Home | History | Annotate | Line # | Download | only in sociox
if_scx.c revision 1.23
      1 /*	$NetBSD: if_scx.c,v 1.23 2020/10/10 03:29:48 nisimura Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 
     33 /*
     34  * Socionext SC2A11 SynQuacer NetSec GbE driver
     35  *
     36  * Multiple Tx and Rx queues exist inside and dedicated descriptor
     37  * fields specifies which queue is to use. Three internal micro-processors
     38  * to handle incoming frames, outgoing frames and packet data crypto
     39  * processing. uP programs are stored in an external flash memory and
     40  * have to be loaded by device driver.
     41  * NetSec uses Synopsys DesignWare Core EMAC.  DWC implmentation
     42  * regiter (0x20) is known to have 0x10.36 and feature register (0x1058)
     43  * to report XX.XX.
     44  */
     45 
     46 #define NOT_MP_SAFE	0
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.23 2020/10/10 03:29:48 nisimura Exp $");
     50 
     51 #include <sys/param.h>
     52 #include <sys/bus.h>
     53 #include <sys/intr.h>
     54 #include <sys/device.h>
     55 #include <sys/callout.h>
     56 #include <sys/mbuf.h>
     57 #include <sys/malloc.h>
     58 #include <sys/errno.h>
     59 #include <sys/rndsource.h>
     60 #include <sys/kernel.h>
     61 #include <sys/systm.h>
     62 
     63 #include <net/if.h>
     64 #include <net/if_media.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_ether.h>
     67 #include <dev/mii/mii.h>
     68 #include <dev/mii/miivar.h>
     69 #include <net/bpf.h>
     70 
     71 #include <dev/fdt/fdtvar.h>
     72 #include <dev/acpi/acpireg.h>
     73 #include <dev/acpi/acpivar.h>
     74 #include <dev/acpi/acpi_intr.h>
     75 
     76 /* Socionext SC2A11 descriptor format */
     77 struct tdes {
     78 	uint32_t t0, t1, t2, t3;
     79 };
     80 
     81 struct rdes {
     82 	uint32_t r0, r1, r2, r3;
     83 };
     84 
     85 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
     86 #define T0_EOD		(1U<<30)	/* end of descriptor array */
     87 #define T0_DRID		(24)		/* 29:24 D-RID */
     88 #define T0_PT		(1U<<21)	/* 23:21 PT */
     89 #define T0_TRID		(16)		/* 20:16 T-RID */
     90 #define T0_FS		(1U<<9)		/* first segment of frame */
     91 #define T0_LS		(1U<<8)		/* last segment of frame */
     92 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
     93 #define T0_SGOL		(1U<<6)		/* enable TCP segment offload */
     94 #define T0_TRS		(1U<<4)		/* 5:4 TRS */
     95 #define T0_IOC		(0)		/* XXX TBD interrupt when completed */
     96 /* T1 segment address 63:32 */
     97 /* T2 segment address 31:0 */
     98 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
     99 
    100 #define R0_OWN		(1U<<31)	/* desc is empty */
    101 #define R0_EOD		(1U<<30)	/* end of descriptor array */
    102 #define R0_SRID		(24)		/* 29:24 S-RID */
    103 #define R0_FR		(1U<<23)	/* FR */
    104 #define R0_ER		(1U<<21)	/* Rx error indication */
    105 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
    106 #define R0_TDRID	(14)		/* 15:14 TD-RID */
    107 #define R0_FS		(1U<<9)		/* first segment of frame */
    108 #define R0_LS		(1U<<8)		/* last segment of frame */
    109 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status */
    110 #define R0_CERR		(2U<<6)		/* 0 (undone), 1 (found ok), 2 (bad) */
    111 /* R1 frame address 63:32 */
    112 /* R2 frame address 31:0 */
    113 /* R3 31:16 received frame length, 15:0 buffer length to receive */
    114 
    115 /*
    116  * SC2A11 NetSec registers. 0x100 - 1204
    117  */
    118 #define SWRESET		0x104
    119 #define COMINIT		0x120
    120 #define xINTSR		0x200		/* aggregated interrupt status report */
    121 #define  IRQ_RX		(1U<<1)		/* top level Rx interrupt */
    122 #define  IRQ_TX		(1U<<0)		/* top level Rx interrupt */
    123 #define xINTAEN		0x204		/* INT_A enable */
    124 #define xINTA_SET	0x234		/* bit to set */
    125 #define xINTA_CLR	0x238		/* bit to clr */
    126 #define xINTBEN		0x23c		/* INT_B enable */
    127 #define xINTB_SET	0x240		/* bit to set */
    128 #define xINTB_CLR	0x244		/* bit to clr */
    129 /* 0x00c - 048 */			/* pkt,tls,s0,s1 SR/IE/SET/CLR */
    130 #define TXISR		0x400
    131 #define TXIEN		0x404
    132 #define TXI_SET		0x428
    133 #define TXI_CLR		0x42c
    134 #define  TXI_NTOWNR	(1U<<17)
    135 #define  TXI_TR_ERR	(1U<<16)
    136 #define  TXI_TXDONE	(1U<<15)
    137 #define  TXI_TMREXP	(1U<<14)
    138 #define RXISR		0x440
    139 #define RXIEN		0x444
    140 #define RXI_SET		0x468
    141 #define RXI_CLR		0x46c
    142 #define  RXI_RC_ERR	(1U<<16)
    143 #define  RXI_PKTCNT	(1U<<15)
    144 #define  RXI_TMREXP	(1U<<14)
    145 #define TXTIMER		0x41c
    146 #define RXTIMER		0x45c
    147 #define TXCOUNT		0x410
    148 #define RXCOUNT		0x454
    149 #define H2MENG		0x210		/* DMAC host2media ucode port */
    150 #define M2HENG		0x21c		/* DMAC media2host ucode port */
    151 #define PKTENG		0x0d0		/* packet engine ucode port */
    152 #define CLKEN		0x100		/* clock distribution enable */
    153 #define  CLK_G		(1U<<5)
    154 #define  CLK_ALL	0x13		/* 0x24 ??? */
    155 #define MACADRH		0x10c		/* ??? */
    156 #define MACADRL		0x110		/* ??? */
    157 #define MCVER		0x22c		/* micro controller version */
    158 #define HWVER		0x230		/* hardware version */
    159 
    160 /* 0x800 */		/* dec Tx  SR/EN/SET/CLR */
    161 /* 0x840 */		/* enc Rx  SR/EN/SET/CLR */
    162 /* 0x880 */		/* enc TLS Tx  SR/IE/SET/CLR */
    163 /* 0x8c0 */		/* dec TLS Tx  SR/IE/SET/CLR */
    164 /* 0x900 */		/* enc TLS Rx  SR/IE/SET/CLR */
    165 /* 0x940 */		/* dec TLS Rx  SR/IE/SET/CLR */
    166 /* 0x980 */		/* enc RAW Tx  SR/IE/SET/CLR */
    167 /* 0x9c0 */		/* dec RAW Tx  SR/IE/SET/CLR */
    168 /* 0xA00 */		/* enc RAW Rx  SR/IE/SET/CLR */
    169 /* 0xA40 */		/* dec RAW Rx  SR/IE/SET/CLR */
    170 
    171 /* indirect GMAC registers. accessed thru MACCMD/MACDATA operation */
    172 #define MACCMD		0x11c4		/* gmac operation */
    173 #define  CMD_IOWR	(1U<<28)	/* write op */
    174 #define  CMD_BUSY	(1U<<31)	/* busy bit */
    175 #define MACSTAT		0x1024		/* gmac status */
    176 #define MACDATA		0x11c0		/* gmac rd/wr data */
    177 #define MACINTE		0x1028		/* interrupt enable */
    178 #define DESC_INIT	0x11fc		/* desc engine init */
    179 #define DESC_SRST	0x1204		/* desc engine sw reset */
    180 
    181 /*
    182  * GMAC registers. not memory mapped, but handled by indirect access.
    183  * Mostly identical to Synopsys DesignWare Core Ethernet.
    184  */
    185 #define GMACMCR		0x0000		/* MAC configuration */
    186 #define  MCR_IBN	(1U<<30)	/* ??? */
    187 #define  MCR_CST	(1U<<25)	/* strip CRC */
    188 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
    189 #define  MCR_JE		(1U<<20)	/* ignore oversized >9018 condition */
    190 #define  MCR_IFG	(7U<<17)	/* 19:17 IFG value 0~7 */
    191 #define  MCR_DRCS	(1U<<16)	/* ignore (G)MII HDX Tx error */
    192 #define  MCR_USEMII	(1U<<15)	/* 1: RMII/MII, 0: RGMII (_PS) */
    193 #define  MCR_SPD100	(1U<<14)	/* force speed 100 (_FES) */
    194 #define  MCR_DO		(1U<<13)	/* */
    195 #define  MCR_LOOP	(1U<<12)	/* */
    196 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
    197 #define  MCR_IPCEN	(1U<<10)	/* handle checksum */
    198 #define  MCR_ACS	(1U<<7)		/* auto pad strip CRC */
    199 #define  MCR_TE		(1U<<3)		/* run Tx MAC engine, 0 to stop */
    200 #define  MCR_RE		(1U<<2)		/* run Rx MAC engine, 0 to stop */
    201 #define  MCR_PREA	(3U)		/* 1:0 preamble len. 0~2 */
    202 #define  _MCR_FDX	0x0000280c	/* XXX TBD */
    203 #define  _MCR_HDX	0x0001a00c	/* XXX TBD */
    204 #define GMACAFR		0x0004		/* frame DA/SA address filter */
    205 #define  AFR_RA		(1U<<31)	/* accept all irrecspective of filt. */
    206 #define  AFR_HPF	(1U<<10)	/* hash+perfect filter, or hash only */
    207 #define  AFR_SAF	(1U<<9)		/* source address filter */
    208 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
    209 #define  AFR_PCF	(2U<<6)		/* */
    210 #define  AFR_DBF	(1U<<5)		/* reject broadcast frame */
    211 #define  AFR_PM		(1U<<4)		/* accept all multicast frame */
    212 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
    213 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
    214 #define  AFR_UHTE	(1U<<1)		/* use hash table for unicast */
    215 #define  AFR_PR		(1U<<0)		/* run promisc mode */
    216 #define GMACGAR		0x0010		/* MDIO operation */
    217 #define  GAR_PHY	(11)		/* mii phy 15:11 */
    218 #define  GAR_REG	(6)		/* mii reg 10:6 */
    219 #define  GAR_CTL	(2)		/* control 5:2 */
    220 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
    221 #define  GAR_BUSY	(1U)		/* busy bit */
    222 #define GMACGDR		0x0014		/* MDIO rd/wr data */
    223 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
    224 /* 31:16 pause timer value, 5:4 pause timer threthold */
    225 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
    226 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
    227 #define GMACVTAG	0x001c		/* VLAN tag control */
    228 #define GMACIMPL	0x0020		/* implementation number XX.YY */
    229 #define GMACLPIS	0x0030		/* AXI LPI control */
    230 #define GMACLPIC	0x0034		/* AXI LPI control */
    231 #define GMACISR		0x0038		/* interrupt status, clear when read */
    232 #define GMACIMR		0x003c		/* interrupt enable */
    233 #define  ISR_TS		(1U<<9)		/* time stamp operation detected */
    234 #define  ISR_CO		(1U<<7)		/* Rx checksum offload completed */
    235 #define  ISR_TX		(1U<<6)		/* Tx completed */
    236 #define  ISR_RX		(1U<<5)		/* Rx completed */
    237 #define  ISR_ANY	(1U<<4)		/* any of above 5-7 report */
    238 #define  ISR_LC		(1U<<0)		/* link status change detected */
    239 #define GMACMAH0	0x0040		/* my own MAC address 47:32 */
    240 #define GMACMAL0	0x0044		/* my own MAC address 31:0 */
    241 #define GMACMAH(i) 	((i)*8+0x40)	/* supplimental MAC addr 1-15 */
    242 #define GMACMAL(i) 	((i)*8+0x44)	/* 31:0 MAC address low part */
    243 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
    244 #define GMACAMAH(i)	((i)*8+0x800)	/* supplimental MAC addr 16-31 */
    245 #define GMACAMAL(i)	((i)*8+0x804)	/* 31: MAC address low part */
    246 /* MAH bit-31: slot in use, no other bit is effective */
    247 #define GMACMHTH	0x0008		/* 64bit multicast hash table 63:32 */
    248 #define GMACMHTL	0x000c		/* 64bit multicast hash table 31:0 */
    249 #define GMACMHT(i)	((i)*4+0x500)	/* 256-bit alternative mcast hash 0-7 */
    250 #define GMACVHT		0x0588		/* 16-bit VLAN tag hash */
    251 #define GMACMIISR	0x00d8		/* resolved xMII link status */
    252 /* 3: link up detected, 2:1 resovled speed (0/1/2), 1: fdx detected */
    253 
    254 /* 0x0700 - 0734 ??? */
    255 
    256 #define GMACBMR		0x1000		/* DMA bus mode control */
    257 /* 24    4PBL 8???
    258  * 23    USP
    259  * 22:17 RPBL
    260  * 16    fixed burst, or undefined b.
    261  * 15:14 priority between Rx and Tx
    262  *  3    rxtx ratio 41
    263  *  2    rxtx ratio 31
    264  *  1    rxtx ratio 21
    265  *  0    rxtx ratio 11
    266  * 13:8  PBL packet burst len
    267  *  7    alternative des8
    268  *  0    reset op. (SC)
    269  */
    270 #define  _BMR		0x00412080	/* XXX TBD */
    271 #define  _BMR0		0x00020181	/* XXX TBD */
    272 #define  BMR_RST	(1)		/* reset op. self clear when done */
    273 #define GMACTPD		0x1004		/* write any to resume tdes */
    274 #define GMACRPD		0x1008		/* write any to resume rdes */
    275 #define GMACRDLA	0x100c		/* rdes base address 32bit paddr */
    276 #define GMACTDLA	0x1010		/* tdes base address 32bit paddr */
    277 #define  _RDLA		0x18000		/* XXX TBD system SRAM ? */
    278 #define  _TDLA		0x1c000		/* XXX TBD system SRAM ? */
    279 #define GMACDSR		0x1014		/* DMA status detail report; W1C */
    280 #define GMACOMR		0x1018		/* DMA operation */
    281 #define  OMR_TSF	(1U<<25)	/* 1: Tx store&forword, 0: immed. */
    282 #define  OMR_RSF	(1U<<21)	/* 1: Rx store&forward, 0: immed. */
    283 #define  OMR_ST		(1U<<13)	/* run Tx DMA engine, 0 to stop */
    284 #define  OMR_EFC	(1U<<8)		/* transmit PAUSE to throttle Rx lvl. */
    285 #define  OMR_FEF	(1U<<7)		/* allow to receive error frames */
    286 #define  OMR_RS		(1U<<1)		/* run Rx DMA engine, 0 to stop */
    287 #define GMACIE		0x101c		/* interrupt enable */
    288 #define GMACEVCS	0x1020		/* missed frame or ovf detected */
    289 #define GMACRWDT	0x1024		/* receive watchdog timer count */
    290 #define GMACAXIB	0x1028		/* AXI bus mode control */
    291 #define GMACAXIS	0x102c		/* AXI status report */
    292 /* 0x1048 - 1054 */			/* descriptor and buffer cur. address */
    293 #define HWFEA		0x1058		/* feature report */
    294 
    295 #define GMACEVCTL	0x0100		/* event counter control */
    296 #define GMACEVCNT(i)	((i)*4+0x114)	/* event counter 0x114 - 0x284 */
    297 
    298 /* memory mapped CSR register */
    299 #define CSR_READ(sc,off) \
    300 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
    301 #define CSR_WRITE(sc,off,val) \
    302 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
    303 
    304 /* flash memory access */
    305 #define EE_READ(sc,off) \
    306 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
    307 
    308 /*
    309  * flash memory layout
    310  * 0x00 - 07	48-bit MAC station address. 4 byte wise in BE order.
    311  * 0x08 - 0b	H->MAC xfer uengine program start addr 63:32.
    312  * 0x0c - 0f	H2M program addr 31:0 (these are absolute addr, not relative)
    313  * 0x10 - 13	H2M program length in 4 byte count.
    314  * 0x14 - 0b	M->HOST xfer uengine program start addr 63:32.
    315  * 0x18 - 0f	M2H program addr 31:0 (absolute, not relative)
    316  * 0x1c - 13	M2H program length in 4 byte count.
    317  * 0x20 - 23	packet uengine program addr 31:0, (absolute, not relative)
    318  * 0x24 - 27	packet program length in 4 byte count.
    319  *
    320  * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
    321  */
    322 
    323 /*
    324  * all below are software constraction.
    325  */
    326 #define MD_NTXSEGS		16		/* fixed */
    327 #define MD_TXQUEUELEN		8		/* tunable */
    328 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
    329 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
    330 #define MD_NTXDESC		128
    331 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
    332 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
    333 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
    334 
    335 #define MD_NRXDESC		64		/* tunable */
    336 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
    337 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
    338 
    339 struct control_data {
    340 	struct tdes cd_txdescs[MD_NTXDESC];
    341 	struct rdes cd_rxdescs[MD_NRXDESC];
    342 };
    343 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
    344 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
    345 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
    346 
    347 struct scx_txsoft {
    348 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    349 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    350 	int txs_firstdesc;		/* first descriptor in packet */
    351 	int txs_lastdesc;		/* last descriptor in packet */
    352 	int txs_ndesc;			/* # of descriptors used */
    353 };
    354 
    355 struct scx_rxsoft {
    356 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    357 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    358 };
    359 
    360 struct scx_softc {
    361 	device_t sc_dev;		/* generic device information */
    362 	bus_space_tag_t sc_st;		/* bus space tag */
    363 	bus_space_handle_t sc_sh;	/* bus space handle */
    364 	bus_size_t sc_sz;		/* csr map size */
    365 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
    366 	bus_size_t sc_eesz;		/* eeprom map size */
    367 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    368 	bus_dma_tag_t sc_dmat32;
    369 	struct ethercom sc_ethercom;	/* Ethernet common data */
    370 	struct mii_data sc_mii;		/* MII */
    371 	callout_t sc_callout;		/* PHY monitor callout */
    372 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
    373 	int sc_nseg;			/* descriptor store nseg */
    374 	void *sc_ih;			/* interrupt cookie */
    375 	int sc_phy_id;			/* PHY address */
    376 	int sc_flowflags;		/* 802.3x PAUSE flow control */
    377 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
    378 	uint32_t sc_t0coso;		/* T0_CSUM | T0_SGOL to run */
    379 	int sc_ucodeloaded;		/* ucode for H2M/M2H/PKT */
    380 	int sc_100mii;			/* 1 for RMII/MII, 0 for RGMII */
    381 	int sc_phandle;			/* fdt phandle */
    382 	uint64_t sc_freq;
    383 
    384 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    385 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    386 
    387 	struct control_data *sc_control_data;
    388 #define sc_txdescs	sc_control_data->cd_txdescs
    389 #define sc_rxdescs	sc_control_data->cd_rxdescs
    390 
    391 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
    392 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
    393 	int sc_txfree;			/* number of free Tx descriptors */
    394 	int sc_txnext;			/* next ready Tx descriptor */
    395 	int sc_txsfree;			/* number of free Tx jobs */
    396 	int sc_txsnext;			/* next ready Tx job */
    397 	int sc_txsdirty;		/* dirty Tx jobs */
    398 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    399 
    400 	krndsource_t rnd_source;	/* random source */
    401 };
    402 
    403 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
    404 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
    405 
    406 #define SCX_CDTXSYNC(sc, x, n, ops)					\
    407 do {									\
    408 	int __x, __n;							\
    409 									\
    410 	__x = (x);							\
    411 	__n = (n);							\
    412 									\
    413 	/* If it will wrap around, sync to the end of the ring. */	\
    414 	if ((__x + __n) > MD_NTXDESC) {				\
    415 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    416 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
    417 		    (MD_NTXDESC - __x), (ops));			\
    418 		__n -= (MD_NTXDESC - __x);				\
    419 		__x = 0;						\
    420 	}								\
    421 									\
    422 	/* Now sync whatever is left. */				\
    423 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    424 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    425 } while (/*CONSTCOND*/0)
    426 
    427 #define SCX_CDRXSYNC(sc, x, ops)					\
    428 do {									\
    429 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    430 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    431 } while (/*CONSTCOND*/0)
    432 
    433 #define SCX_INIT_RXDESC(sc, x)						\
    434 do {									\
    435 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    436 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    437 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    438 	bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
    439 	__m->m_data = __m->m_ext.ext_buf;				\
    440 	__rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
    441 	__rxd->r2 = htole32(BUS_ADDR_LO32(__paddr));			\
    442 	__rxd->r1 = htole32(BUS_ADDR_HI32(__paddr));			\
    443 	__rxd->r0 = R0_OWN | R0_FS | R0_LS;				\
    444 	if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD;			\
    445 } while (/*CONSTCOND*/0)
    446 
    447 static int scx_fdt_match(device_t, cfdata_t, void *);
    448 static void scx_fdt_attach(device_t, device_t, void *);
    449 static int scx_acpi_match(device_t, cfdata_t, void *);
    450 static void scx_acpi_attach(device_t, device_t, void *);
    451 
    452 const CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
    453     scx_fdt_match, scx_fdt_attach, NULL, NULL);
    454 
    455 const CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
    456     scx_acpi_match, scx_acpi_attach, NULL, NULL);
    457 
    458 static void scx_attach_i(struct scx_softc *);
    459 static void scx_reset(struct scx_softc *);
    460 static int scx_init(struct ifnet *);
    461 static void scx_stop(struct ifnet *, int);
    462 static int scx_ioctl(struct ifnet *, u_long, void *);
    463 static void scx_set_rcvfilt(struct scx_softc *);
    464 static void scx_start(struct ifnet *);
    465 static void scx_watchdog(struct ifnet *);
    466 static int scx_intr(void *);
    467 static void txreap(struct scx_softc *);
    468 static void rxintr(struct scx_softc *);
    469 static int add_rxbuf(struct scx_softc *, int);
    470 static void rxdrain(struct scx_softc *sc);
    471 static void mii_statchg(struct ifnet *);
    472 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    473 static int mii_readreg(device_t, int, int, uint16_t *);
    474 static int mii_writereg(device_t, int, int, uint16_t);
    475 static void phy_tick(void *);
    476 
    477 static void loaducode(struct scx_softc *);
    478 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
    479 
    480 static int get_mdioclk(uint32_t);
    481 
    482 #define WAIT_FOR_SET(sc, reg, set, fail) \
    483 	wait_for_bits(sc, reg, set, ~0, fail)
    484 #define WAIT_FOR_CLR(sc, reg, clr, fail) \
    485 	wait_for_bits(sc, reg, 0, clr, fail)
    486 
    487 static int
    488 wait_for_bits(struct scx_softc *sc, int reg,
    489     uint32_t set, uint32_t clr, uint32_t fail)
    490 {
    491 	uint32_t val;
    492 	int ntries;
    493 
    494 	for (ntries = 0; ntries < 1000; ntries++) {
    495 		val = CSR_READ(sc, reg);
    496 		if ((val & set) || !(val & clr))
    497 			return 0;
    498 		if (val & fail)
    499 			return 1;
    500 		DELAY(1);
    501 	}
    502 	return 1;
    503 }
    504 
    505 /* GMAC register indirect access */
    506 static int
    507 mac_read(struct scx_softc *sc, int reg)
    508 {
    509 
    510 	CSR_WRITE(sc, MACCMD, reg);
    511 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
    512 	return CSR_READ(sc, MACDATA);
    513 }
    514 
    515 static void
    516 mac_write(struct scx_softc *sc, int reg, int val)
    517 {
    518 
    519 	CSR_WRITE(sc, MACDATA, val);
    520 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
    521 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
    522 }
    523 
    524 static int
    525 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
    526 {
    527 	static const char * compatible[] = {
    528 		"socionext,synquacer-netsec",
    529 		NULL
    530 	};
    531 	struct fdt_attach_args * const faa = aux;
    532 
    533 	return of_match_compatible(faa->faa_phandle, compatible);
    534 }
    535 
    536 static void
    537 scx_fdt_attach(device_t parent, device_t self, void *aux)
    538 {
    539 	struct scx_softc * const sc = device_private(self);
    540 	struct fdt_attach_args * const faa = aux;
    541 	const int phandle = faa->faa_phandle;
    542 	bus_space_tag_t bst = faa->faa_bst;
    543 	bus_space_handle_t bsh;
    544 	bus_space_handle_t eebsh;
    545 	bus_addr_t addr[2];
    546 	bus_size_t size[2];
    547 	char intrstr[128];
    548 	const char *phy_mode;
    549 
    550 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
    551 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
    552 		aprint_error(": unable to map device csr\n");
    553 		return;
    554 	}
    555 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
    556 		aprint_error(": failed to decode interrupt\n");
    557 		goto fail;
    558 	}
    559 	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
    560 		NOT_MP_SAFE, scx_intr, sc);
    561 	if (sc->sc_ih == NULL) {
    562 		aprint_error_dev(self, "couldn't establish interrupt\n");
    563 		goto fail;
    564 	}
    565 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
    566 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
    567 		aprint_error(": unable to map device eeprom\n");
    568 		goto fail;
    569 	}
    570 
    571 	aprint_naive("\n");
    572 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
    573 	aprint_normal_dev(self, "interrupt on %s\n", intrstr);
    574 
    575 	sc->sc_dev = self;
    576 	sc->sc_st = bst;
    577 	sc->sc_sh = bsh;
    578 	sc->sc_sz = size[0];
    579 	sc->sc_eesh = eebsh;
    580 	sc->sc_eesz = size[1];
    581 	sc->sc_dmat = faa->faa_dmat;
    582 	sc->sc_dmat32 = faa->faa_dmat; /* XXX */
    583 	sc->sc_phandle = phandle;
    584 
    585 	phy_mode = fdtbus_get_string(phandle, "phy-mode");
    586 	if (phy_mode == NULL)
    587 		aprint_error(": missing 'phy-mode' property\n");
    588 	sc->sc_100mii = (phy_mode  && strcmp(phy_mode, "rgmii") != 0);
    589 
    590 	scx_attach_i(sc);
    591 	return;
    592  fail:
    593 	if (sc->sc_eesz)
    594 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    595 	if (sc->sc_sz)
    596 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    597 	return;
    598 }
    599 
    600 static int
    601 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
    602 {
    603 	static const char * compatible[] = {
    604 		"SCX0001",
    605 		NULL
    606 	};
    607 	struct acpi_attach_args *aa = aux;
    608 
    609 	if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
    610 		return 0;
    611 	return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
    612 }
    613 
    614 static void
    615 scx_acpi_attach(device_t parent, device_t self, void *aux)
    616 {
    617 	struct scx_softc * const sc = device_private(self);
    618 	struct acpi_attach_args * const aa = aux;
    619 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
    620 	bus_space_tag_t bst = aa->aa_memt;
    621 	bus_space_handle_t bsh, eebsh;
    622 	struct acpi_resources res;
    623 	struct acpi_mem *mem;
    624 	struct acpi_irq *irq;
    625 	char *phy_mode;
    626 	ACPI_INTEGER acpi_phy, acpi_freq;
    627 	ACPI_STATUS rv;
    628 
    629 	rv = acpi_resource_parse(self, handle, "_CRS",
    630 	    &res, &acpi_resource_parse_ops_default);
    631 	if (ACPI_FAILURE(rv))
    632 		return;
    633 	mem = acpi_res_mem(&res, 0);
    634 	irq = acpi_res_irq(&res, 0);
    635 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
    636 		aprint_error(": incomplete csr resources\n");
    637 		return;
    638 	}
    639 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
    640 		aprint_error(": couldn't map registers\n");
    641 		return;
    642 	}
    643 	sc->sc_sz = mem->ar_length;
    644 	sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
    645 	    NOT_MP_SAFE, scx_intr, sc, device_xname(self));
    646 	if (sc->sc_ih == NULL) {
    647 		aprint_error_dev(self, "couldn't establish interrupt\n");
    648 		goto fail;
    649 	}
    650 	mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
    651 	if (mem == NULL || mem->ar_length == 0) {
    652 		aprint_error(": incomplete eeprom resources\n");
    653 		goto fail;
    654 	}
    655 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
    656 		aprint_error(": couldn't map registers\n");
    657 		goto fail;
    658 	}
    659 	sc->sc_eesz = mem->ar_length;
    660 
    661 	rv = acpi_dsd_string(handle, "phy-mode", &phy_mode);
    662 	if (ACPI_FAILURE(rv)) {
    663 		aprint_error(": missing 'phy-mode' property\n");
    664 		phy_mode = NULL;
    665 	}
    666 	rv = acpi_dsd_integer(handle, "phy-channel", &acpi_phy);
    667 	if (ACPI_FAILURE(rv))
    668 		acpi_phy = 31;
    669 	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
    670 			&acpi_freq);
    671 	if (ACPI_FAILURE(rv))
    672 		acpi_freq = 999;
    673 
    674 	aprint_naive("\n");
    675 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
    676 
    677 	sc->sc_dev = self;
    678 	sc->sc_st = bst;
    679 	sc->sc_sh = bsh;
    680 	sc->sc_eesh = eebsh;
    681 	sc->sc_dmat = aa->aa_dmat64;
    682 	sc->sc_dmat32 = aa->aa_dmat;	/* descriptor needs dma32 */
    683 
    684 aprint_normal_dev(self,
    685 "phy mode %s, phy id %d, freq %ld\n", phy_mode, (int)acpi_phy, acpi_freq);
    686 	sc->sc_100mii = (phy_mode && strcmp(phy_mode, "rgmii") != 0);
    687 	sc->sc_phy_id = (int)acpi_phy;
    688 	sc->sc_freq = acpi_freq;
    689 aprint_normal_dev(self,
    690 "GMACGAR %08x\n", mac_read(sc, GMACGAR));
    691 
    692 	scx_attach_i(sc);
    693 
    694 	acpi_resource_cleanup(&res);
    695 	return;
    696  fail:
    697 	if (sc->sc_eesz > 0)
    698 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    699 	if (sc->sc_sz > 0)
    700 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    701 	acpi_resource_cleanup(&res);
    702 	return;
    703 }
    704 
    705 static void
    706 scx_attach_i(struct scx_softc *sc)
    707 {
    708 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
    709 	struct mii_data * const mii = &sc->sc_mii;
    710 	struct ifmedia * const ifm = &mii->mii_media;
    711 	uint32_t hwver, dwimp, dwfea;
    712 	uint8_t enaddr[ETHER_ADDR_LEN];
    713 	bus_dma_segment_t seg;
    714 	uint32_t csr;
    715 	int i, nseg, error = 0;
    716 
    717 	hwver = CSR_READ(sc, HWVER);	/* Socionext version */
    718 	dwimp = mac_read(sc, GMACIMPL);	/* DW EMAC XX.YY */
    719 	dwfea = mac_read(sc, HWFEA);	/* DW feature */
    720 	aprint_normal_dev(sc->sc_dev,
    721 	    "Socionext NetSec GbE %d.%d (impl 0x%x, feature 0x%x)\n",
    722 	    hwver >> 16, hwver & 0xffff,
    723 	    dwimp, dwfea);
    724 
    725 	/* fetch MAC address in flash. stored in big endian order */
    726 	csr = EE_READ(sc, 0x00);
    727 	enaddr[0] = csr >> 24;
    728 	enaddr[1] = csr >> 16;
    729 	enaddr[2] = csr >> 8;
    730 	enaddr[3] = csr;
    731 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
    732 	csr = EE_READ(sc, 0x04);
    733 	enaddr[4] = csr >> 24;
    734 	enaddr[5] = csr >> 16;
    735 	aprint_normal_dev(sc->sc_dev,
    736 	    "Ethernet address %s\n", ether_sprintf(enaddr));
    737 
    738 	sc->sc_mdclk = get_mdioclk(sc->sc_freq); /* 5:2 clk control */
    739 
    740 	if (sc->sc_ucodeloaded == 0)
    741 		loaducode(sc);
    742 
    743 	mii->mii_ifp = ifp;
    744 	mii->mii_readreg = mii_readreg;
    745 	mii->mii_writereg = mii_writereg;
    746 	mii->mii_statchg = mii_statchg;
    747 
    748 	sc->sc_ethercom.ec_mii = mii;
    749 	ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
    750 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    751 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    752 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    753 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    754 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    755 	} else
    756 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    757 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
    758 
    759 	/*
    760 	 * Allocate the control data structures, and create and load the
    761 	 * DMA map for it.
    762 	 */
    763 	error = bus_dmamem_alloc(sc->sc_dmat32,
    764 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    765 	if (error != 0) {
    766 		aprint_error_dev(sc->sc_dev,
    767 		    "unable to allocate control data, error = %d\n", error);
    768 		goto fail_0;
    769 	}
    770 	error = bus_dmamem_map(sc->sc_dmat32, &seg, nseg,
    771 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
    772 	    BUS_DMA_COHERENT);
    773 	if (error != 0) {
    774 		aprint_error_dev(sc->sc_dev,
    775 		    "unable to map control data, error = %d\n", error);
    776 		goto fail_1;
    777 	}
    778 	error = bus_dmamap_create(sc->sc_dmat32,
    779 	    sizeof(struct control_data), 1,
    780 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
    781 	if (error != 0) {
    782 		aprint_error_dev(sc->sc_dev,
    783 		    "unable to create control data DMA map, "
    784 		    "error = %d\n", error);
    785 		goto fail_2;
    786 	}
    787 	error = bus_dmamap_load(sc->sc_dmat32, sc->sc_cddmamap,
    788 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
    789 	if (error != 0) {
    790 		aprint_error_dev(sc->sc_dev,
    791 		    "unable to load control data DMA map, error = %d\n",
    792 		    error);
    793 		goto fail_3;
    794 	}
    795 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    796 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
    797 		    MD_NTXSEGS, MCLBYTES, 0, 0,
    798 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    799 			aprint_error_dev(sc->sc_dev,
    800 			    "unable to create tx DMA map %d, error = %d\n",
    801 			    i, error);
    802 			goto fail_4;
    803 		}
    804 	}
    805 	for (i = 0; i < MD_NRXDESC; i++) {
    806 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
    807 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    808 			aprint_error_dev(sc->sc_dev,
    809 			    "unable to create rx DMA map %d, error = %d\n",
    810 			    i, error);
    811 			goto fail_5;
    812 		}
    813 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    814 	}
    815 	sc->sc_seg = seg;
    816 	sc->sc_nseg = nseg;
    817 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
    818 
    819 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    820 	ifp->if_softc = sc;
    821 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    822 	ifp->if_ioctl = scx_ioctl;
    823 	ifp->if_start = scx_start;
    824 	ifp->if_watchdog = scx_watchdog;
    825 	ifp->if_init = scx_init;
    826 	ifp->if_stop = scx_stop;
    827 	IFQ_SET_READY(&ifp->if_snd);
    828 
    829 	sc->sc_flowflags = 0;
    830 
    831 	if_attach(ifp);
    832 	if_deferred_start_init(ifp, NULL);
    833 	ether_ifattach(ifp, enaddr);
    834 
    835 	callout_init(&sc->sc_callout, 0);
    836 	callout_setfunc(&sc->sc_callout, phy_tick, sc);
    837 
    838 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    839 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    840 
    841 	return;
    842 
    843   fail_5:
    844 	for (i = 0; i < MD_NRXDESC; i++) {
    845 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    846 			bus_dmamap_destroy(sc->sc_dmat,
    847 			    sc->sc_rxsoft[i].rxs_dmamap);
    848 	}
    849   fail_4:
    850 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    851 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    852 			bus_dmamap_destroy(sc->sc_dmat,
    853 			    sc->sc_txsoft[i].txs_dmamap);
    854 	}
    855 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    856   fail_3:
    857 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    858   fail_2:
    859 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    860 	    sizeof(struct control_data));
    861   fail_1:
    862 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    863   fail_0:
    864 	if (sc->sc_phandle)
    865 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
    866 	else
    867 		acpi_intr_disestablish(sc->sc_ih);
    868 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    869 	return;
    870 }
    871 
    872 static void
    873 scx_reset(struct scx_softc *sc)
    874 {
    875 	int loop = 0, busy;
    876 
    877 	mac_write(sc, GMACOMR, 0);
    878 	mac_write(sc, GMACBMR, BMR_RST);
    879 	do {
    880 		DELAY(1);
    881 		busy = mac_read(sc, GMACBMR) & BMR_RST;
    882 	} while (++loop < 3000 && busy);
    883 	mac_write(sc, GMACBMR, _BMR);
    884 	mac_write(sc, GMACAFR, 0);
    885 
    886 	CSR_WRITE(sc, CLKEN, CLK_ALL);	/* distribute clock sources */
    887 	CSR_WRITE(sc, SWRESET, 0);	/* reset operation */
    888 	CSR_WRITE(sc, SWRESET, 1U<<31);	/* manifest run */
    889 	CSR_WRITE(sc, COMINIT, 3); 	/* DB|CLS */
    890 
    891 	mac_write(sc, GMACEVCTL, 1);
    892 }
    893 
    894 static int
    895 scx_init(struct ifnet *ifp)
    896 {
    897 	struct scx_softc *sc = ifp->if_softc;
    898 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
    899 	uint32_t csr;
    900 	int i, error;
    901 
    902 	/* Cancel pending I/O. */
    903 	scx_stop(ifp, 0);
    904 
    905 	/* Reset the chip to a known state. */
    906 	scx_reset(sc);
    907 
    908 	/* build sane Tx */
    909 	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
    910 	sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
    911 	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
    912 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    913 	sc->sc_txfree = MD_NTXDESC;
    914 	sc->sc_txnext = 0;
    915 	for (i = 0; i < MD_TXQUEUELEN; i++)
    916 		sc->sc_txsoft[i].txs_mbuf = NULL;
    917 	sc->sc_txsfree = MD_TXQUEUELEN;
    918 	sc->sc_txsnext = 0;
    919 	sc->sc_txsdirty = 0;
    920 
    921 	/* load Rx descriptors with fresh mbuf */
    922 	for (i = 0; i < MD_NRXDESC; i++) {
    923 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
    924 			if ((error = add_rxbuf(sc, i)) != 0) {
    925 				aprint_error_dev(sc->sc_dev,
    926 				    "unable to allocate or map rx "
    927 				    "buffer %d, error = %d\n",
    928 				    i, error);
    929 				rxdrain(sc);
    930 				goto out;
    931 			}
    932 		}
    933 		else
    934 			SCX_INIT_RXDESC(sc, i);
    935 	}
    936 	sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_EOD;
    937 	sc->sc_rxptr = 0;
    938 	sc->sc_rxptr = 0;
    939 
    940 	/* set my address in perfect match slot 0. little endin order */
    941 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
    942 	mac_write(sc, GMACMAL0, csr);
    943 	csr = (ea[5] << 8) | ea[4];
    944 	mac_write(sc, GMACMAH0, csr);
    945 
    946 	/* accept multicast frame or run promisc mode */
    947 	scx_set_rcvfilt(sc);
    948 
    949 	/* set current media */
    950 	if ((error = ether_mediachange(ifp)) != 0)
    951 		goto out;
    952 
    953 	/* XXX 32 bit paddr XXX hand Tx/Rx rings to HW XXX */
    954 	mac_write(sc, GMACTDLA, SCX_CDTXADDR(sc, 0));
    955 	mac_write(sc, GMACRDLA, SCX_CDRXADDR(sc, 0));
    956 
    957 	/* kick to start GMAC engine */
    958 	CSR_WRITE(sc, RXI_CLR, ~0);
    959 	CSR_WRITE(sc, TXI_CLR, ~0);
    960 	csr = mac_read(sc, GMACOMR);
    961 	mac_write(sc, GMACOMR, csr | OMR_RS | OMR_ST);
    962 
    963 	ifp->if_flags |= IFF_RUNNING;
    964 	ifp->if_flags &= ~IFF_OACTIVE;
    965 
    966 	/* start one second timer */
    967 	callout_schedule(&sc->sc_callout, hz);
    968  out:
    969 	return error;
    970 }
    971 
    972 static void
    973 scx_stop(struct ifnet *ifp, int disable)
    974 {
    975 	struct scx_softc *sc = ifp->if_softc;
    976 
    977 	/* Stop the one second clock. */
    978 	callout_stop(&sc->sc_callout);
    979 
    980 	/* Down the MII. */
    981 	mii_down(&sc->sc_mii);
    982 
    983 	/* Mark the interface down and cancel the watchdog timer. */
    984 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    985 	ifp->if_timer = 0;
    986 }
    987 
    988 static int
    989 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    990 {
    991 	struct scx_softc *sc = ifp->if_softc;
    992 	struct ifreq *ifr = (struct ifreq *)data;
    993 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    994 	int s, error;
    995 
    996 	s = splnet();
    997 
    998 	switch (cmd) {
    999 	case SIOCSIFMEDIA:
   1000 		/* Flow control requires full-duplex mode. */
   1001 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1002 		    (ifr->ifr_media & IFM_FDX) == 0)
   1003 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1004 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1005 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1006 				/* We can do both TXPAUSE and RXPAUSE. */
   1007 				ifr->ifr_media |=
   1008 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1009 			}
   1010 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1011 		}
   1012 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
   1013 		break;
   1014 	default:
   1015 		error = ether_ioctl(ifp, cmd, data);
   1016 		if (error != ENETRESET)
   1017 			break;
   1018 		error = 0;
   1019 		if (cmd == SIOCSIFCAP)
   1020 			error = (*ifp->if_init)(ifp);
   1021 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1022 			;
   1023 		else if (ifp->if_flags & IFF_RUNNING) {
   1024 			/*
   1025 			 * Multicast list has changed; set the hardware filter
   1026 			 * accordingly.
   1027 			 */
   1028 			scx_set_rcvfilt(sc);
   1029 		}
   1030 		break;
   1031 	}
   1032 
   1033 	splx(s);
   1034 	return error;
   1035 }
   1036 
   1037 static void
   1038 scx_set_rcvfilt(struct scx_softc *sc)
   1039 {
   1040 	struct ethercom * const ec = &sc->sc_ethercom;
   1041 	struct ifnet * const ifp = &ec->ec_if;
   1042 	struct ether_multistep step;
   1043 	struct ether_multi *enm;
   1044 	uint32_t mchash[2]; 	/* 2x 32 = 64 bit */
   1045 	uint32_t csr, crc;
   1046 	int i;
   1047 
   1048 	csr = mac_read(sc, GMACAFR);
   1049 	csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
   1050 	mac_write(sc, GMACAFR, csr);
   1051 
   1052 	/* clear 15 entry supplimental perfect match filter */
   1053 	for (i = 1; i < 16; i++)
   1054 		 mac_write(sc, GMACMAH(i), 0);
   1055 	/* build 64 bit multicast hash filter */
   1056 	crc = mchash[1] = mchash[0] = 0;
   1057 
   1058 	ETHER_LOCK(ec);
   1059 	if (ifp->if_flags & IFF_PROMISC) {
   1060 		ec->ec_flags |= ETHER_F_ALLMULTI;
   1061 		ETHER_UNLOCK(ec);
   1062 		/* run promisc. mode */
   1063 		csr |= AFR_PR;
   1064 		goto update;
   1065 	}
   1066 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   1067 	ETHER_FIRST_MULTI(step, ec, enm);
   1068 	i = 1; /* slot 0 is occupied */
   1069 	while (enm != NULL) {
   1070 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1071 			/*
   1072 			 * We must listen to a range of multicast addresses.
   1073 			 * For now, just accept all multicasts, rather than
   1074 			 * trying to set only those filter bits needed to match
   1075 			 * the range.  (At this time, the only use of address
   1076 			 * ranges is for IP multicast routing, for which the
   1077 			 * range is big enough to require all bits set.)
   1078 			 */
   1079 			ec->ec_flags |= ETHER_F_ALLMULTI;
   1080 			ETHER_UNLOCK(ec);
   1081 			/* accept all multi */
   1082 			csr |= AFR_PM;
   1083 			goto update;
   1084 		}
   1085 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
   1086 		if (i < 16) {
   1087 			/* use 15 entry perfect match filter */
   1088 			uint32_t addr;
   1089 			uint8_t *ep = enm->enm_addrlo;
   1090 			addr = (ep[3] << 24) | (ep[2] << 16)
   1091 			     | (ep[1] <<  8) |  ep[0];
   1092 			mac_write(sc, GMACMAL(i), addr);
   1093 			addr = (ep[5] << 8) | ep[4];
   1094 			mac_write(sc, GMACMAH(i), addr | 1U<<31);
   1095 		} else {
   1096 			/* use hash table when too many */
   1097 			/* bit_reserve_32(~crc) !? */
   1098 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1099 			/* 1(31) 5(30:26) bit sampling */
   1100 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   1101 		}
   1102 		ETHER_NEXT_MULTI(step, enm);
   1103 		i++;
   1104 	}
   1105 	ETHER_UNLOCK(ec);
   1106 	if (crc)
   1107 		csr |= AFR_MHTE;
   1108 	csr |= AFR_HPF; /* use hash+perfect */
   1109 	mac_write(sc, GMACMHTH, mchash[1]);
   1110 	mac_write(sc, GMACMHTL, mchash[0]);
   1111  update:
   1112 	/* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */
   1113 	mac_write(sc, GMACAFR, csr);
   1114 	return;
   1115 }
   1116 
   1117 static void
   1118 scx_start(struct ifnet *ifp)
   1119 {
   1120 	struct scx_softc *sc = ifp->if_softc;
   1121 	struct mbuf *m0, *m;
   1122 	struct scx_txsoft *txs;
   1123 	bus_dmamap_t dmamap;
   1124 	int error, nexttx, lasttx, ofree, seg;
   1125 	uint32_t tdes0;
   1126 
   1127 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1128 		return;
   1129 
   1130 	/* Remember the previous number of free descriptors. */
   1131 	ofree = sc->sc_txfree;
   1132 
   1133 	/*
   1134 	 * Loop through the send queue, setting up transmit descriptors
   1135 	 * until we drain the queue, or use up all available transmit
   1136 	 * descriptors.
   1137 	 */
   1138 	for (;;) {
   1139 		IFQ_POLL(&ifp->if_snd, m0);
   1140 		if (m0 == NULL)
   1141 			break;
   1142 
   1143 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
   1144 			txreap(sc);
   1145 			if (sc->sc_txsfree == 0)
   1146 				break;
   1147 		}
   1148 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1149 		dmamap = txs->txs_dmamap;
   1150 
   1151 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1152 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1153 		if (error) {
   1154 			if (error == EFBIG) {
   1155 				aprint_error_dev(sc->sc_dev,
   1156 				    "Tx packet consumes too many "
   1157 				    "DMA segments, dropping...\n");
   1158 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
   1159 				    m_freem(m0);
   1160 				    continue;
   1161 			}
   1162 			/* Short on resources, just stop for now. */
   1163 			break;
   1164 		}
   1165 
   1166 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   1167 			/*
   1168 			 * Not enough free descriptors to transmit this
   1169 			 * packet.  We haven't committed anything yet,
   1170 			 * so just unload the DMA map, put the packet
   1171 			 * back on the queue, and punt.	 Notify the upper
   1172 			 * layer that there are not more slots left.
   1173 			 */
   1174 			ifp->if_flags |= IFF_OACTIVE;
   1175 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1176 			break;
   1177 		}
   1178 
   1179 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1180 
   1181 		/*
   1182 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1183 		 */
   1184 
   1185 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1186 		    BUS_DMASYNC_PREWRITE);
   1187 
   1188 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
   1189 		lasttx = -1;
   1190 		for (nexttx = sc->sc_txnext, seg = 0;
   1191 		     seg < dmamap->dm_nsegs;
   1192 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
   1193 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
   1194 			bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
   1195 			/*
   1196 			 * If this is the first descriptor we're
   1197 			 * enqueueing, don't set the OWN bit just
   1198 			 * yet.	 That could cause a race condition.
   1199 			 * We'll do it below.
   1200 			 */
   1201 			tdes->t3 = dmamap->dm_segs[seg].ds_len;
   1202 			tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
   1203 			tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
   1204 			tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
   1205 					(15 << T0_TRID) | T0_PT |
   1206 					sc->sc_t0coso | T0_TRS;
   1207 			tdes0 = T0_OWN; /* 2nd and other segments */
   1208 			lasttx = nexttx;
   1209 		}
   1210 		/*
   1211 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
   1212 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
   1213 		 * time and NFS stops to proceed until scx_watchdog()
   1214 		 * calls txreap() to reclaim the unack'ed mbuf.
   1215 		 * It's painful to traverse every mbuf chain to determine
   1216 		 * whether someone is waiting for Tx completion.
   1217 		 */
   1218 		m = m0;
   1219 		do {
   1220 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
   1221 				sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
   1222 				break;
   1223 			}
   1224 		} while ((m = m->m_next) != NULL);
   1225 
   1226 		/* Write deferred 1st segment T0_OWN at the final stage */
   1227 		sc->sc_txdescs[lasttx].t0 |= T0_LS;
   1228 		sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
   1229 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1230 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1231 
   1232 		/* Tell DMA start transmit */
   1233 		mac_write(sc, GMACTPD, 1);
   1234 
   1235 		txs->txs_mbuf = m0;
   1236 		txs->txs_firstdesc = sc->sc_txnext;
   1237 		txs->txs_lastdesc = lasttx;
   1238 		txs->txs_ndesc = dmamap->dm_nsegs;
   1239 
   1240 		sc->sc_txfree -= txs->txs_ndesc;
   1241 		sc->sc_txnext = nexttx;
   1242 		sc->sc_txsfree--;
   1243 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
   1244 		/*
   1245 		 * Pass the packet to any BPF listeners.
   1246 		 */
   1247 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1248 	}
   1249 
   1250 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1251 		/* No more slots left; notify upper layer. */
   1252 		ifp->if_flags |= IFF_OACTIVE;
   1253 	}
   1254 	if (sc->sc_txfree != ofree) {
   1255 		/* Set a watchdog timer in case the chip flakes out. */
   1256 		ifp->if_timer = 5;
   1257 	}
   1258 }
   1259 
   1260 static void
   1261 scx_watchdog(struct ifnet *ifp)
   1262 {
   1263 	struct scx_softc *sc = ifp->if_softc;
   1264 
   1265 	/*
   1266 	 * Since we're not interrupting every packet, sweep
   1267 	 * up before we report an error.
   1268 	 */
   1269 	txreap(sc);
   1270 
   1271 	if (sc->sc_txfree != MD_NTXDESC) {
   1272 		aprint_error_dev(sc->sc_dev,
   1273 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
   1274 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
   1275 		if_statinc(ifp, if_oerrors);
   1276 
   1277 		/* Reset the interface. */
   1278 		scx_init(ifp);
   1279 	}
   1280 
   1281 	scx_start(ifp);
   1282 }
   1283 
   1284 static int
   1285 scx_intr(void *arg)
   1286 {
   1287 	struct scx_softc *sc = arg;
   1288 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1289 
   1290 	(void)ifp;
   1291 	/* XXX decode interrupt cause to pick isr() XXX */
   1292 	rxintr(sc);
   1293 	txreap(sc);
   1294 	return 1;
   1295 }
   1296 
   1297 static void
   1298 txreap(struct scx_softc *sc)
   1299 {
   1300 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1301 	struct scx_txsoft *txs;
   1302 	uint32_t txstat;
   1303 	int i;
   1304 
   1305 	ifp->if_flags &= ~IFF_OACTIVE;
   1306 
   1307 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
   1308 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
   1309 		txs = &sc->sc_txsoft[i];
   1310 
   1311 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1312 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1313 
   1314 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1315 		if (txstat & T0_OWN) /* desc is still in use */
   1316 			break;
   1317 
   1318 		/* There is no way to tell transmission status per frame */
   1319 
   1320 		if_statinc(ifp, if_opackets);
   1321 
   1322 		sc->sc_txfree += txs->txs_ndesc;
   1323 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1324 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1325 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1326 		m_freem(txs->txs_mbuf);
   1327 		txs->txs_mbuf = NULL;
   1328 	}
   1329 	sc->sc_txsdirty = i;
   1330 	if (sc->sc_txsfree == MD_TXQUEUELEN)
   1331 		ifp->if_timer = 0;
   1332 }
   1333 
   1334 static void
   1335 rxintr(struct scx_softc *sc)
   1336 {
   1337 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1338 	struct scx_rxsoft *rxs;
   1339 	struct mbuf *m;
   1340 	uint32_t rxstat;
   1341 	int i, len;
   1342 
   1343 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
   1344 		rxs = &sc->sc_rxsoft[i];
   1345 
   1346 		SCX_CDRXSYNC(sc, i,
   1347 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1348 
   1349 		rxstat = sc->sc_rxdescs[i].r0;
   1350 		if (rxstat & R0_OWN) /* desc is left empty */
   1351 			break;
   1352 
   1353 		/* R0_FS | R0_LS must have been marked for this desc */
   1354 
   1355 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1356 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1357 
   1358 		len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
   1359 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
   1360 		m = rxs->rxs_mbuf;
   1361 
   1362 		if (add_rxbuf(sc, i) != 0) {
   1363 			if_statinc(ifp, if_ierrors);
   1364 			SCX_INIT_RXDESC(sc, i);
   1365 			bus_dmamap_sync(sc->sc_dmat,
   1366 			    rxs->rxs_dmamap, 0,
   1367 			    rxs->rxs_dmamap->dm_mapsize,
   1368 			    BUS_DMASYNC_PREREAD);
   1369 			continue;
   1370 		}
   1371 
   1372 		m_set_rcvif(m, ifp);
   1373 		m->m_pkthdr.len = m->m_len = len;
   1374 
   1375 		if (rxstat & R0_CSUM) {
   1376 			uint32_t csum = M_CSUM_IPv4;
   1377 			if (rxstat & R0_CERR)
   1378 				csum |= M_CSUM_IPv4_BAD;
   1379 			m->m_pkthdr.csum_flags |= csum;
   1380 		}
   1381 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1382 	}
   1383 	sc->sc_rxptr = i;
   1384 }
   1385 
   1386 static int
   1387 add_rxbuf(struct scx_softc *sc, int i)
   1388 {
   1389 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
   1390 	struct mbuf *m;
   1391 	int error;
   1392 
   1393 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1394 	if (m == NULL)
   1395 		return ENOBUFS;
   1396 
   1397 	MCLGET(m, M_DONTWAIT);
   1398 	if ((m->m_flags & M_EXT) == 0) {
   1399 		m_freem(m);
   1400 		return ENOBUFS;
   1401 	}
   1402 
   1403 	if (rxs->rxs_mbuf != NULL)
   1404 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1405 
   1406 	rxs->rxs_mbuf = m;
   1407 
   1408 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1409 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1410 	if (error) {
   1411 		aprint_error_dev(sc->sc_dev,
   1412 		    "can't load rx DMA map %d, error = %d\n", i, error);
   1413 		panic("add_rxbuf");
   1414 	}
   1415 
   1416 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1417 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1418 	SCX_INIT_RXDESC(sc, i);
   1419 
   1420 	return 0;
   1421 }
   1422 
   1423 static void
   1424 rxdrain(struct scx_softc *sc)
   1425 {
   1426 	struct scx_rxsoft *rxs;
   1427 	int i;
   1428 
   1429 	for (i = 0; i < MD_NRXDESC; i++) {
   1430 		rxs = &sc->sc_rxsoft[i];
   1431 		if (rxs->rxs_mbuf != NULL) {
   1432 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1433 			m_freem(rxs->rxs_mbuf);
   1434 			rxs->rxs_mbuf = NULL;
   1435 		}
   1436 	}
   1437 }
   1438 
   1439 void
   1440 mii_statchg(struct ifnet *ifp)
   1441 {
   1442 	struct scx_softc *sc = ifp->if_softc;
   1443 	struct mii_data *mii = &sc->sc_mii;
   1444 	const int Mbps[4] = { 10, 100, 1000, 0 };
   1445 	uint32_t miisr, mcr, fcr;
   1446 	int spd;
   1447 
   1448 	/* decode MIISR register value */
   1449 	miisr = mac_read(sc, GMACMIISR);
   1450 	spd = Mbps[(miisr >> 1) & 03];
   1451 #if 1
   1452 	printf("MII link status (0x%x) %s",
   1453 	    miisr, (miisr & 8) ? "up" : "down");
   1454 	if (miisr & 8) {
   1455 		printf(" spd%d", spd);
   1456 		if (miisr & 01)
   1457 			printf(",full-duplex");
   1458 	}
   1459 	printf("\n");
   1460 #endif
   1461 	/* Get flow control negotiation result. */
   1462 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1463 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
   1464 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1465 
   1466 	/* Adjust speed 1000/100/10. */
   1467 	mcr = mac_read(sc, GMACMCR);
   1468 	if (spd == 1000)
   1469 		mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
   1470 	else {
   1471 		if (spd == 100 && sc->sc_100mii)
   1472 			mcr |= MCR_SPD100;
   1473 		mcr |= MCR_USEMII;
   1474 	}
   1475 	mcr |= MCR_CST | MCR_JE;
   1476 	if (sc->sc_100mii == 0)
   1477 		mcr |= MCR_IBN;
   1478 
   1479 	/* Adjust duplexity and PAUSE flow control. */
   1480 	mcr &= ~MCR_USEFDX;
   1481 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
   1482 	if (miisr & 01) {
   1483 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   1484 			fcr |= FCR_TFE;
   1485 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   1486 			fcr |= FCR_RFE;
   1487 		mcr |= MCR_USEFDX;
   1488 	}
   1489 	mac_write(sc, GMACMCR, mcr);
   1490 	mac_write(sc, GMACFCR, fcr);
   1491 
   1492 printf("%ctxfe, %crxfe\n",
   1493      (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
   1494 }
   1495 
   1496 static void
   1497 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1498 {
   1499 	struct scx_softc *sc = ifp->if_softc;
   1500 	struct mii_data *mii = &sc->sc_mii;
   1501 
   1502 	mii_pollstat(mii);
   1503 	ifmr->ifm_status = mii->mii_media_status;
   1504 	ifmr->ifm_active = sc->sc_flowflags |
   1505 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
   1506 }
   1507 
   1508 static int
   1509 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1510 {
   1511 	struct scx_softc *sc = device_private(self);
   1512 	uint32_t miia;
   1513 	int ntries;
   1514 
   1515 #define CLK_150_250M (1<<2)
   1516 uint32_t clk = CSR_READ(sc, CLKEN);
   1517 CSR_WRITE(sc, CLKEN, clk | CLK_G);
   1518 
   1519 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | CLK_150_250M;
   1520 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
   1521 	for (ntries = 0; ntries < 1000; ntries++) {
   1522 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
   1523 			goto unbusy;
   1524 		DELAY(1);
   1525 	}
   1526 	return ETIMEDOUT;
   1527  unbusy:
   1528 	*val = mac_read(sc, GMACGDR);
   1529 	return 0;
   1530 }
   1531 
   1532 static int
   1533 mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1534 {
   1535 	struct scx_softc *sc = device_private(self);
   1536 	uint32_t miia;
   1537 	uint16_t dummy;
   1538 	int ntries;
   1539 
   1540 uint32_t clk = CSR_READ(sc, CLKEN);
   1541 CSR_WRITE(sc, CLKEN, clk | CLK_G);
   1542 
   1543 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1544 	mac_write(sc, GMACGDR, val);
   1545 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
   1546 	for (ntries = 0; ntries < 1000; ntries++) {
   1547 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
   1548 			goto unbusy;
   1549 		DELAY(1);
   1550 	}
   1551 	return ETIMEDOUT;
   1552   unbusy:
   1553 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
   1554 	return 0;
   1555 }
   1556 
   1557 static void
   1558 phy_tick(void *arg)
   1559 {
   1560 	struct scx_softc *sc = arg;
   1561 	struct mii_data *mii = &sc->sc_mii;
   1562 	int s;
   1563 
   1564 	s = splnet();
   1565 	mii_tick(mii);
   1566 	splx(s);
   1567 #ifdef SCX_EVENT_COUNTERS /* if tally counter details are made clear */
   1568 #endif
   1569 	callout_schedule(&sc->sc_callout, hz);
   1570 }
   1571 
   1572 /*
   1573  * 3 independent uengines exist to process host2media, media2host and
   1574  * packet data flows.
   1575  */
   1576 static void
   1577 loaducode(struct scx_softc *sc)
   1578 {
   1579 	uint32_t up, lo, sz;
   1580 	uint64_t addr;
   1581 
   1582 	sc->sc_ucodeloaded = 1;
   1583 
   1584 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
   1585 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
   1586 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
   1587 	sz *= 4;
   1588 	addr = ((uint64_t)up << 32) | lo;
   1589 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
   1590 	injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
   1591 
   1592 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
   1593 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
   1594 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
   1595 	sz *= 4;
   1596 	addr = ((uint64_t)up << 32) | lo;
   1597 	injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
   1598 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
   1599 
   1600 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
   1601 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
   1602 	sz *= 4;
   1603 	injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
   1604 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
   1605 }
   1606 
   1607 static void
   1608 injectucode(struct scx_softc *sc, int port,
   1609 	bus_addr_t addr, bus_size_t size)
   1610 {
   1611 	bus_space_handle_t bsh;
   1612 	bus_size_t off;
   1613 	uint32_t ucode;
   1614 
   1615 	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
   1616 		aprint_error_dev(sc->sc_dev,
   1617 		    "eeprom map failure for ucode port 0x%x\n", port);
   1618 		return;
   1619 	}
   1620 	for (off = 0; off < size; off += 4) {
   1621 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
   1622 		CSR_WRITE(sc, port, ucode);
   1623 	}
   1624 	bus_space_unmap(sc->sc_st, bsh, size);
   1625 }
   1626 
   1627 /* bit selection to determine MDIO speed */
   1628 
   1629 static int
   1630 get_mdioclk(uint32_t freq)
   1631 {
   1632 
   1633 	const struct {
   1634 		uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
   1635 	} mdioclk[] = {
   1636 		{ 35,	2 },	/* 25-35 MHz */
   1637 		{ 60,	3 },	/* 35-60 MHz */
   1638 		{ 100,	0 },	/* 60-100 MHz */
   1639 		{ 150,	1 },	/* 100-150 MHz */
   1640 		{ 250,	4 },	/* 150-250 MHz */
   1641 		{ 300,	5 },	/* 250-300 MHz */
   1642 	};
   1643 	int i;
   1644 
   1645 	freq /= 1000 * 1000;
   1646 	/* convert MDIO clk to a divisor value */
   1647 	if (freq < mdioclk[0].freq)
   1648 		return mdioclk[0].bit;
   1649 	for (i = 1; i < __arraycount(mdioclk); i++) {
   1650 		if (freq < mdioclk[i].freq)
   1651 			return mdioclk[i-1].bit;
   1652 	}
   1653 	return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
   1654 }
   1655