control pause */
   1040 		; /* adv. 100FDX,100HDX,10FDX,10HDX */
   1041 	} else {
   1042 #if 1 /* XXX not sure to belong here XXX */
   1043 		uint32_t mcr = mac_read(sc, GMACMCR);
   1044 		if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_1000_T)
   1045 			mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
   1046 		else {
   1047 			if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX
   1048 			    && sc->sc_100mii)
   1049 				mcr |= MCR_SPD100;
   1050 			mcr |= MCR_USEMII;
   1051 		}
   1052 		if (ifm->ifm_cur->ifm_media & IFM_FDX)
   1053 			mcr |= MCR_USEFDX;
   1054 		mcr |= MCR_CST | MCR_JE;
   1055 		if (sc->sc_100mii == 0)
   1056 			mcr |= MCR_IBN;
   1057 		mac_write(sc, GMACMCR, mcr);
   1058 #endif
   1059 	}
   1060 	return 0;
   1061 }
   1062 
   1063 static void
   1064 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1065 {
   1066 	struct scx_softc *sc = ifp->if_softc;
   1067 	struct mii_data *mii = &sc->sc_mii;
   1068 
   1069 	mii_pollstat(mii);
   1070 	ifmr->ifm_status = mii->mii_media_status;
   1071 	ifmr->ifm_active = sc->sc_flowflags |
   1072 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
   1073 }
   1074 
   1075 void
   1076 mii_statchg(struct ifnet *ifp)
   1077 {
   1078 	struct scx_softc *sc = ifp->if_softc;
   1079 	struct mii_data *mii = &sc->sc_mii;
   1080 	uint32_t fcr;
   1081 
   1082 #if 1
   1083 	/* decode MIISR register value */
   1084 	uint32_t miisr = mac_read(sc, GMACMIISR);
   1085 	int spd = (miisr >> 1) & 03;
   1086 	printf("MII link status (0x%x) %s",
   1087 	    miisr, (miisr & 8) ? "up" : "down");
   1088 	if (miisr & 8) {
   1089 		printf(" spd%d", (spd == 2) ? 1000 : (spd == 1) ? 100 : 10);
   1090 		if (miisr & 1)
   1091 			printf(",full-duplex");
   1092 	}
   1093 	printf("\n");
   1094 #endif
   1095 	/* Get flow control negotiation result. */
   1096 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1097 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
   1098 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1099 
   1100 	/* Adjust PAUSE flow control. */
   1101 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
   1102 	if (mii->mii_media_active & IFM_FDX) {
   1103 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   1104 			fcr |= FCR_TFE;
   1105 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   1106 			fcr |= FCR_RFE;
   1107 	}
   1108 	mac_write(sc, GMACFCR, fcr);
   1109 
   1110 printf("%ctxfe, %crxfe\n",
   1111      (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
   1112 }
   1113 
   1114 static void
   1115 phy_tick(void *arg)
   1116 {
   1117 	struct scx_softc *sc = arg;
   1118 	struct mii_data *mii = &sc->sc_mii;
   1119 	int s;
   1120 
   1121 	s = splnet();
   1122 	mii_tick(mii);
   1123 	splx(s);
   1124 
   1125 	callout_schedule(&sc->sc_tick_ch, hz);
   1126 }
   1127 
   1128 static int
   1129 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1130 {
   1131 	struct scx_softc *sc = device_private(self);
   1132 	uint32_t miia;
   1133 	int error;
   1134 
   1135 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1136 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
   1137 	error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
   1138 	if (error)
   1139 		return error;
   1140 	*val = mac_read(sc, GMACGDR);
   1141 	return 0;
   1142 }
   1143 
   1144 static int
   1145 mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1146 {
   1147 	struct scx_softc *sc = device_private(self);
   1148 	uint32_t miia;
   1149 	uint16_t dummy;
   1150 	int error;
   1151 
   1152 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1153 	mac_write(sc, GMACGDR, val);
   1154 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
   1155 	error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
   1156 	if (error)
   1157 		return error;
   1158 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
   1159 	return 0;
   1160 }
   1161 
   1162 static void
   1163 scx_start(struct ifnet *ifp)
   1164 {
   1165 	struct scx_softc *sc = ifp->if_softc;
   1166 	struct mbuf *m0, *m;
   1167 	struct scx_txsoft *txs;
   1168 	bus_dmamap_t dmamap;
   1169 	int error, nexttx, lasttx, ofree, seg;
   1170 	uint32_t tdes0;
   1171 
   1172 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1173 		return;
   1174 
   1175 	/* Remember the previous number of free descriptors. */
   1176 	ofree = sc->sc_txfree;
   1177 
   1178 	/*
   1179 	 * Loop through the send queue, setting up transmit descriptors
   1180 	 * until we drain the queue, or use up all available transmit
   1181 	 * descriptors.
   1182 	 */
   1183 	for (;;) {
   1184 		IFQ_POLL(&ifp->if_snd, m0);
   1185 		if (m0 == NULL)
   1186 			break;
   1187 
   1188 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
   1189 			txreap(sc);
   1190 			if (sc->sc_txsfree == 0)
   1191 				break;
   1192 		}
   1193 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1194 		dmamap = txs->txs_dmamap;
   1195 
   1196 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1197 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1198 		if (error) {
   1199 			if (error == EFBIG) {
   1200 				aprint_error_dev(sc->sc_dev,
   1201 				    "Tx packet consumes too many "
   1202 				    "DMA segments, dropping...\n");
   1203 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
   1204 				    m_freem(m0);
   1205 				    continue;
   1206 			}
   1207 			/* Short on resources, just stop for now. */
   1208 			break;
   1209 		}
   1210 
   1211 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   1212 			/*
   1213 			 * Not enough free descriptors to transmit this
   1214 			 * packet.  We haven't committed anything yet,
   1215 			 * so just unload the DMA map, put the packet
   1216 			 * back on the queue, and punt.	 Notify the upper
   1217 			 * layer that there are not more slots left.
   1218 			 */
   1219 			ifp->if_flags |= IFF_OACTIVE;
   1220 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1221 			break;
   1222 		}
   1223 
   1224 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1225 
   1226 		/*
   1227 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1228 		 */
   1229 
   1230 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1231 		    BUS_DMASYNC_PREWRITE);
   1232 
   1233 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
   1234 		lasttx = -1;
   1235 		for (nexttx = sc->sc_txnext, seg = 0;
   1236 		     seg < dmamap->dm_nsegs;
   1237 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
   1238 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
   1239 			bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
   1240 			/*
   1241 			 * If this is the first descriptor we're
   1242 			 * enqueueing, don't set the OWN bit just
   1243 			 * yet.	 That could cause a race condition.
   1244 			 * We'll do it below.
   1245 			 */
   1246 			tdes->t3 = dmamap->dm_segs[seg].ds_len;
   1247 			tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
   1248 			tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
   1249 			tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
   1250 					(15 << T0_TRID) | T0_PT |
   1251 					sc->sc_t0coso | T0_TRS;
   1252 			tdes0 = T0_OWN; /* 2nd and other segments */
   1253 			lasttx = nexttx;
   1254 		}
   1255 		/*
   1256 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
   1257 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
   1258 		 * time and NFS stops to proceed until scx_watchdog()
   1259 		 * calls txreap() to reclaim the unack'ed mbuf.
   1260 		 * It's painful to traverse every mbuf chain to determine
   1261 		 * whether someone is waiting for Tx completion.
   1262 		 */
   1263 		m = m0;
   1264 		do {
   1265 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
   1266 				sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
   1267 				break;
   1268 			}
   1269 		} while ((m = m->m_next) != NULL);
   1270 
   1271 		/* Write deferred 1st segment T0_OWN at the final stage */
   1272 		sc->sc_txdescs[lasttx].t0 |= T0_LS;
   1273 		sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
   1274 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1275 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1276 
   1277 		/* Tell DMA start transmit */
   1278 		mac_write(sc, GMACTDS, 1);
   1279 
   1280 		txs->txs_mbuf = m0;
   1281 		txs->txs_firstdesc = sc->sc_txnext;
   1282 		txs->txs_lastdesc = lasttx;
   1283 		txs->txs_ndesc = dmamap->dm_nsegs;
   1284 
   1285 		sc->sc_txfree -= txs->txs_ndesc;
   1286 		sc->sc_txnext = nexttx;
   1287 		sc->sc_txsfree--;
   1288 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
   1289 		/*
   1290 		 * Pass the packet to any BPF listeners.
   1291 		 */
   1292 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1293 	}
   1294 
   1295 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1296 		/* No more slots left; notify upper layer. */
   1297 		ifp->if_flags |= IFF_OACTIVE;
   1298 	}
   1299 	if (sc->sc_txfree != ofree) {
   1300 		/* Set a watchdog timer in case the chip flakes out. */
   1301 		ifp->if_timer = 5;
   1302 	}
   1303 }
   1304 
   1305 static int
   1306 scx_intr(void *arg)
   1307 {
   1308 	struct scx_softc *sc = arg;
   1309 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1310 
   1311 	(void)ifp;
   1312 	/* XXX decode interrupt cause to pick isr() XXX */
   1313 	rxintr(sc);
   1314 	txreap(sc);
   1315 	return 1;
   1316 }
   1317 
   1318 static void
   1319 txreap(struct scx_softc *sc)
   1320 {
   1321 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1322 	struct scx_txsoft *txs;
   1323 	uint32_t txstat;
   1324 	int i;
   1325 
   1326 	ifp->if_flags &= ~IFF_OACTIVE;
   1327 
   1328 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
   1329 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
   1330 		txs = &sc->sc_txsoft[i];
   1331 
   1332 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1333 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1334 
   1335 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1336 		if (txstat & T0_OWN) /* desc is still in use */
   1337 			break;
   1338 
   1339 		/* There is no way to tell transmission status per frame */
   1340 
   1341 		if_statinc(ifp, if_opackets);
   1342 
   1343 		sc->sc_txfree += txs->txs_ndesc;
   1344 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1345 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1346 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1347 		m_freem(txs->txs_mbuf);
   1348 		txs->txs_mbuf = NULL;
   1349 	}
   1350 	sc->sc_txsdirty = i;
   1351 	if (sc->sc_txsfree == MD_TXQUEUELEN)
   1352 		ifp->if_timer = 0;
   1353 }
   1354 
   1355 static void
   1356 rxintr(struct scx_softc *sc)
   1357 {
   1358 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1359 	struct scx_rxsoft *rxs;
   1360 	struct mbuf *m;
   1361 	uint32_t rxstat;
   1362 	int i, len;
   1363 
   1364 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
   1365 		rxs = &sc->sc_rxsoft[i];
   1366 
   1367 		SCX_CDRXSYNC(sc, i,
   1368 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1369 
   1370 		rxstat = sc->sc_rxdescs[i].r0;
   1371 		if (rxstat & R0_OWN) /* desc is left empty */
   1372 			break;
   1373 
   1374 		/* R0_FS | R0_LS must have been marked for this desc */
   1375 
   1376 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1377 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1378 
   1379 		len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
   1380 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
   1381 		m = rxs->rxs_mbuf;
   1382 
   1383 		if (add_rxbuf(sc, i) != 0) {
   1384 			if_statinc(ifp, if_ierrors);
   1385 			SCX_INIT_RXDESC(sc, i);
   1386 			bus_dmamap_sync(sc->sc_dmat,
   1387 			    rxs->rxs_dmamap, 0,
   1388 			    rxs->rxs_dmamap->dm_mapsize,
   1389 			    BUS_DMASYNC_PREREAD);
   1390 			continue;
   1391 		}
   1392 
   1393 		m_set_rcvif(m, ifp);
   1394 		m->m_pkthdr.len = m->m_len = len;
   1395 
   1396 		if (rxstat & R0_CSUM) {
   1397 			uint32_t csum = M_CSUM_IPv4;
   1398 			if (rxstat & R0_CERR)
   1399 				csum |= M_CSUM_IPv4_BAD;
   1400 			m->m_pkthdr.csum_flags |= csum;
   1401 		}
   1402 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1403 	}
   1404 	sc->sc_rxptr = i;
   1405 }
   1406 
   1407 static int
   1408 add_rxbuf(struct scx_softc *sc, int i)
   1409 {
   1410 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
   1411 	struct mbuf *m;
   1412 	int error;
   1413 
   1414 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1415 	if (m == NULL)
   1416 		return ENOBUFS;
   1417 
   1418 	MCLGET(m, M_DONTWAIT);
   1419 	if ((m->m_flags & M_EXT) == 0) {
   1420 		m_freem(m);
   1421 		return ENOBUFS;
   1422 	}
   1423 
   1424 	if (rxs->rxs_mbuf != NULL)
   1425 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1426 
   1427 	rxs->rxs_mbuf = m;
   1428 
   1429 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1430 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1431 	if (error) {
   1432 		aprint_error_dev(sc->sc_dev,
   1433 		    "can't load rx DMA map %d, error = %d\n", i, error);
   1434 		panic("add_rxbuf");
   1435 	}
   1436 
   1437 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1438 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1439 	SCX_INIT_RXDESC(sc, i);
   1440 
   1441 	return 0;
   1442 }
   1443 
   1444 static int
   1445 spin_waitfor(struct scx_softc *sc, int reg, int exist)
   1446 {
   1447 	int val, loop;
   1448 
   1449 	val = CSR_READ(sc, reg);
   1450 	if ((val & exist) == 0)
   1451 		return 0;
   1452 	loop = 3000;
   1453 	do {
   1454 		DELAY(10);
   1455 		val = CSR_READ(sc, reg);
   1456 	} while (--loop > 0 && (val & exist));
   1457 	return (loop > 0) ? 0 : ETIMEDOUT;
   1458 }
   1459 
   1460 /* GMAC register needs to use indirect rd/wr via memory mapped registers. */
   1461 
   1462 static int
   1463 mac_read(struct scx_softc *sc, int reg)
   1464 {
   1465 
   1466 	CSR_WRITE(sc, MACCMD, reg);
   1467 	(void)spin_waitfor(sc, MACCMD, CMD_BUSY);
   1468 	return CSR_READ(sc, MACDATA);
   1469 }
   1470 
   1471 static void
   1472 mac_write(struct scx_softc *sc, int reg, int val)
   1473 {
   1474 
   1475 	CSR_WRITE(sc, MACDATA, val);
   1476 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
   1477 	(void)spin_waitfor(sc, MACCMD, CMD_BUSY);
   1478 }
   1479 
   1480 /*
   1481  * 3 independent uengines exist * to process host2media, media2host and
   1482  * packet data flows.
   1483  */
   1484 static void
   1485 loaducode(struct scx_softc *sc)
   1486 {
   1487 	uint32_t up, lo, sz;
   1488 	uint64_t addr;
   1489 
   1490 	sc->sc_ucodeloaded = 1;
   1491 
   1492 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
   1493 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
   1494 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
   1495 	sz *= 4;
   1496 	addr = ((uint64_t)up << 32) | lo;
   1497 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
   1498 	injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
   1499 
   1500 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
   1501 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
   1502 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
   1503 	sz *= 4;
   1504 	addr = ((uint64_t)up << 32) | lo;
   1505 	injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
   1506 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
   1507 
   1508 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
   1509 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
   1510 	sz *= 4;
   1511 	injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
   1512 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
   1513 }
   1514 
   1515 static void
   1516 injectucode(struct scx_softc *sc, int port,
   1517 	bus_addr_t addr, bus_size_t size)
   1518 {
   1519 	bus_space_handle_t bsh;
   1520 	bus_size_t off;
   1521 	uint32_t ucode;
   1522 
   1523 	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
   1524 		aprint_error_dev(sc->sc_dev,
   1525 		    "eeprom map failure for ucode port 0x%x\n", port);
   1526 		return;
   1527 	}
   1528 	for (off = 0; off < size; off += 4) {
   1529 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
   1530 		CSR_WRITE(sc, port, ucode);
   1531 	}
   1532 	bus_space_unmap(sc->sc_st, bsh, size);
   1533 }
   1534 
   1535 /* bit selection to determine MDIO speed */
   1536 
   1537 static int
   1538 get_mdioclk(uint32_t freq)
   1539 {
   1540 
   1541 	const struct {
   1542 		uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
   1543 	} mdioclk[] = {
   1544 		{ 35,	2 },	/* 25-35 MHz */
   1545 		{ 60,	3 },	/* 35-60 MHz */
   1546 		{ 100,	0 },	/* 60-100 MHz */
   1547 		{ 150,	1 },	/* 100-150 MHz */
   1548 		{ 250,	4 },	/* 150-250 MHz */
   1549 		{ 300,	5 },	/* 250-300 MHz */
   1550 	};
   1551 	int i;
   1552 
   1553 	freq /= 1000 * 1000;
   1554 	/* convert MDIO clk to a divisor value */
   1555 	if (freq < mdioclk[0].freq)
   1556 		return mdioclk[0].bit;
   1557 	for (i = 1; i < __arraycount(mdioclk); i++) {
   1558 		if (freq < mdioclk[i].freq)
   1559 			return mdioclk[i-1].bit;
   1560 	}
   1561 	return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
   1562 }
   1563