Home | History | Annotate | Line # | Download | only in sociox
if_scx.c revision 1.20
      1 /*	$NetBSD: if_scx.c,v 1.20 2020/03/27 09:19:33 nisimura Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #define NOT_MP_SAFE	0
     33 
     34 /*
     35  * Socionext SC2A11 SynQuacer NetSec GbE driver
     36  *
     37  *   (possibly incorrect notes to be removed eventually)
     38  * - 32 byte descriptor for 64 bit paddr design.
     39  * - multiple rings seems available. There are special descriptor fields
     40  *   to designify ring number from which to arrive or to which go.
     41  * - memory mapped EEPROM to hold MAC address. The rest of the area is
     42  *   occupied by a set of ucode for two DMA engines and one packet engine.
     43  * - The size of frame address filter is 16 plus 16.
     44  * - The first slot is my own station address. Always enabled to perform
     45  *   to identify oneself.
     46  * - 1~15 are for supplimental MAC addresses. Independently enabled for
     47  *   use. Good to catch multicast. Byte-wise selective match available.
     48  *   Use the mask to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
     49  * - 16~32 might be exact match without byte-mask.
     50  * - The size of multicast hash filter store is 64 bit.
     51  * - Socionext/Linaro "NetSec" code contains some constants left unexplained.
     52  *   Fortunately, Intel/Altera CycloneV PDFs describe every detail of
     53  *   "such the instance of" DW EMAC IP and most of them are likely applicable
     54  *   to SC2A11 GbE.
     55  * - not known "NetSec" instanciates DW timestamp or builds its own.
     56  * - DW EMAC implmentation (0x20) is known 0x10.36
     57  */
     58 
     59 #include <sys/cdefs.h>
     60 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.20 2020/03/27 09:19:33 nisimura Exp $");
     61 
     62 #include <sys/param.h>
     63 #include <sys/bus.h>
     64 #include <sys/intr.h>
     65 #include <sys/device.h>
     66 #include <sys/callout.h>
     67 #include <sys/mbuf.h>
     68 #include <sys/malloc.h>
     69 #include <sys/errno.h>
     70 #include <sys/rndsource.h>
     71 #include <sys/kernel.h>
     72 #include <sys/systm.h>
     73 
     74 #include <net/if.h>
     75 #include <net/if_media.h>
     76 #include <net/if_dl.h>
     77 #include <net/if_ether.h>
     78 #include <dev/mii/mii.h>
     79 #include <dev/mii/miivar.h>
     80 #include <net/bpf.h>
     81 
     82 #include <dev/fdt/fdtvar.h>
     83 #include <dev/acpi/acpireg.h>
     84 #include <dev/acpi/acpivar.h>
     85 #include <dev/acpi/acpi_intr.h>
     86 
     87 /*
     88  * SC2A11 register block 0x100-0x1204?
     89  */
     90 #define SWRESET		0x104
     91 #define COMINIT		0x120
     92 #define xINTSR		0x200		/* aggregated interrupt status report */
     93 #define  IRQ_RX		(1U<<1)		/* top level Rx interrupt */
     94 #define  IRQ_TX		(1U<<0)		/* top level Rx interrupt */
     95 #define xINTAEN		0x204		/* INT_A enable */
     96 #define xINTA_SET	0x234		/* bit to set */
     97 #define xINTA_CLR	0x238		/* bit to clr */
     98 #define xINTBEN		0x23c		/* INT_B enable */
     99 #define xINTB_SET	0x240		/* bit to set */
    100 #define xINTB_CLR	0x244		/* bit to clr */
    101 /* 0x00c-048 */		/* pkt,tls,s0,s1 SR/IE/SET/CLR */
    102 #define TXISR		0x400
    103 #define TXIEN		0x404
    104 #define TXI_SET		0x428
    105 #define TXI_CLR		0x42c
    106 #define  TXI_NTOWNR	(1U<<17)
    107 #define  TXI_TR_ERR	(1U<<16)
    108 #define  TXI_TXDONE	(1U<<15)
    109 #define  TXI_TMREXP	(1U<<14)
    110 #define RXISR		0x440
    111 #define RXIEN		0x444
    112 #define RXI_SET		0x468
    113 #define RXI_CLR		0x46c
    114 #define  RXI_RC_ERR	(1U<<16)
    115 #define  RXI_PKTCNT	(1U<<15)
    116 #define  RXI_TMREXP	(1U<<14)
    117 #define TXTIMER		0x41c
    118 #define RXTIMER		0x45c
    119 #define TXCOUNT		0x410
    120 #define RXCOUNT		0x454
    121 #define H2MENG		0x210		/* DMAC host2media ucode port */
    122 #define M2HENG		0x21c		/* DMAC media2host ucode port */
    123 #define PKTENG		0x0d0		/* packet engine ucode port */
    124 #define CLKEN		0x100		/* clock distribution enable */
    125 #define  CLK_G		(1U<<5)
    126 #define  CLK_ALL	0x24
    127 #define MACADRH		0x10c		/* ??? */
    128 #define MACADRL		0x110		/* ??? */
    129 #define MCVER		0x22c		/* micro controller version */
    130 #define HWVER		0x230		/* hardware version */
    131 
    132 /* 0x800 */		/* dec Tx  SR/EN/SET/CLR */
    133 /* 0x840 */		/* enc Rx  SR/EN/SET/CLR */
    134 /* 0x880 */		/* enc TLS Tx  SR/IE/SET/CLR */
    135 /* 0x8c0 */		/* dec TLS Tx  SR/IE/SET/CLR */
    136 /* 0x900 */		/* enc TLS Rx  SR/IE/SET/CLR */
    137 /* 0x940 */		/* dec TLS Rx  SR/IE/SET/CLR */
    138 /* 0x980 */		/* enc RAW Tx  SR/IE/SET/CLR */
    139 /* 0x9c0 */		/* dec RAW Tx  SR/IE/SET/CLR */
    140 /* 0xA00 */		/* enc RAW Rx  SR/IE/SET/CLR */
    141 /* 0xA40 */		/* dec RAW Rx  SR/IE/SET/CLR */
    142 
    143 #define MACCMD		0x11c4		/* gmac operation */
    144 #define  CMD_IOWR	(1U<<28)	/* write op */
    145 #define  CMD_BUSY	(1U<<31)	/* busy bit */
    146 #define MACSTAT		0x1024		/* gmac status */
    147 #define MACDATA		0x11c0		/* gmac rd/wr data */
    148 #define MACINTE		0x1028		/* interrupt enable */
    149 #define DESC_INIT	0x11fc		/* desc engine init */
    150 #define DESC_SRST	0x1204		/* desc engine sw reset */
    151 
    152 /*
    153  * GMAC register block. use mac_write()/mac_read() to handle
    154  */
    155 #define GMACMCR		0x0000		/* MAC configuration */
    156 #define  MCR_IBN	(1U<<30)	/* ??? */
    157 #define  MCR_CST	(1U<<25)	/* strip CRC */
    158 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
    159 #define  MCR_JE		(1U<<20)	/* ignore oversized >9018 condition */
    160 #define  MCR_IFG	(7U<<17)	/* 19:17 IFG value 0~7 */
    161 #define  MCR_DRCS	(1U<<16)	/* ignore (G)MII HDX Tx error */
    162 #define  MCR_USEMII	(1U<<15)	/* 1: RMII/MII, 0: RGMII (_PS) */
    163 #define  MCR_SPD100	(1U<<14)	/* force speed 100 (_FES) */
    164 #define  MCR_DO		(1U<<13)	/* */
    165 #define  MCR_LOOP	(1U<<12)	/* */
    166 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
    167 #define  MCR_IPCEN	(1U<<10)	/* handle checksum */
    168 #define  MCR_ACS	(1U<<7)		/* auto pad strip CRC */
    169 #define  MCR_TE		(1U<<3)		/* run Tx MAC engine, 0 to stop */
    170 #define  MCR_RE		(1U<<2)		/* run Rx MAC engine, 0 to stop */
    171 #define  MCR_PREA	(3U)		/* 1:0 preamble len. 0~2 */
    172 #define  _MCR_FDX	0x0000280c	/* XXX TBD */
    173 #define  _MCR_HDX	0x0001a00c	/* XXX TBD */
    174 #define GMACAFR		0x0004		/* frame DA/SA address filter */
    175 #define  AFR_RA		(1U<<31)	/* accept all irrecspective of filt. */
    176 #define  AFR_HPF	(1U<<10)	/* hash+perfect filter, or hash only */
    177 #define  AFR_SAF	(1U<<9)		/* source address filter */
    178 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
    179 #define  AFR_PCF	(2U<<6)		/* */
    180 #define  AFR_DBF	(1U<<5)		/* reject broadcast frame */
    181 #define  AFR_PM		(1U<<4)		/* accept all multicast frame */
    182 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
    183 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
    184 #define  AFR_UHTE	(1U<<1)		/* use hash table for unicast */
    185 #define  AFR_PR		(1U<<0)		/* run promisc mode */
    186 #define GMACMHTH	0x0008		/* 64bit multicast hash table 63:32 */
    187 #define GMACMHTL	0x000c		/* 64bit multicast hash table 31:0 */
    188 #define GMACGAR		0x0010		/* MDIO operation */
    189 #define  GAR_PHY	(11)		/* mii phy 15:11 */
    190 #define  GAR_REG	(6)		/* mii reg 10:6 */
    191 #define  GAR_CTL	(2)		/* control 5:2 */
    192 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
    193 #define  GAR_BUSY	(1U)		/* busy bit */
    194 #define GMACGDR		0x0014		/* MDIO rd/wr data */
    195 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
    196 					/* 31:16 pause timer value */
    197 					/* 5:4 pause timer threthold */
    198 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
    199 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
    200 #define GMACVTAG	0x001c		/* VLAN tag control */
    201 #define GMACIMPL	0x0020		/* implementation number XX.YY */
    202 #define GMACLPIS	0x0030		/* AXI LPI control */
    203 #define GMACLPIC	0x0034		/* AXI LPI control */
    204 #define GMACISR		0x0038		/* interrupt status, clear when read */
    205 #define GMACIMR		0x003c		/* interrupt enable */
    206 #define  ISR_TS		(1U<<9)		/* time stamp operation detected */
    207 #define  ISR_CO		(1U<<7)		/* Rx checksum offload completed */
    208 #define  ISR_TX		(1U<<6)		/* Tx completed */
    209 #define  ISR_RX		(1U<<5)		/* Rx completed */
    210 #define  ISR_ANY	(1U<<4)		/* any of above 5-7 report */
    211 #define  ISR_LC		(1U<<0)		/* link status change detected */
    212 #define GMACMAH0	0x0040		/* MAC address 0 47:32 */
    213 #define GMACMAL0	0x0044		/* MAC address 0 31:0 */
    214 #define GMACMAH(i) 	((i)*8+0x40)	/* supplimental MAC addr 1 - 15 */
    215 #define GMACMAL(i) 	((i)*8+0x44)	/* bit 31 to use, 30 SA,
    216 					 * 29:24 byte-wise don'care */
    217 #define GMACMIISR	0x00d8		/* resolved xMII link status */
    218 					/*  3   link up detected
    219 					 *  2:1 resovled speed
    220 					 *      0 2.5Mhz (10Mbps)
    221 					 *	1 25Mhz  (100Mbps)
    222 					 *	2 125Mhz (1000Mbps)
    223 					 *  1   full duplex detected */
    224 #define GMACEVCTL	0x0100		/* event counter control */
    225 #define GMACEVCNT(i)	((i)*4+0x114)	/* event counter 0x114~284 */
    226 
    227 #define GMACMHT0	0x0500		/* 256bit multicast hash table 0 - 7 */
    228 #define GMACMHT(i)	((i)*4+0x500)
    229 #define GMACVHT		0x0588		/* VLAN tag hash */
    230 
    231 /* 0x0700-0734 ??? */
    232 #define GMACAMAH(i)	((i)*8+0x800)	/* supplimental MAC addr 16-31 */
    233 #define GMACAMAL(i)	((i)*8+0x804)	/* bit 31 to use */
    234 
    235 #define GMACBMR		0x1000		/* DMA bus mode control
    236 					 * 24    4PBL 8???
    237 					 * 23    USP
    238 					 * 22:17 RPBL
    239 					 * 16    fixed burst, or undefined b.
    240 					 * 15:14 priority between Rx and Tx
    241 					 *  3    rxtx ratio 41
    242 					 *  2    rxtx ratio 31
    243 					 *  1    rxtx ratio 21
    244 					 *  0    rxtx ratio 11
    245 					 * 13:8  PBL possible DMA burst len
    246 					 *  7    alternative des8
    247 					 *  0    reset op. self clear
    248 					 */
    249 #define  _BMR		0x00412080	/* XXX TBD */
    250 #define  _BMR0		0x00020181	/* XXX TBD */
    251 #define  BMR_RST	(1)		/* reset op. self clear when done */
    252 #define GMACTPD		0x1004		/* write any to resume tdes */
    253 #define GMACRPD		0x1008		/* write any to resume rdes */
    254 #define GMACRDLA	0x100c		/* rdes base address 32bit paddr */
    255 #define GMACTDLA	0x1010		/* tdes base address 32bit paddr */
    256 #define  _RDLA		0x18000		/* XXX TBD system SRAM with CC ? */
    257 #define  _TDLA		0x1c000		/* XXX TBD system SRAM with CC ? */
    258 #define GMACDSR		0x1014		/* DMA status detail report; W1C */
    259 #define GMACOMR		0x1018		/* DMA operation */
    260 #define  OMR_TSF	(1U<<25)	/* 1: Tx store&forword, 0: immed. */
    261 #define  OMR_RSF	(1U<<21)	/* 1: Rx store&forward, 0: immed. */
    262 #define  OMR_ST		(1U<<13)	/* run Tx DMA engine, 0 to stop */
    263 #define  OMR_EFC	(1U<<8)		/* transmit PAUSE to throttle Rx lvl. */
    264 #define  OMR_FEF	(1U<<7)		/* allow to receive error frames */
    265 #define  OMR_RS		(1U<<1)		/* run Rx DMA engine, 0 to stop */
    266 #define GMACIE		0x101c		/* interrupt enable */
    267 #define GMACEVCS	0x1020		/* missed frame or ovf detected */
    268 #define GMACRWDT	0x1024		/* receive watchdog timer count */
    269 #define GMACAXIB	0x1028		/* AXI bus mode control */
    270 #define GMACAXIS	0x102c		/* AXI status report */
    271 /* 0x1048-1054 */			/* descriptor and buffer cur. address */
    272 #define HWFEA		0x1058		/* feature report */
    273 
    274 /* descriptor format definition */
    275 struct tdes {
    276 	uint32_t t0, t1, t2, t3;
    277 };
    278 
    279 struct rdes {
    280 	uint32_t r0, r1, r2, r3;
    281 };
    282 
    283 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    284 #define T0_EOD		(1U<<30)	/* end of descriptor array */
    285 #define T0_DRID		(24)		/* 29:24 D-RID */
    286 #define T0_PT		(1U<<21)	/* 23:21 PT */
    287 #define T0_TRID		(16)		/* 20:16 T-RID */
    288 #define T0_FS		(1U<<9)		/* first segment of frame */
    289 #define T0_LS		(1U<<8)		/* last segment of frame */
    290 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
    291 #define T0_SGOL		(1U<<6)		/* enable TCP segment offload */
    292 #define T0_TRS		(1U<<4)		/* 5:4 TRS */
    293 #define T0_IOC		(0)		/* XXX TBD interrupt when completed */
    294 /* T1 segment address 63:32 */
    295 /* T2 segment address 31:0 */
    296 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
    297 #define R0_OWN		(1U<<31)	/* desc is empty */
    298 #define R0_EOD		(1U<<30)	/* end of descriptor array */
    299 #define R0_SRID		(24)		/* 29:24 S-RID */
    300 #define R0_FR		(1U<<23)	/* FR */
    301 #define R0_ER		(1U<<21)	/* Rx error indication */
    302 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
    303 #define R0_TDRID	(14)		/* 15:14 TD-RID */
    304 #define R0_FS		(1U<<9)		/* first segment of frame */
    305 #define R0_LS		(1U<<8)		/* last segment of frame */
    306 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status */
    307 #define R0_CERR		(2U<<6)		/* 0 (undone), 1 (found ok), 2 (bad) */
    308 /* R1 frame address 63:32 */
    309 /* R2 frame address 31:0 */
    310 /* R3 31:16 received frame length, 15:0 buffer length to receive */
    311 
    312 /*
    313  * software constraction
    314  */
    315 #define MD_NTXSEGS		16		/* fixed */
    316 #define MD_TXQUEUELEN		16		/* tunable */
    317 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
    318 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
    319 #define MD_NTXDESC		(MD_TXQUEUELEN * MD_NTXSEGS)
    320 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
    321 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
    322 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
    323 
    324 #define MD_NRXDESC		64		/* tunable */
    325 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
    326 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
    327 
    328 #define SCX_INIT_RXDESC(sc, x)						\
    329 do {									\
    330 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    331 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    332 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    333 	bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
    334 	__m->m_data = __m->m_ext.ext_buf;				\
    335 	__rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
    336 	__rxd->r2 = htole32(BUS_ADDR_LO32(__paddr));			\
    337 	__rxd->r1 = htole32(BUS_ADDR_HI32(__paddr));			\
    338 	__rxd->r0 = R0_OWN | R0_FS | R0_LS;				\
    339 	if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD;			\
    340 } while (/*CONSTCOND*/0)
    341 
    342 struct control_data {
    343 	struct tdes cd_txdescs[MD_NTXDESC];
    344 	struct rdes cd_rxdescs[MD_NRXDESC];
    345 };
    346 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
    347 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
    348 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
    349 
    350 struct scx_txsoft {
    351 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    352 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    353 	int txs_firstdesc;		/* first descriptor in packet */
    354 	int txs_lastdesc;		/* last descriptor in packet */
    355 	int txs_ndesc;			/* # of descriptors used */
    356 };
    357 
    358 struct scx_rxsoft {
    359 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    360 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    361 };
    362 
    363 struct scx_softc {
    364 	device_t sc_dev;		/* generic device information */
    365 	bus_space_tag_t sc_st;		/* bus space tag */
    366 	bus_space_handle_t sc_sh;	/* bus space handle */
    367 	bus_size_t sc_sz;		/* csr map size */
    368 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
    369 	bus_size_t sc_eesz;		/* eeprom map size */
    370 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    371 	bus_dma_tag_t sc_dmat32;
    372 	struct ethercom sc_ethercom;	/* Ethernet common data */
    373 	struct mii_data sc_mii;		/* MII */
    374 	callout_t sc_tick_ch;		/* PHY monitor callout */
    375 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
    376 	int sc_nseg;			/* descriptor store nseg */
    377 	void *sc_ih;			/* interrupt cookie */
    378 	int sc_phy_id;			/* PHY address */
    379 	int sc_flowflags;		/* 802.3x PAUSE flow control */
    380 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
    381 	uint32_t sc_t0coso;		/* T0_CSUM | T0_SGOL to run */
    382 	int sc_ucodeloaded;		/* ucode for H2M/M2H/PKT */
    383 	int sc_100mii;			/* 1 for RMII/MII, 0 for RGMII */
    384 	int sc_phandle;			/* fdt phandle */
    385 	uint64_t sc_freq;
    386 
    387 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    388 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    389 
    390 	struct control_data *sc_control_data;
    391 #define sc_txdescs	sc_control_data->cd_txdescs
    392 #define sc_rxdescs	sc_control_data->cd_rxdescs
    393 
    394 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
    395 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
    396 	int sc_txfree;			/* number of free Tx descriptors */
    397 	int sc_txnext;			/* next ready Tx descriptor */
    398 	int sc_txsfree;			/* number of free Tx jobs */
    399 	int sc_txsnext;			/* next ready Tx job */
    400 	int sc_txsdirty;		/* dirty Tx jobs */
    401 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    402 
    403 	krndsource_t rnd_source;	/* random source */
    404 };
    405 
    406 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
    407 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
    408 
    409 #define SCX_CDTXSYNC(sc, x, n, ops)					\
    410 do {									\
    411 	int __x, __n;							\
    412 									\
    413 	__x = (x);							\
    414 	__n = (n);							\
    415 									\
    416 	/* If it will wrap around, sync to the end of the ring. */	\
    417 	if ((__x + __n) > MD_NTXDESC) {				\
    418 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    419 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
    420 		    (MD_NTXDESC - __x), (ops));			\
    421 		__n -= (MD_NTXDESC - __x);				\
    422 		__x = 0;						\
    423 	}								\
    424 									\
    425 	/* Now sync whatever is left. */				\
    426 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    427 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    428 } while (/*CONSTCOND*/0)
    429 
    430 #define SCX_CDRXSYNC(sc, x, ops)					\
    431 do {									\
    432 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    433 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    434 } while (/*CONSTCOND*/0)
    435 
    436 static int scx_fdt_match(device_t, cfdata_t, void *);
    437 static void scx_fdt_attach(device_t, device_t, void *);
    438 static int scx_acpi_match(device_t, cfdata_t, void *);
    439 static void scx_acpi_attach(device_t, device_t, void *);
    440 
    441 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
    442     scx_fdt_match, scx_fdt_attach, NULL, NULL);
    443 
    444 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
    445     scx_acpi_match, scx_acpi_attach, NULL, NULL);
    446 
    447 static void scx_attach_i(struct scx_softc *);
    448 static void scx_reset(struct scx_softc *);
    449 static int scx_init(struct ifnet *);
    450 static void scx_start(struct ifnet *);
    451 static void scx_stop(struct ifnet *, int);
    452 static void scx_watchdog(struct ifnet *);
    453 static int scx_ioctl(struct ifnet *, u_long, void *);
    454 static void scx_set_rcvfilt(struct scx_softc *);
    455 static int scx_ifmedia_upd(struct ifnet *);
    456 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    457 static void mii_statchg(struct ifnet *);
    458 static void phy_tick(void *);
    459 static int mii_readreg(device_t, int, int, uint16_t *);
    460 static int mii_writereg(device_t, int, int, uint16_t);
    461 static int scx_intr(void *);
    462 static void txreap(struct scx_softc *);
    463 static void rxintr(struct scx_softc *);
    464 static int add_rxbuf(struct scx_softc *, int);
    465 
    466 static int spin_waitfor(struct scx_softc *, int, int);
    467 static int mac_read(struct scx_softc *, int);
    468 static void mac_write(struct scx_softc *, int, int);
    469 static void loaducode(struct scx_softc *);
    470 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
    471 static int get_mdioclk(uint32_t);
    472 
    473 #define CSR_READ(sc,off) \
    474 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
    475 #define CSR_WRITE(sc,off,val) \
    476 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
    477 #define EE_READ(sc,off) \
    478 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
    479 
    480 static int
    481 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
    482 {
    483 	static const char * compatible[] = {
    484 		"socionext,synquacer-netsec",
    485 		NULL
    486 	};
    487 	struct fdt_attach_args * const faa = aux;
    488 
    489 	return of_match_compatible(faa->faa_phandle, compatible);
    490 }
    491 
    492 static void
    493 scx_fdt_attach(device_t parent, device_t self, void *aux)
    494 {
    495 	struct scx_softc * const sc = device_private(self);
    496 	struct fdt_attach_args * const faa = aux;
    497 	const int phandle = faa->faa_phandle;
    498 	bus_space_tag_t bst = faa->faa_bst;
    499 	bus_space_handle_t bsh;
    500 	bus_space_handle_t eebsh;
    501 	bus_addr_t addr[2];
    502 	bus_size_t size[2];
    503 	char intrstr[128];
    504 	const char *phy_mode;
    505 
    506 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
    507 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
    508 		aprint_error(": unable to map device csr\n");
    509 		return;
    510 	}
    511 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
    512 		aprint_error(": failed to decode interrupt\n");
    513 		goto fail;
    514 	}
    515 	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
    516 		NOT_MP_SAFE, scx_intr, sc);
    517 	if (sc->sc_ih == NULL) {
    518 		aprint_error_dev(self, "couldn't establish interrupt\n");
    519 		goto fail;
    520 	}
    521 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
    522 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
    523 		aprint_error(": unable to map device eeprom\n");
    524 		goto fail;
    525 	}
    526 
    527 	aprint_naive("\n");
    528 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
    529 	aprint_normal_dev(self, "interrupt on %s\n", intrstr);
    530 
    531 	sc->sc_dev = self;
    532 	sc->sc_st = bst;
    533 	sc->sc_sh = bsh;
    534 	sc->sc_sz = size[0];
    535 	sc->sc_eesh = eebsh;
    536 	sc->sc_eesz = size[1];
    537 	sc->sc_dmat = faa->faa_dmat;
    538 	sc->sc_dmat32 = faa->faa_dmat; /* XXX */
    539 	sc->sc_phandle = phandle;
    540 
    541 	phy_mode = fdtbus_get_string(phandle, "phy-mode");
    542 	if (phy_mode == NULL)
    543 		aprint_error(": missing 'phy-mode' property\n");
    544 	sc->sc_100mii = (phy_mode  && strcmp(phy_mode, "rgmii") != 0);
    545 sc->sc_phy_id = 7; /* XXX */
    546 sc->sc_freq = 125 * 1000 * 1000; /* XXX */
    547 aprint_normal_dev(self,
    548 "phy mode %s, phy id %d, freq %ld\n", phy_mode, sc->sc_phy_id, sc->sc_freq);
    549 
    550 	scx_attach_i(sc);
    551 	return;
    552  fail:
    553 	if (sc->sc_eesz)
    554 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    555 	if (sc->sc_sz)
    556 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    557 	return;
    558 }
    559 
    560 static int
    561 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
    562 {
    563 	static const char * compatible[] = {
    564 		"SCX0001",
    565 		NULL
    566 	};
    567 	struct acpi_attach_args *aa = aux;
    568 
    569 	if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
    570 		return 0;
    571 	return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
    572 }
    573 
    574 static void
    575 scx_acpi_attach(device_t parent, device_t self, void *aux)
    576 {
    577 	struct scx_softc * const sc = device_private(self);
    578 	struct acpi_attach_args * const aa = aux;
    579 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
    580 	bus_space_tag_t bst = aa->aa_memt;
    581 	bus_space_handle_t bsh, eebsh;
    582 	struct acpi_resources res;
    583 	struct acpi_mem *mem;
    584 	struct acpi_irq *irq;
    585 	char *phy_mode;
    586 	ACPI_INTEGER acpi_phy, acpi_freq;
    587 	ACPI_STATUS rv;
    588 
    589 	rv = acpi_resource_parse(self, handle, "_CRS",
    590 	    &res, &acpi_resource_parse_ops_default);
    591 	if (ACPI_FAILURE(rv))
    592 		return;
    593 	mem = acpi_res_mem(&res, 0);
    594 	irq = acpi_res_irq(&res, 0);
    595 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
    596 		aprint_error(": incomplete csr resources\n");
    597 		return;
    598 	}
    599 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
    600 		aprint_error(": couldn't map registers\n");
    601 		return;
    602 	}
    603 	sc->sc_sz = mem->ar_length;
    604 	sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
    605 	    NOT_MP_SAFE, scx_intr, sc, device_xname(self));
    606 	if (sc->sc_ih == NULL) {
    607 		aprint_error_dev(self, "couldn't establish interrupt\n");
    608 		goto fail;
    609 	}
    610 	mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
    611 	if (mem == NULL || mem->ar_length == 0) {
    612 		aprint_error(": incomplete eeprom resources\n");
    613 		goto fail;
    614 	}
    615 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
    616 		aprint_error(": couldn't map registers\n");
    617 		goto fail;
    618 	}
    619 	sc->sc_eesz = mem->ar_length;
    620 
    621 	rv = acpi_dsd_string(handle, "phy-mode", &phy_mode);
    622 	if (ACPI_FAILURE(rv)) {
    623 		aprint_error(": missing 'phy-mode' property\n");
    624 		phy_mode = NULL;
    625 	}
    626 	rv = acpi_dsd_integer(handle, "phy-channel", &acpi_phy);
    627 	if (ACPI_FAILURE(rv))
    628 		acpi_phy = 31;
    629 	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
    630 			&acpi_freq);
    631 	if (ACPI_FAILURE(rv))
    632 		acpi_freq = 999;
    633 
    634 	aprint_naive("\n");
    635 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
    636 
    637 	sc->sc_dev = self;
    638 	sc->sc_st = bst;
    639 	sc->sc_sh = bsh;
    640 	sc->sc_eesh = eebsh;
    641 	sc->sc_dmat = aa->aa_dmat64;
    642 	sc->sc_dmat32 = aa->aa_dmat;	/* descriptor needs dma32 */
    643 
    644 aprint_normal_dev(self,
    645 "phy mode %s, phy id %d, freq %ld\n", phy_mode, (int)acpi_phy, acpi_freq);
    646 	sc->sc_100mii = (phy_mode && strcmp(phy_mode, "rgmii") != 0);
    647 	sc->sc_phy_id = (int)acpi_phy;
    648 	sc->sc_freq = acpi_freq;
    649 aprint_normal_dev(self,
    650 "GMACGAR %08x\n", mac_read(sc, GMACGAR));
    651 
    652 	scx_attach_i(sc);
    653 
    654 	acpi_resource_cleanup(&res);
    655 	return;
    656  fail:
    657 	if (sc->sc_eesz > 0)
    658 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    659 	if (sc->sc_sz > 0)
    660 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    661 	acpi_resource_cleanup(&res);
    662 	return;
    663 }
    664 
    665 static void
    666 scx_attach_i(struct scx_softc *sc)
    667 {
    668 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
    669 	struct mii_data * const mii = &sc->sc_mii;
    670 	struct ifmedia * const ifm = &mii->mii_media;
    671 	uint32_t hwver, dwimp;
    672 	uint8_t enaddr[ETHER_ADDR_LEN];
    673 	bus_dma_segment_t seg;
    674 	uint32_t csr;
    675 	int i, nseg, error = 0;
    676 
    677 	hwver = CSR_READ(sc, HWVER);	/* Socionext HW */
    678 	/* stored in big endian order */
    679 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
    680 	enaddr[0] = csr >> 24;
    681 	enaddr[1] = csr >> 16;
    682 	enaddr[2] = csr >> 8;
    683 	enaddr[3] = csr;
    684 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
    685 	enaddr[4] = csr >> 24;
    686 	enaddr[5] = csr >> 16;
    687 	dwimp = mac_read(sc, GMACIMPL);	/* DW EMAC XX.YY */
    688 
    689 	aprint_normal_dev(sc->sc_dev,
    690 	    "Socionext NetSec GbE hw %d.%d impl 0x%x\n",
    691 	    hwver >> 16, hwver & 0xffff, dwimp);
    692 	aprint_normal_dev(sc->sc_dev,
    693 	    "Ethernet address %s\n", ether_sprintf(enaddr));
    694 
    695 sc->sc_phy_id = MII_PHY_ANY;
    696 	sc->sc_mdclk = get_mdioclk(sc->sc_freq); /* 5:2 clk control */
    697 sc->sc_mdclk = 5; /* XXX */
    698 aprint_normal_dev(sc->sc_dev, "using %d for mdclk\n", sc->sc_mdclk);
    699 sc->sc_mdclk <<= 2;
    700 
    701 	sc->sc_flowflags = 0;
    702 
    703 	if (sc->sc_ucodeloaded == 0)
    704 		loaducode(sc);
    705 
    706 	mii->mii_ifp = ifp;
    707 	mii->mii_readreg = mii_readreg;
    708 	mii->mii_writereg = mii_writereg;
    709 	mii->mii_statchg = mii_statchg;
    710 
    711 	sc->sc_ethercom.ec_mii = mii;
    712 	ifmedia_init(ifm, 0, scx_ifmedia_upd, scx_ifmedia_sts);
    713 	mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
    714 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    715 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    716 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    717 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    718 	} else
    719 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    720 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
    721 
    722 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    723 	ifp->if_softc = sc;
    724 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    725 	ifp->if_ioctl = scx_ioctl;
    726 	ifp->if_start = scx_start;
    727 	ifp->if_watchdog = scx_watchdog;
    728 	ifp->if_init = scx_init;
    729 	ifp->if_stop = scx_stop;
    730 	IFQ_SET_READY(&ifp->if_snd);
    731 
    732 	if_attach(ifp);
    733 	if_deferred_start_init(ifp, NULL);
    734 	ether_ifattach(ifp, enaddr);
    735 
    736 	callout_init(&sc->sc_tick_ch, 0);
    737 	callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
    738 
    739 	/*
    740 	 * Allocate the control data structures, and create and load the
    741 	 * DMA map for it.
    742 	 */
    743 	error = bus_dmamem_alloc(sc->sc_dmat32,
    744 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    745 	if (error != 0) {
    746 		aprint_error_dev(sc->sc_dev,
    747 		    "unable to allocate control data, error = %d\n", error);
    748 		goto fail_0;
    749 	}
    750 	error = bus_dmamem_map(sc->sc_dmat32, &seg, nseg,
    751 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
    752 	    BUS_DMA_COHERENT);
    753 	if (error != 0) {
    754 		aprint_error_dev(sc->sc_dev,
    755 		    "unable to map control data, error = %d\n", error);
    756 		goto fail_1;
    757 	}
    758 	error = bus_dmamap_create(sc->sc_dmat32,
    759 	    sizeof(struct control_data), 1,
    760 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
    761 	if (error != 0) {
    762 		aprint_error_dev(sc->sc_dev,
    763 		    "unable to create control data DMA map, "
    764 		    "error = %d\n", error);
    765 		goto fail_2;
    766 	}
    767 	error = bus_dmamap_load(sc->sc_dmat32, sc->sc_cddmamap,
    768 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
    769 	if (error != 0) {
    770 		aprint_error_dev(sc->sc_dev,
    771 		    "unable to load control data DMA map, error = %d\n",
    772 		    error);
    773 		goto fail_3;
    774 	}
    775 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    776 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
    777 		    MD_NTXSEGS, MCLBYTES, 0, 0,
    778 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    779 			aprint_error_dev(sc->sc_dev,
    780 			    "unable to create tx DMA map %d, error = %d\n",
    781 			    i, error);
    782 			goto fail_4;
    783 		}
    784 	}
    785 	for (i = 0; i < MD_NRXDESC; i++) {
    786 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
    787 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    788 			aprint_error_dev(sc->sc_dev,
    789 			    "unable to create rx DMA map %d, error = %d\n",
    790 			    i, error);
    791 			goto fail_5;
    792 		}
    793 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    794 	}
    795 	sc->sc_seg = seg;
    796 	sc->sc_nseg = nseg;
    797 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
    798 
    799 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    800 		pmf_class_network_register(sc->sc_dev, ifp);
    801 	else
    802 		aprint_error_dev(sc->sc_dev,
    803 			"couldn't establish power handler\n");
    804 
    805 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    806 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    807 
    808 	return;
    809 
    810   fail_5:
    811 	for (i = 0; i < MD_NRXDESC; i++) {
    812 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    813 			bus_dmamap_destroy(sc->sc_dmat,
    814 			    sc->sc_rxsoft[i].rxs_dmamap);
    815 	}
    816   fail_4:
    817 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    818 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    819 			bus_dmamap_destroy(sc->sc_dmat,
    820 			    sc->sc_txsoft[i].txs_dmamap);
    821 	}
    822 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    823   fail_3:
    824 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    825   fail_2:
    826 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    827 	    sizeof(struct control_data));
    828   fail_1:
    829 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    830   fail_0:
    831 	if (sc->sc_phandle)
    832 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
    833 	else
    834 		acpi_intr_disestablish(sc->sc_ih);
    835 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    836 	return;
    837 }
    838 
    839 static void
    840 scx_reset(struct scx_softc *sc)
    841 {
    842 	int loop = 0, busy;
    843 
    844 	mac_write(sc, GMACOMR, 0);
    845 	mac_write(sc, GMACBMR, BMR_RST);
    846 	do {
    847 		DELAY(1);
    848 		busy = mac_read(sc, GMACBMR) & BMR_RST;
    849 	} while (++loop < 3000 && busy);
    850 	mac_write(sc, GMACBMR, _BMR);
    851 	mac_write(sc, GMACAFR, 0);
    852 
    853 	CSR_WRITE(sc, CLKEN, CLK_ALL);	/* distribute clock sources */
    854 	CSR_WRITE(sc, SWRESET, 0);	/* reset operation */
    855 	CSR_WRITE(sc, SWRESET, 1U<<31);	/* manifest run */
    856 	CSR_WRITE(sc, COMINIT, 3); 	/* DB|CLS*/
    857 
    858 	mac_write(sc, GMACEVCTL, 1);
    859 }
    860 
    861 static int
    862 scx_init(struct ifnet *ifp)
    863 {
    864 	struct scx_softc *sc = ifp->if_softc;
    865 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
    866 	uint32_t csr;
    867 	int i;
    868 
    869 	/* Cancel pending I/O. */
    870 	scx_stop(ifp, 0);
    871 
    872 	/* Reset the chip to a known state. */
    873 	scx_reset(sc);
    874 
    875 	/* set my address in perfect match slot 0. little endin order */
    876 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
    877 	mac_write(sc, GMACMAL0, csr);
    878 	csr = (ea[5] << 8) | ea[4];
    879 	mac_write(sc, GMACMAH0, csr);
    880 
    881 	/* accept multicast frame or run promisc mode */
    882 	scx_set_rcvfilt(sc);
    883 
    884 	(void)scx_ifmedia_upd(ifp);
    885 
    886 	/* build sane Tx */
    887 	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
    888 	sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
    889 	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
    890 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    891 	sc->sc_txfree = MD_NTXDESC;
    892 	sc->sc_txnext = 0;
    893 	for (i = 0; i < MD_TXQUEUELEN; i++)
    894 		sc->sc_txsoft[i].txs_mbuf = NULL;
    895 	sc->sc_txsfree = MD_TXQUEUELEN;
    896 	sc->sc_txsnext = 0;
    897 	sc->sc_txsdirty = 0;
    898 
    899 	/* load Rx descriptors with fresh mbuf */
    900 	for (i = 0; i < MD_NRXDESC; i++)
    901 		(void)add_rxbuf(sc, i);
    902 	sc->sc_rxptr = 0;
    903 
    904 	/* XXX 32 bit paddr XXX hand Tx/Rx rings to HW XXX */
    905 	mac_write(sc, GMACTDLA, SCX_CDTXADDR(sc, 0));
    906 	mac_write(sc, GMACRDLA, SCX_CDRXADDR(sc, 0));
    907 
    908 	/* kick to start GMAC engine */
    909 	CSR_WRITE(sc, RXI_CLR, ~0);
    910 	CSR_WRITE(sc, TXI_CLR, ~0);
    911 	csr = mac_read(sc, GMACOMR);
    912 	mac_write(sc, GMACOMR, csr | OMR_RS | OMR_ST);
    913 
    914 	ifp->if_flags |= IFF_RUNNING;
    915 	ifp->if_flags &= ~IFF_OACTIVE;
    916 
    917 	/* start one second timer */
    918 	callout_schedule(&sc->sc_tick_ch, hz);
    919 
    920 	return 0;
    921 }
    922 
    923 static void
    924 scx_stop(struct ifnet *ifp, int disable)
    925 {
    926 	struct scx_softc *sc = ifp->if_softc;
    927 
    928 	/* Stop the one second clock. */
    929 	callout_stop(&sc->sc_tick_ch);
    930 
    931 	/* Down the MII. */
    932 	mii_down(&sc->sc_mii);
    933 
    934 	/* Mark the interface down and cancel the watchdog timer. */
    935 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    936 	ifp->if_timer = 0;
    937 }
    938 
    939 static void
    940 scx_watchdog(struct ifnet *ifp)
    941 {
    942 	struct scx_softc *sc = ifp->if_softc;
    943 
    944 	/*
    945 	 * Since we're not interrupting every packet, sweep
    946 	 * up before we report an error.
    947 	 */
    948 	txreap(sc);
    949 
    950 	if (sc->sc_txfree != MD_NTXDESC) {
    951 		aprint_error_dev(sc->sc_dev,
    952 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
    953 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
    954 		if_statinc(ifp, if_oerrors);
    955 
    956 		/* Reset the interface. */
    957 		scx_init(ifp);
    958 	}
    959 
    960 	scx_start(ifp);
    961 }
    962 
    963 static int
    964 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    965 {
    966 	struct scx_softc *sc = ifp->if_softc;
    967 	struct ifreq *ifr = (struct ifreq *)data;
    968 	struct ifmedia *ifm;
    969 	int s, error;
    970 
    971 	s = splnet();
    972 
    973 	switch (cmd) {
    974 	case SIOCSIFMEDIA:
    975 		/* Flow control requires full-duplex mode. */
    976 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
    977 		    (ifr->ifr_media & IFM_FDX) == 0)
    978 			ifr->ifr_media &= ~IFM_ETH_FMASK;
    979 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
    980 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
    981 				/* We can do both TXPAUSE and RXPAUSE. */
    982 				ifr->ifr_media |=
    983 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
    984 			}
    985 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
    986 		}
    987 		ifm = &sc->sc_mii.mii_media;
    988 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
    989 		break;
    990 	default:
    991 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    992 			break;
    993 
    994 		error = 0;
    995 
    996 		if (cmd == SIOCSIFCAP)
    997 			error = (*ifp->if_init)(ifp);
    998 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    999 			;
   1000 		else if (ifp->if_flags & IFF_RUNNING) {
   1001 			/*
   1002 			 * Multicast list has changed; set the hardware filter
   1003 			 * accordingly.
   1004 			 */
   1005 			scx_set_rcvfilt(sc);
   1006 		}
   1007 		break;
   1008 	}
   1009 
   1010 	splx(s);
   1011 	return error;
   1012 }
   1013 
   1014 static void
   1015 scx_set_rcvfilt(struct scx_softc *sc)
   1016 {
   1017 	struct ethercom * const ec = &sc->sc_ethercom;
   1018 	struct ifnet * const ifp = &ec->ec_if;
   1019 	struct ether_multistep step;
   1020 	struct ether_multi *enm;
   1021 	uint32_t mchash[2]; 	/* 2x 32 = 64 bit */
   1022 	uint32_t csr, crc;
   1023 	int i;
   1024 
   1025 	csr = mac_read(sc, GMACAFR);
   1026 	csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
   1027 	mac_write(sc, GMACAFR, csr);
   1028 
   1029 	ETHER_LOCK(ec);
   1030 	if (ifp->if_flags & IFF_PROMISC) {
   1031 		ec->ec_flags |= ETHER_F_ALLMULTI;
   1032 		ETHER_UNLOCK(ec);
   1033 		goto update;
   1034 	}
   1035 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   1036 
   1037 	/* clear 15 entry supplimental perfect match filter */
   1038 	for (i = 1; i < 16; i++)
   1039 		 mac_write(sc, GMACMAH(i), 0);
   1040 	/* build 64 bit multicast hash filter */
   1041 	crc = mchash[1] = mchash[0] = 0;
   1042 
   1043 	ETHER_FIRST_MULTI(step, ec, enm);
   1044 	i = 1; /* slot 0 is occupied */
   1045 	while (enm != NULL) {
   1046 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1047 			/*
   1048 			 * We must listen to a range of multicast addresses.
   1049 			 * For now, just accept all multicasts, rather than
   1050 			 * trying to set only those filter bits needed to match
   1051 			 * the range.  (At this time, the only use of address
   1052 			 * ranges is for IP multicast routing, for which the
   1053 			 * range is big enough to require all bits set.)
   1054 			 */
   1055 			ec->ec_flags |= ETHER_F_ALLMULTI;
   1056 			ETHER_UNLOCK(ec);
   1057 			goto update;
   1058 		}
   1059 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
   1060 		if (i < 16) {
   1061 			/* use 15 entry perfect match filter */
   1062 			uint32_t addr;
   1063 			uint8_t *ep = enm->enm_addrlo;
   1064 			addr = (ep[3] << 24) | (ep[2] << 16)
   1065 			     | (ep[1] <<  8) |  ep[0];
   1066 			mac_write(sc, GMACMAL(i), addr);
   1067 			addr = (ep[5] << 8) | ep[4];
   1068 			mac_write(sc, GMACMAH(i), addr | 1U<<31);
   1069 		} else {
   1070 			/* use hash table when too many */
   1071 			/* bit_reserve_32(~crc) !? */
   1072 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1073 			/* 1(31) 5(30:26) bit sampling */
   1074 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   1075 		}
   1076 		ETHER_NEXT_MULTI(step, enm);
   1077 		i++;
   1078 	}
   1079 	ETHER_UNLOCK(ec);
   1080 
   1081 	if (crc)
   1082 		csr |= AFR_MHTE | AFR_HPF; /* use hash+perfect */
   1083 	mac_write(sc, GMACMHTH, mchash[1]);
   1084 	mac_write(sc, GMACMHTL, mchash[0]);
   1085 	mac_write(sc, GMACAFR, csr);
   1086 	return;
   1087 
   1088  update:
   1089 	/* With PM or AM, MHTE/MHT0-7 are never consulted. really? */
   1090 	if (ifp->if_flags & IFF_PROMISC)
   1091 		csr |= AFR_PR;	/* run promisc. mode */
   1092 	else
   1093 		csr |= AFR_PM;	/* accept all multicast */
   1094 	mac_write(sc, GMACAFR, csr);
   1095 	return;
   1096 }
   1097 
   1098 static int
   1099 scx_ifmedia_upd(struct ifnet *ifp)
   1100 {
   1101 	struct scx_softc *sc = ifp->if_softc;
   1102 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
   1103 
   1104 	if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
   1105 		; /* restart AN */
   1106 		; /* enable AN */
   1107 		; /* advertise flow control pause */
   1108 		; /* adv. 1000FDX,100FDX,100HDX,10FDX,10HDX */
   1109 	} else {
   1110 #if 1 /* XXX not sure to belong here XXX */
   1111 		uint32_t mcr = mac_read(sc, GMACMCR);
   1112 		if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_1000_T)
   1113 			mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
   1114 		else {
   1115 			if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX
   1116 			    && sc->sc_100mii)
   1117 				mcr |= MCR_SPD100;
   1118 			mcr |= MCR_USEMII;
   1119 		}
   1120 		if (ifm->ifm_cur->ifm_media & IFM_FDX)
   1121 			mcr |= MCR_USEFDX;
   1122 		mcr |= MCR_CST | MCR_JE;
   1123 		if (sc->sc_100mii == 0)
   1124 			mcr |= MCR_IBN;
   1125 		mac_write(sc, GMACMCR, mcr);
   1126 #endif
   1127 	}
   1128 	return 0;
   1129 }
   1130 
   1131 static void
   1132 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1133 {
   1134 	struct scx_softc *sc = ifp->if_softc;
   1135 	struct mii_data *mii = &sc->sc_mii;
   1136 
   1137 	mii_pollstat(mii);
   1138 	ifmr->ifm_status = mii->mii_media_status;
   1139 	ifmr->ifm_active = sc->sc_flowflags |
   1140 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
   1141 }
   1142 
   1143 void
   1144 mii_statchg(struct ifnet *ifp)
   1145 {
   1146 	struct scx_softc *sc = ifp->if_softc;
   1147 	struct mii_data *mii = &sc->sc_mii;
   1148 	uint32_t fcr;
   1149 
   1150 #if 1
   1151 	/* decode MIISR register value */
   1152 	uint32_t miisr = mac_read(sc, GMACMIISR);
   1153 	int spd = (miisr >> 1) & 03;
   1154 	printf("MII link status (0x%x) %s",
   1155 	    miisr, (miisr & 8) ? "up" : "down");
   1156 	if (miisr & 8) {
   1157 		printf(" spd%d", (spd == 2) ? 1000 : (spd == 1) ? 100 : 10);
   1158 		if (miisr & 1)
   1159 			printf(",full-duplex");
   1160 	}
   1161 	printf("\n");
   1162 #endif
   1163 	/* Get flow control negotiation result. */
   1164 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1165 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
   1166 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1167 
   1168 	/* Adjust PAUSE flow control. */
   1169 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
   1170 	if (mii->mii_media_active & IFM_FDX) {
   1171 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   1172 			fcr |= FCR_TFE;
   1173 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   1174 			fcr |= FCR_RFE;
   1175 	}
   1176 	mac_write(sc, GMACFCR, fcr);
   1177 
   1178 printf("%ctxfe, %crxfe\n",
   1179      (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
   1180 }
   1181 
   1182 static void
   1183 phy_tick(void *arg)
   1184 {
   1185 	struct scx_softc *sc = arg;
   1186 	struct mii_data *mii = &sc->sc_mii;
   1187 	int s;
   1188 
   1189 	s = splnet();
   1190 	mii_tick(mii);
   1191 	splx(s);
   1192 
   1193 	callout_schedule(&sc->sc_tick_ch, hz);
   1194 }
   1195 
   1196 static int
   1197 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1198 {
   1199 	struct scx_softc *sc = device_private(self);
   1200 	uint32_t miia;
   1201 	int error;
   1202 
   1203 uint32_t clk = CSR_READ(sc, CLKEN);
   1204 CSR_WRITE(sc, CLKEN, clk | CLK_G);
   1205 
   1206 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1207 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
   1208 	error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
   1209 	if (error)
   1210 		return error;
   1211 	*val = mac_read(sc, GMACGDR);
   1212 	return 0;
   1213 }
   1214 
   1215 static int
   1216 mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1217 {
   1218 	struct scx_softc *sc = device_private(self);
   1219 	uint32_t miia;
   1220 	uint16_t dummy;
   1221 	int error;
   1222 
   1223 uint32_t clk = CSR_READ(sc, CLKEN);
   1224 CSR_WRITE(sc, CLKEN, clk | CLK_G);
   1225 
   1226 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1227 	mac_write(sc, GMACGDR, val);
   1228 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
   1229 	error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
   1230 	if (error)
   1231 		return error;
   1232 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
   1233 	return 0;
   1234 }
   1235 
   1236 static void
   1237 scx_start(struct ifnet *ifp)
   1238 {
   1239 	struct scx_softc *sc = ifp->if_softc;
   1240 	struct mbuf *m0, *m;
   1241 	struct scx_txsoft *txs;
   1242 	bus_dmamap_t dmamap;
   1243 	int error, nexttx, lasttx, ofree, seg;
   1244 	uint32_t tdes0;
   1245 
   1246 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1247 		return;
   1248 
   1249 	/* Remember the previous number of free descriptors. */
   1250 	ofree = sc->sc_txfree;
   1251 
   1252 	/*
   1253 	 * Loop through the send queue, setting up transmit descriptors
   1254 	 * until we drain the queue, or use up all available transmit
   1255 	 * descriptors.
   1256 	 */
   1257 	for (;;) {
   1258 		IFQ_POLL(&ifp->if_snd, m0);
   1259 		if (m0 == NULL)
   1260 			break;
   1261 
   1262 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
   1263 			txreap(sc);
   1264 			if (sc->sc_txsfree == 0)
   1265 				break;
   1266 		}
   1267 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1268 		dmamap = txs->txs_dmamap;
   1269 
   1270 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1271 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1272 		if (error) {
   1273 			if (error == EFBIG) {
   1274 				aprint_error_dev(sc->sc_dev,
   1275 				    "Tx packet consumes too many "
   1276 				    "DMA segments, dropping...\n");
   1277 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
   1278 				    m_freem(m0);
   1279 				    continue;
   1280 			}
   1281 			/* Short on resources, just stop for now. */
   1282 			break;
   1283 		}
   1284 
   1285 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   1286 			/*
   1287 			 * Not enough free descriptors to transmit this
   1288 			 * packet.  We haven't committed anything yet,
   1289 			 * so just unload the DMA map, put the packet
   1290 			 * back on the queue, and punt.	 Notify the upper
   1291 			 * layer that there are not more slots left.
   1292 			 */
   1293 			ifp->if_flags |= IFF_OACTIVE;
   1294 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1295 			break;
   1296 		}
   1297 
   1298 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1299 
   1300 		/*
   1301 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1302 		 */
   1303 
   1304 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1305 		    BUS_DMASYNC_PREWRITE);
   1306 
   1307 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
   1308 		lasttx = -1;
   1309 		for (nexttx = sc->sc_txnext, seg = 0;
   1310 		     seg < dmamap->dm_nsegs;
   1311 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
   1312 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
   1313 			bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
   1314 			/*
   1315 			 * If this is the first descriptor we're
   1316 			 * enqueueing, don't set the OWN bit just
   1317 			 * yet.	 That could cause a race condition.
   1318 			 * We'll do it below.
   1319 			 */
   1320 			tdes->t3 = dmamap->dm_segs[seg].ds_len;
   1321 			tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
   1322 			tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
   1323 			tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
   1324 					(15 << T0_TRID) | T0_PT |
   1325 					sc->sc_t0coso | T0_TRS;
   1326 			tdes0 = T0_OWN; /* 2nd and other segments */
   1327 			lasttx = nexttx;
   1328 		}
   1329 		/*
   1330 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
   1331 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
   1332 		 * time and NFS stops to proceed until scx_watchdog()
   1333 		 * calls txreap() to reclaim the unack'ed mbuf.
   1334 		 * It's painful to traverse every mbuf chain to determine
   1335 		 * whether someone is waiting for Tx completion.
   1336 		 */
   1337 		m = m0;
   1338 		do {
   1339 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
   1340 				sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
   1341 				break;
   1342 			}
   1343 		} while ((m = m->m_next) != NULL);
   1344 
   1345 		/* Write deferred 1st segment T0_OWN at the final stage */
   1346 		sc->sc_txdescs[lasttx].t0 |= T0_LS;
   1347 		sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
   1348 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1349 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1350 
   1351 		/* Tell DMA start transmit */
   1352 		mac_write(sc, GMACTPD, 1);
   1353 
   1354 		txs->txs_mbuf = m0;
   1355 		txs->txs_firstdesc = sc->sc_txnext;
   1356 		txs->txs_lastdesc = lasttx;
   1357 		txs->txs_ndesc = dmamap->dm_nsegs;
   1358 
   1359 		sc->sc_txfree -= txs->txs_ndesc;
   1360 		sc->sc_txnext = nexttx;
   1361 		sc->sc_txsfree--;
   1362 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
   1363 		/*
   1364 		 * Pass the packet to any BPF listeners.
   1365 		 */
   1366 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1367 	}
   1368 
   1369 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1370 		/* No more slots left; notify upper layer. */
   1371 		ifp->if_flags |= IFF_OACTIVE;
   1372 	}
   1373 	if (sc->sc_txfree != ofree) {
   1374 		/* Set a watchdog timer in case the chip flakes out. */
   1375 		ifp->if_timer = 5;
   1376 	}
   1377 }
   1378 
   1379 static int
   1380 scx_intr(void *arg)
   1381 {
   1382 	struct scx_softc *sc = arg;
   1383 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1384 
   1385 	(void)ifp;
   1386 	/* XXX decode interrupt cause to pick isr() XXX */
   1387 	rxintr(sc);
   1388 	txreap(sc);
   1389 	return 1;
   1390 }
   1391 
   1392 static void
   1393 txreap(struct scx_softc *sc)
   1394 {
   1395 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1396 	struct scx_txsoft *txs;
   1397 	uint32_t txstat;
   1398 	int i;
   1399 
   1400 	ifp->if_flags &= ~IFF_OACTIVE;
   1401 
   1402 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
   1403 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
   1404 		txs = &sc->sc_txsoft[i];
   1405 
   1406 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1407 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1408 
   1409 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1410 		if (txstat & T0_OWN) /* desc is still in use */
   1411 			break;
   1412 
   1413 		/* There is no way to tell transmission status per frame */
   1414 
   1415 		if_statinc(ifp, if_opackets);
   1416 
   1417 		sc->sc_txfree += txs->txs_ndesc;
   1418 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1419 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1420 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1421 		m_freem(txs->txs_mbuf);
   1422 		txs->txs_mbuf = NULL;
   1423 	}
   1424 	sc->sc_txsdirty = i;
   1425 	if (sc->sc_txsfree == MD_TXQUEUELEN)
   1426 		ifp->if_timer = 0;
   1427 }
   1428 
   1429 static void
   1430 rxintr(struct scx_softc *sc)
   1431 {
   1432 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1433 	struct scx_rxsoft *rxs;
   1434 	struct mbuf *m;
   1435 	uint32_t rxstat;
   1436 	int i, len;
   1437 
   1438 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
   1439 		rxs = &sc->sc_rxsoft[i];
   1440 
   1441 		SCX_CDRXSYNC(sc, i,
   1442 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1443 
   1444 		rxstat = sc->sc_rxdescs[i].r0;
   1445 		if (rxstat & R0_OWN) /* desc is left empty */
   1446 			break;
   1447 
   1448 		/* R0_FS | R0_LS must have been marked for this desc */
   1449 
   1450 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1451 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1452 
   1453 		len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
   1454 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
   1455 		m = rxs->rxs_mbuf;
   1456 
   1457 		if (add_rxbuf(sc, i) != 0) {
   1458 			if_statinc(ifp, if_ierrors);
   1459 			SCX_INIT_RXDESC(sc, i);
   1460 			bus_dmamap_sync(sc->sc_dmat,
   1461 			    rxs->rxs_dmamap, 0,
   1462 			    rxs->rxs_dmamap->dm_mapsize,
   1463 			    BUS_DMASYNC_PREREAD);
   1464 			continue;
   1465 		}
   1466 
   1467 		m_set_rcvif(m, ifp);
   1468 		m->m_pkthdr.len = m->m_len = len;
   1469 
   1470 		if (rxstat & R0_CSUM) {
   1471 			uint32_t csum = M_CSUM_IPv4;
   1472 			if (rxstat & R0_CERR)
   1473 				csum |= M_CSUM_IPv4_BAD;
   1474 			m->m_pkthdr.csum_flags |= csum;
   1475 		}
   1476 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1477 	}
   1478 	sc->sc_rxptr = i;
   1479 }
   1480 
   1481 static int
   1482 add_rxbuf(struct scx_softc *sc, int i)
   1483 {
   1484 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
   1485 	struct mbuf *m;
   1486 	int error;
   1487 
   1488 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1489 	if (m == NULL)
   1490 		return ENOBUFS;
   1491 
   1492 	MCLGET(m, M_DONTWAIT);
   1493 	if ((m->m_flags & M_EXT) == 0) {
   1494 		m_freem(m);
   1495 		return ENOBUFS;
   1496 	}
   1497 
   1498 	if (rxs->rxs_mbuf != NULL)
   1499 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1500 
   1501 	rxs->rxs_mbuf = m;
   1502 
   1503 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1504 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1505 	if (error) {
   1506 		aprint_error_dev(sc->sc_dev,
   1507 		    "can't load rx DMA map %d, error = %d\n", i, error);
   1508 		panic("add_rxbuf");
   1509 	}
   1510 
   1511 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1512 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1513 	SCX_INIT_RXDESC(sc, i);
   1514 
   1515 	return 0;
   1516 }
   1517 
   1518 static int
   1519 spin_waitfor(struct scx_softc *sc, int reg, int exist)
   1520 {
   1521 	int busy, loop;
   1522 
   1523 	busy = CSR_READ(sc, reg) & exist;
   1524 	if (busy == 0)
   1525 		return 0;
   1526 	loop = 30000;
   1527 	do {
   1528 		DELAY(10);
   1529 		busy = CSR_READ(sc, reg) & exist;
   1530 	} while (--loop > 0 && busy);
   1531 	return (loop > 0) ? 0 : ETIMEDOUT;
   1532 }
   1533 
   1534 /* GMAC register needs to use indirect rd/wr via memory mapped registers. */
   1535 
   1536 static int
   1537 mac_read(struct scx_softc *sc, int reg)
   1538 {
   1539 
   1540 	CSR_WRITE(sc, MACCMD, reg);
   1541 	(void)spin_waitfor(sc, MACCMD, CMD_BUSY);
   1542 	return CSR_READ(sc, MACDATA);
   1543 }
   1544 
   1545 static void
   1546 mac_write(struct scx_softc *sc, int reg, int val)
   1547 {
   1548 
   1549 	CSR_WRITE(sc, MACDATA, val);
   1550 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
   1551 	(void)spin_waitfor(sc, MACCMD, CMD_BUSY);
   1552 }
   1553 
   1554 /*
   1555  * 3 independent uengines exist * to process host2media, media2host and
   1556  * packet data flows.
   1557  */
   1558 static void
   1559 loaducode(struct scx_softc *sc)
   1560 {
   1561 	uint32_t up, lo, sz;
   1562 	uint64_t addr;
   1563 
   1564 	sc->sc_ucodeloaded = 1;
   1565 
   1566 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
   1567 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
   1568 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
   1569 	sz *= 4;
   1570 	addr = ((uint64_t)up << 32) | lo;
   1571 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
   1572 	injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
   1573 
   1574 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
   1575 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
   1576 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
   1577 	sz *= 4;
   1578 	addr = ((uint64_t)up << 32) | lo;
   1579 	injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
   1580 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
   1581 
   1582 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
   1583 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
   1584 	sz *= 4;
   1585 	injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
   1586 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
   1587 }
   1588 
   1589 static void
   1590 injectucode(struct scx_softc *sc, int port,
   1591 	bus_addr_t addr, bus_size_t size)
   1592 {
   1593 	bus_space_handle_t bsh;
   1594 	bus_size_t off;
   1595 	uint32_t ucode;
   1596 
   1597 	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
   1598 		aprint_error_dev(sc->sc_dev,
   1599 		    "eeprom map failure for ucode port 0x%x\n", port);
   1600 		return;
   1601 	}
   1602 	for (off = 0; off < size; off += 4) {
   1603 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
   1604 		CSR_WRITE(sc, port, ucode);
   1605 	}
   1606 	bus_space_unmap(sc->sc_st, bsh, size);
   1607 }
   1608 
   1609 /* bit selection to determine MDIO speed */
   1610 
   1611 static int
   1612 get_mdioclk(uint32_t freq)
   1613 {
   1614 
   1615 	const struct {
   1616 		uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
   1617 	} mdioclk[] = {
   1618 		{ 35,	2 },	/* 25-35 MHz */
   1619 		{ 60,	3 },	/* 35-60 MHz */
   1620 		{ 100,	0 },	/* 60-100 MHz */
   1621 		{ 150,	1 },	/* 100-150 MHz */
   1622 		{ 250,	4 },	/* 150-250 MHz */
   1623 		{ 300,	5 },	/* 250-300 MHz */
   1624 	};
   1625 	int i;
   1626 
   1627 	freq /= 1000 * 1000;
   1628 	/* convert MDIO clk to a divisor value */
   1629 	if (freq < mdioclk[0].freq)
   1630 		return mdioclk[0].bit;
   1631 	for (i = 1; i < __arraycount(mdioclk); i++) {
   1632 		if (freq < mdioclk[i].freq)
   1633 			return mdioclk[i-1].bit;
   1634 	}
   1635 	return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
   1636 }
   1637