if_scx.c revision 1.24 1 /* $NetBSD: if_scx.c,v 1.24 2021/01/27 03:10:19 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32
33 /*
34 * Socionext SC2A11 SynQuacer NetSec GbE driver
35 *
36 * Multiple Tx and Rx queues exist inside and dedicated descriptor
37 * fields specifies which queue is to use. Three internal micro-processors
38 * to handle incoming frames, outgoing frames and packet data crypto
39 * processing. uP programs are stored in an external flash memory and
40 * have to be loaded by device driver.
41 * NetSec uses Synopsys DesignWare Core EMAC. DWC implmentation
42 * regiter (0x20) is known to have 0x10.36 and feature register (0x1058)
43 * to report XX.XX.
44 */
45
46 #define NOT_MP_SAFE 0
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.24 2021/01/27 03:10:19 thorpej Exp $");
50
51 #include <sys/param.h>
52 #include <sys/bus.h>
53 #include <sys/intr.h>
54 #include <sys/device.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/malloc.h>
58 #include <sys/errno.h>
59 #include <sys/rndsource.h>
60 #include <sys/kernel.h>
61 #include <sys/systm.h>
62
63 #include <net/if.h>
64 #include <net/if_media.h>
65 #include <net/if_dl.h>
66 #include <net/if_ether.h>
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 #include <net/bpf.h>
70
71 #include <dev/fdt/fdtvar.h>
72 #include <dev/acpi/acpireg.h>
73 #include <dev/acpi/acpivar.h>
74 #include <dev/acpi/acpi_intr.h>
75
76 /* Socionext SC2A11 descriptor format */
77 struct tdes {
78 uint32_t t0, t1, t2, t3;
79 };
80
81 struct rdes {
82 uint32_t r0, r1, r2, r3;
83 };
84
85 #define T0_OWN (1U<<31) /* desc is ready to Tx */
86 #define T0_EOD (1U<<30) /* end of descriptor array */
87 #define T0_DRID (24) /* 29:24 D-RID */
88 #define T0_PT (1U<<21) /* 23:21 PT */
89 #define T0_TRID (16) /* 20:16 T-RID */
90 #define T0_FS (1U<<9) /* first segment of frame */
91 #define T0_LS (1U<<8) /* last segment of frame */
92 #define T0_CSUM (1U<<7) /* enable check sum offload */
93 #define T0_SGOL (1U<<6) /* enable TCP segment offload */
94 #define T0_TRS (1U<<4) /* 5:4 TRS */
95 #define T0_IOC (0) /* XXX TBD interrupt when completed */
96 /* T1 segment address 63:32 */
97 /* T2 segment address 31:0 */
98 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
99
100 #define R0_OWN (1U<<31) /* desc is empty */
101 #define R0_EOD (1U<<30) /* end of descriptor array */
102 #define R0_SRID (24) /* 29:24 S-RID */
103 #define R0_FR (1U<<23) /* FR */
104 #define R0_ER (1U<<21) /* Rx error indication */
105 #define R0_ERR (3U<<16) /* 18:16 receive error code */
106 #define R0_TDRID (14) /* 15:14 TD-RID */
107 #define R0_FS (1U<<9) /* first segment of frame */
108 #define R0_LS (1U<<8) /* last segment of frame */
109 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
110 #define R0_CERR (2U<<6) /* 0 (undone), 1 (found ok), 2 (bad) */
111 /* R1 frame address 63:32 */
112 /* R2 frame address 31:0 */
113 /* R3 31:16 received frame length, 15:0 buffer length to receive */
114
115 /*
116 * SC2A11 NetSec registers. 0x100 - 1204
117 */
118 #define SWRESET 0x104
119 #define COMINIT 0x120
120 #define xINTSR 0x200 /* aggregated interrupt status report */
121 #define IRQ_RX (1U<<1) /* top level Rx interrupt */
122 #define IRQ_TX (1U<<0) /* top level Rx interrupt */
123 #define xINTAEN 0x204 /* INT_A enable */
124 #define xINTA_SET 0x234 /* bit to set */
125 #define xINTA_CLR 0x238 /* bit to clr */
126 #define xINTBEN 0x23c /* INT_B enable */
127 #define xINTB_SET 0x240 /* bit to set */
128 #define xINTB_CLR 0x244 /* bit to clr */
129 /* 0x00c - 048 */ /* pkt,tls,s0,s1 SR/IE/SET/CLR */
130 #define TXISR 0x400
131 #define TXIEN 0x404
132 #define TXI_SET 0x428
133 #define TXI_CLR 0x42c
134 #define TXI_NTOWNR (1U<<17)
135 #define TXI_TR_ERR (1U<<16)
136 #define TXI_TXDONE (1U<<15)
137 #define TXI_TMREXP (1U<<14)
138 #define RXISR 0x440
139 #define RXIEN 0x444
140 #define RXI_SET 0x468
141 #define RXI_CLR 0x46c
142 #define RXI_RC_ERR (1U<<16)
143 #define RXI_PKTCNT (1U<<15)
144 #define RXI_TMREXP (1U<<14)
145 #define TXTIMER 0x41c
146 #define RXTIMER 0x45c
147 #define TXCOUNT 0x410
148 #define RXCOUNT 0x454
149 #define H2MENG 0x210 /* DMAC host2media ucode port */
150 #define M2HENG 0x21c /* DMAC media2host ucode port */
151 #define PKTENG 0x0d0 /* packet engine ucode port */
152 #define CLKEN 0x100 /* clock distribution enable */
153 #define CLK_G (1U<<5)
154 #define CLK_ALL 0x13 /* 0x24 ??? */
155 #define MACADRH 0x10c /* ??? */
156 #define MACADRL 0x110 /* ??? */
157 #define MCVER 0x22c /* micro controller version */
158 #define HWVER 0x230 /* hardware version */
159
160 /* 0x800 */ /* dec Tx SR/EN/SET/CLR */
161 /* 0x840 */ /* enc Rx SR/EN/SET/CLR */
162 /* 0x880 */ /* enc TLS Tx SR/IE/SET/CLR */
163 /* 0x8c0 */ /* dec TLS Tx SR/IE/SET/CLR */
164 /* 0x900 */ /* enc TLS Rx SR/IE/SET/CLR */
165 /* 0x940 */ /* dec TLS Rx SR/IE/SET/CLR */
166 /* 0x980 */ /* enc RAW Tx SR/IE/SET/CLR */
167 /* 0x9c0 */ /* dec RAW Tx SR/IE/SET/CLR */
168 /* 0xA00 */ /* enc RAW Rx SR/IE/SET/CLR */
169 /* 0xA40 */ /* dec RAW Rx SR/IE/SET/CLR */
170
171 /* indirect GMAC registers. accessed thru MACCMD/MACDATA operation */
172 #define MACCMD 0x11c4 /* gmac operation */
173 #define CMD_IOWR (1U<<28) /* write op */
174 #define CMD_BUSY (1U<<31) /* busy bit */
175 #define MACSTAT 0x1024 /* gmac status */
176 #define MACDATA 0x11c0 /* gmac rd/wr data */
177 #define MACINTE 0x1028 /* interrupt enable */
178 #define DESC_INIT 0x11fc /* desc engine init */
179 #define DESC_SRST 0x1204 /* desc engine sw reset */
180
181 /*
182 * GMAC registers. not memory mapped, but handled by indirect access.
183 * Mostly identical to Synopsys DesignWare Core Ethernet.
184 */
185 #define GMACMCR 0x0000 /* MAC configuration */
186 #define MCR_IBN (1U<<30) /* ??? */
187 #define MCR_CST (1U<<25) /* strip CRC */
188 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
189 #define MCR_JE (1U<<20) /* ignore oversized >9018 condition */
190 #define MCR_IFG (7U<<17) /* 19:17 IFG value 0~7 */
191 #define MCR_DRCS (1U<<16) /* ignore (G)MII HDX Tx error */
192 #define MCR_USEMII (1U<<15) /* 1: RMII/MII, 0: RGMII (_PS) */
193 #define MCR_SPD100 (1U<<14) /* force speed 100 (_FES) */
194 #define MCR_DO (1U<<13) /* */
195 #define MCR_LOOP (1U<<12) /* */
196 #define MCR_USEFDX (1U<<11) /* force full duplex */
197 #define MCR_IPCEN (1U<<10) /* handle checksum */
198 #define MCR_ACS (1U<<7) /* auto pad strip CRC */
199 #define MCR_TE (1U<<3) /* run Tx MAC engine, 0 to stop */
200 #define MCR_RE (1U<<2) /* run Rx MAC engine, 0 to stop */
201 #define MCR_PREA (3U) /* 1:0 preamble len. 0~2 */
202 #define _MCR_FDX 0x0000280c /* XXX TBD */
203 #define _MCR_HDX 0x0001a00c /* XXX TBD */
204 #define GMACAFR 0x0004 /* frame DA/SA address filter */
205 #define AFR_RA (1U<<31) /* accept all irrecspective of filt. */
206 #define AFR_HPF (1U<<10) /* hash+perfect filter, or hash only */
207 #define AFR_SAF (1U<<9) /* source address filter */
208 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
209 #define AFR_PCF (2U<<6) /* */
210 #define AFR_DBF (1U<<5) /* reject broadcast frame */
211 #define AFR_PM (1U<<4) /* accept all multicast frame */
212 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
213 #define AFR_MHTE (1U<<2) /* use multicast hash table */
214 #define AFR_UHTE (1U<<1) /* use hash table for unicast */
215 #define AFR_PR (1U<<0) /* run promisc mode */
216 #define GMACGAR 0x0010 /* MDIO operation */
217 #define GAR_PHY (11) /* mii phy 15:11 */
218 #define GAR_REG (6) /* mii reg 10:6 */
219 #define GAR_CTL (2) /* control 5:2 */
220 #define GAR_IOWR (1U<<1) /* MDIO write op */
221 #define GAR_BUSY (1U) /* busy bit */
222 #define GMACGDR 0x0014 /* MDIO rd/wr data */
223 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
224 /* 31:16 pause timer value, 5:4 pause timer threthold */
225 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
226 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
227 #define GMACVTAG 0x001c /* VLAN tag control */
228 #define GMACIMPL 0x0020 /* implementation number XX.YY */
229 #define GMACLPIS 0x0030 /* AXI LPI control */
230 #define GMACLPIC 0x0034 /* AXI LPI control */
231 #define GMACISR 0x0038 /* interrupt status, clear when read */
232 #define GMACIMR 0x003c /* interrupt enable */
233 #define ISR_TS (1U<<9) /* time stamp operation detected */
234 #define ISR_CO (1U<<7) /* Rx checksum offload completed */
235 #define ISR_TX (1U<<6) /* Tx completed */
236 #define ISR_RX (1U<<5) /* Rx completed */
237 #define ISR_ANY (1U<<4) /* any of above 5-7 report */
238 #define ISR_LC (1U<<0) /* link status change detected */
239 #define GMACMAH0 0x0040 /* my own MAC address 47:32 */
240 #define GMACMAL0 0x0044 /* my own MAC address 31:0 */
241 #define GMACMAH(i) ((i)*8+0x40) /* supplimental MAC addr 1-15 */
242 #define GMACMAL(i) ((i)*8+0x44) /* 31:0 MAC address low part */
243 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
244 #define GMACAMAH(i) ((i)*8+0x800) /* supplimental MAC addr 16-31 */
245 #define GMACAMAL(i) ((i)*8+0x804) /* 31: MAC address low part */
246 /* MAH bit-31: slot in use, no other bit is effective */
247 #define GMACMHTH 0x0008 /* 64bit multicast hash table 63:32 */
248 #define GMACMHTL 0x000c /* 64bit multicast hash table 31:0 */
249 #define GMACMHT(i) ((i)*4+0x500) /* 256-bit alternative mcast hash 0-7 */
250 #define GMACVHT 0x0588 /* 16-bit VLAN tag hash */
251 #define GMACMIISR 0x00d8 /* resolved xMII link status */
252 /* 3: link up detected, 2:1 resovled speed (0/1/2), 1: fdx detected */
253
254 /* 0x0700 - 0734 ??? */
255
256 #define GMACBMR 0x1000 /* DMA bus mode control */
257 /* 24 4PBL 8???
258 * 23 USP
259 * 22:17 RPBL
260 * 16 fixed burst, or undefined b.
261 * 15:14 priority between Rx and Tx
262 * 3 rxtx ratio 41
263 * 2 rxtx ratio 31
264 * 1 rxtx ratio 21
265 * 0 rxtx ratio 11
266 * 13:8 PBL packet burst len
267 * 7 alternative des8
268 * 0 reset op. (SC)
269 */
270 #define _BMR 0x00412080 /* XXX TBD */
271 #define _BMR0 0x00020181 /* XXX TBD */
272 #define BMR_RST (1) /* reset op. self clear when done */
273 #define GMACTPD 0x1004 /* write any to resume tdes */
274 #define GMACRPD 0x1008 /* write any to resume rdes */
275 #define GMACRDLA 0x100c /* rdes base address 32bit paddr */
276 #define GMACTDLA 0x1010 /* tdes base address 32bit paddr */
277 #define _RDLA 0x18000 /* XXX TBD system SRAM ? */
278 #define _TDLA 0x1c000 /* XXX TBD system SRAM ? */
279 #define GMACDSR 0x1014 /* DMA status detail report; W1C */
280 #define GMACOMR 0x1018 /* DMA operation */
281 #define OMR_TSF (1U<<25) /* 1: Tx store&forword, 0: immed. */
282 #define OMR_RSF (1U<<21) /* 1: Rx store&forward, 0: immed. */
283 #define OMR_ST (1U<<13) /* run Tx DMA engine, 0 to stop */
284 #define OMR_EFC (1U<<8) /* transmit PAUSE to throttle Rx lvl. */
285 #define OMR_FEF (1U<<7) /* allow to receive error frames */
286 #define OMR_RS (1U<<1) /* run Rx DMA engine, 0 to stop */
287 #define GMACIE 0x101c /* interrupt enable */
288 #define GMACEVCS 0x1020 /* missed frame or ovf detected */
289 #define GMACRWDT 0x1024 /* receive watchdog timer count */
290 #define GMACAXIB 0x1028 /* AXI bus mode control */
291 #define GMACAXIS 0x102c /* AXI status report */
292 /* 0x1048 - 1054 */ /* descriptor and buffer cur. address */
293 #define HWFEA 0x1058 /* feature report */
294
295 #define GMACEVCTL 0x0100 /* event counter control */
296 #define GMACEVCNT(i) ((i)*4+0x114) /* event counter 0x114 - 0x284 */
297
298 /* memory mapped CSR register */
299 #define CSR_READ(sc,off) \
300 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
301 #define CSR_WRITE(sc,off,val) \
302 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
303
304 /* flash memory access */
305 #define EE_READ(sc,off) \
306 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
307
308 /*
309 * flash memory layout
310 * 0x00 - 07 48-bit MAC station address. 4 byte wise in BE order.
311 * 0x08 - 0b H->MAC xfer uengine program start addr 63:32.
312 * 0x0c - 0f H2M program addr 31:0 (these are absolute addr, not relative)
313 * 0x10 - 13 H2M program length in 4 byte count.
314 * 0x14 - 0b M->HOST xfer uengine program start addr 63:32.
315 * 0x18 - 0f M2H program addr 31:0 (absolute, not relative)
316 * 0x1c - 13 M2H program length in 4 byte count.
317 * 0x20 - 23 packet uengine program addr 31:0, (absolute, not relative)
318 * 0x24 - 27 packet program length in 4 byte count.
319 *
320 * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
321 */
322
323 /*
324 * all below are software constraction.
325 */
326 #define MD_NTXSEGS 16 /* fixed */
327 #define MD_TXQUEUELEN 8 /* tunable */
328 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1)
329 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4)
330 #define MD_NTXDESC 128
331 #define MD_NTXDESC_MASK (MD_NTXDESC - 1)
332 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK)
333 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK)
334
335 #define MD_NRXDESC 64 /* tunable */
336 #define MD_NRXDESC_MASK (MD_NRXDESC - 1)
337 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK)
338
339 struct control_data {
340 struct tdes cd_txdescs[MD_NTXDESC];
341 struct rdes cd_rxdescs[MD_NRXDESC];
342 };
343 #define SCX_CDOFF(x) offsetof(struct control_data, x)
344 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
345 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
346
347 struct scx_txsoft {
348 struct mbuf *txs_mbuf; /* head of our mbuf chain */
349 bus_dmamap_t txs_dmamap; /* our DMA map */
350 int txs_firstdesc; /* first descriptor in packet */
351 int txs_lastdesc; /* last descriptor in packet */
352 int txs_ndesc; /* # of descriptors used */
353 };
354
355 struct scx_rxsoft {
356 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
357 bus_dmamap_t rxs_dmamap; /* our DMA map */
358 };
359
360 struct scx_softc {
361 device_t sc_dev; /* generic device information */
362 bus_space_tag_t sc_st; /* bus space tag */
363 bus_space_handle_t sc_sh; /* bus space handle */
364 bus_size_t sc_sz; /* csr map size */
365 bus_space_handle_t sc_eesh; /* eeprom section handle */
366 bus_size_t sc_eesz; /* eeprom map size */
367 bus_dma_tag_t sc_dmat; /* bus DMA tag */
368 bus_dma_tag_t sc_dmat32;
369 struct ethercom sc_ethercom; /* Ethernet common data */
370 struct mii_data sc_mii; /* MII */
371 callout_t sc_callout; /* PHY monitor callout */
372 bus_dma_segment_t sc_seg; /* descriptor store seg */
373 int sc_nseg; /* descriptor store nseg */
374 void *sc_ih; /* interrupt cookie */
375 int sc_phy_id; /* PHY address */
376 int sc_flowflags; /* 802.3x PAUSE flow control */
377 uint32_t sc_mdclk; /* GAR 5:2 clock selection */
378 uint32_t sc_t0coso; /* T0_CSUM | T0_SGOL to run */
379 int sc_ucodeloaded; /* ucode for H2M/M2H/PKT */
380 int sc_100mii; /* 1 for RMII/MII, 0 for RGMII */
381 int sc_phandle; /* fdt phandle */
382 uint64_t sc_freq;
383
384 bus_dmamap_t sc_cddmamap; /* control data DMA map */
385 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
386
387 struct control_data *sc_control_data;
388 #define sc_txdescs sc_control_data->cd_txdescs
389 #define sc_rxdescs sc_control_data->cd_rxdescs
390
391 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
392 struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
393 int sc_txfree; /* number of free Tx descriptors */
394 int sc_txnext; /* next ready Tx descriptor */
395 int sc_txsfree; /* number of free Tx jobs */
396 int sc_txsnext; /* next ready Tx job */
397 int sc_txsdirty; /* dirty Tx jobs */
398 int sc_rxptr; /* next ready Rx descriptor/descsoft */
399
400 krndsource_t rnd_source; /* random source */
401 };
402
403 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
404 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
405
406 #define SCX_CDTXSYNC(sc, x, n, ops) \
407 do { \
408 int __x, __n; \
409 \
410 __x = (x); \
411 __n = (n); \
412 \
413 /* If it will wrap around, sync to the end of the ring. */ \
414 if ((__x + __n) > MD_NTXDESC) { \
415 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
416 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
417 (MD_NTXDESC - __x), (ops)); \
418 __n -= (MD_NTXDESC - __x); \
419 __x = 0; \
420 } \
421 \
422 /* Now sync whatever is left. */ \
423 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
424 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
425 } while (/*CONSTCOND*/0)
426
427 #define SCX_CDRXSYNC(sc, x, ops) \
428 do { \
429 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
430 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
431 } while (/*CONSTCOND*/0)
432
433 #define SCX_INIT_RXDESC(sc, x) \
434 do { \
435 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
436 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
437 struct mbuf *__m = __rxs->rxs_mbuf; \
438 bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr; \
439 __m->m_data = __m->m_ext.ext_buf; \
440 __rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len; \
441 __rxd->r2 = htole32(BUS_ADDR_LO32(__paddr)); \
442 __rxd->r1 = htole32(BUS_ADDR_HI32(__paddr)); \
443 __rxd->r0 = R0_OWN | R0_FS | R0_LS; \
444 if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD; \
445 } while (/*CONSTCOND*/0)
446
447 static int scx_fdt_match(device_t, cfdata_t, void *);
448 static void scx_fdt_attach(device_t, device_t, void *);
449 static int scx_acpi_match(device_t, cfdata_t, void *);
450 static void scx_acpi_attach(device_t, device_t, void *);
451
452 const CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
453 scx_fdt_match, scx_fdt_attach, NULL, NULL);
454
455 const CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
456 scx_acpi_match, scx_acpi_attach, NULL, NULL);
457
458 static void scx_attach_i(struct scx_softc *);
459 static void scx_reset(struct scx_softc *);
460 static int scx_init(struct ifnet *);
461 static void scx_stop(struct ifnet *, int);
462 static int scx_ioctl(struct ifnet *, u_long, void *);
463 static void scx_set_rcvfilt(struct scx_softc *);
464 static void scx_start(struct ifnet *);
465 static void scx_watchdog(struct ifnet *);
466 static int scx_intr(void *);
467 static void txreap(struct scx_softc *);
468 static void rxintr(struct scx_softc *);
469 static int add_rxbuf(struct scx_softc *, int);
470 static void rxdrain(struct scx_softc *sc);
471 static void mii_statchg(struct ifnet *);
472 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
473 static int mii_readreg(device_t, int, int, uint16_t *);
474 static int mii_writereg(device_t, int, int, uint16_t);
475 static void phy_tick(void *);
476
477 static void loaducode(struct scx_softc *);
478 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
479
480 static int get_mdioclk(uint32_t);
481
482 #define WAIT_FOR_SET(sc, reg, set, fail) \
483 wait_for_bits(sc, reg, set, ~0, fail)
484 #define WAIT_FOR_CLR(sc, reg, clr, fail) \
485 wait_for_bits(sc, reg, 0, clr, fail)
486
487 static int
488 wait_for_bits(struct scx_softc *sc, int reg,
489 uint32_t set, uint32_t clr, uint32_t fail)
490 {
491 uint32_t val;
492 int ntries;
493
494 for (ntries = 0; ntries < 1000; ntries++) {
495 val = CSR_READ(sc, reg);
496 if ((val & set) || !(val & clr))
497 return 0;
498 if (val & fail)
499 return 1;
500 DELAY(1);
501 }
502 return 1;
503 }
504
505 /* GMAC register indirect access */
506 static int
507 mac_read(struct scx_softc *sc, int reg)
508 {
509
510 CSR_WRITE(sc, MACCMD, reg);
511 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
512 return CSR_READ(sc, MACDATA);
513 }
514
515 static void
516 mac_write(struct scx_softc *sc, int reg, int val)
517 {
518
519 CSR_WRITE(sc, MACDATA, val);
520 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
521 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
522 }
523
524 static const struct device_compatible_entry compat_data[] = {
525 { .compat = "socionext,synquacer-netsec" },
526 DEVICE_COMPAT_EOL
527 };
528
529 static int
530 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
531 {
532 struct fdt_attach_args * const faa = aux;
533
534 return of_compatible_match(faa->faa_phandle, compat_data);
535 }
536
537 static void
538 scx_fdt_attach(device_t parent, device_t self, void *aux)
539 {
540 struct scx_softc * const sc = device_private(self);
541 struct fdt_attach_args * const faa = aux;
542 const int phandle = faa->faa_phandle;
543 bus_space_tag_t bst = faa->faa_bst;
544 bus_space_handle_t bsh;
545 bus_space_handle_t eebsh;
546 bus_addr_t addr[2];
547 bus_size_t size[2];
548 char intrstr[128];
549 const char *phy_mode;
550
551 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
552 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
553 aprint_error(": unable to map device csr\n");
554 return;
555 }
556 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
557 aprint_error(": failed to decode interrupt\n");
558 goto fail;
559 }
560 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
561 NOT_MP_SAFE, scx_intr, sc);
562 if (sc->sc_ih == NULL) {
563 aprint_error_dev(self, "couldn't establish interrupt\n");
564 goto fail;
565 }
566 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
567 || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
568 aprint_error(": unable to map device eeprom\n");
569 goto fail;
570 }
571
572 aprint_naive("\n");
573 /* aprint_normal(": Gigabit Ethernet Controller\n"); */
574 aprint_normal_dev(self, "interrupt on %s\n", intrstr);
575
576 sc->sc_dev = self;
577 sc->sc_st = bst;
578 sc->sc_sh = bsh;
579 sc->sc_sz = size[0];
580 sc->sc_eesh = eebsh;
581 sc->sc_eesz = size[1];
582 sc->sc_dmat = faa->faa_dmat;
583 sc->sc_dmat32 = faa->faa_dmat; /* XXX */
584 sc->sc_phandle = phandle;
585
586 phy_mode = fdtbus_get_string(phandle, "phy-mode");
587 if (phy_mode == NULL)
588 aprint_error(": missing 'phy-mode' property\n");
589 sc->sc_100mii = (phy_mode && strcmp(phy_mode, "rgmii") != 0);
590
591 scx_attach_i(sc);
592 return;
593 fail:
594 if (sc->sc_eesz)
595 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
596 if (sc->sc_sz)
597 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
598 return;
599 }
600
601 static int
602 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
603 {
604 static const char * compatible[] = {
605 "SCX0001",
606 NULL
607 };
608 struct acpi_attach_args *aa = aux;
609
610 if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
611 return 0;
612 return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
613 }
614
615 static void
616 scx_acpi_attach(device_t parent, device_t self, void *aux)
617 {
618 struct scx_softc * const sc = device_private(self);
619 struct acpi_attach_args * const aa = aux;
620 ACPI_HANDLE handle = aa->aa_node->ad_handle;
621 bus_space_tag_t bst = aa->aa_memt;
622 bus_space_handle_t bsh, eebsh;
623 struct acpi_resources res;
624 struct acpi_mem *mem;
625 struct acpi_irq *irq;
626 char *phy_mode;
627 ACPI_INTEGER acpi_phy, acpi_freq;
628 ACPI_STATUS rv;
629
630 rv = acpi_resource_parse(self, handle, "_CRS",
631 &res, &acpi_resource_parse_ops_default);
632 if (ACPI_FAILURE(rv))
633 return;
634 mem = acpi_res_mem(&res, 0);
635 irq = acpi_res_irq(&res, 0);
636 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
637 aprint_error(": incomplete csr resources\n");
638 return;
639 }
640 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
641 aprint_error(": couldn't map registers\n");
642 return;
643 }
644 sc->sc_sz = mem->ar_length;
645 sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
646 NOT_MP_SAFE, scx_intr, sc, device_xname(self));
647 if (sc->sc_ih == NULL) {
648 aprint_error_dev(self, "couldn't establish interrupt\n");
649 goto fail;
650 }
651 mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
652 if (mem == NULL || mem->ar_length == 0) {
653 aprint_error(": incomplete eeprom resources\n");
654 goto fail;
655 }
656 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
657 aprint_error(": couldn't map registers\n");
658 goto fail;
659 }
660 sc->sc_eesz = mem->ar_length;
661
662 rv = acpi_dsd_string(handle, "phy-mode", &phy_mode);
663 if (ACPI_FAILURE(rv)) {
664 aprint_error(": missing 'phy-mode' property\n");
665 phy_mode = NULL;
666 }
667 rv = acpi_dsd_integer(handle, "phy-channel", &acpi_phy);
668 if (ACPI_FAILURE(rv))
669 acpi_phy = 31;
670 rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
671 &acpi_freq);
672 if (ACPI_FAILURE(rv))
673 acpi_freq = 999;
674
675 aprint_naive("\n");
676 /* aprint_normal(": Gigabit Ethernet Controller\n"); */
677
678 sc->sc_dev = self;
679 sc->sc_st = bst;
680 sc->sc_sh = bsh;
681 sc->sc_eesh = eebsh;
682 sc->sc_dmat = aa->aa_dmat64;
683 sc->sc_dmat32 = aa->aa_dmat; /* descriptor needs dma32 */
684
685 aprint_normal_dev(self,
686 "phy mode %s, phy id %d, freq %ld\n", phy_mode, (int)acpi_phy, acpi_freq);
687 sc->sc_100mii = (phy_mode && strcmp(phy_mode, "rgmii") != 0);
688 sc->sc_phy_id = (int)acpi_phy;
689 sc->sc_freq = acpi_freq;
690 aprint_normal_dev(self,
691 "GMACGAR %08x\n", mac_read(sc, GMACGAR));
692
693 scx_attach_i(sc);
694
695 acpi_resource_cleanup(&res);
696 return;
697 fail:
698 if (sc->sc_eesz > 0)
699 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
700 if (sc->sc_sz > 0)
701 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
702 acpi_resource_cleanup(&res);
703 return;
704 }
705
706 static void
707 scx_attach_i(struct scx_softc *sc)
708 {
709 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
710 struct mii_data * const mii = &sc->sc_mii;
711 struct ifmedia * const ifm = &mii->mii_media;
712 uint32_t hwver, dwimp, dwfea;
713 uint8_t enaddr[ETHER_ADDR_LEN];
714 bus_dma_segment_t seg;
715 uint32_t csr;
716 int i, nseg, error = 0;
717
718 hwver = CSR_READ(sc, HWVER); /* Socionext version */
719 dwimp = mac_read(sc, GMACIMPL); /* DW EMAC XX.YY */
720 dwfea = mac_read(sc, HWFEA); /* DW feature */
721 aprint_normal_dev(sc->sc_dev,
722 "Socionext NetSec GbE %d.%d (impl 0x%x, feature 0x%x)\n",
723 hwver >> 16, hwver & 0xffff,
724 dwimp, dwfea);
725
726 /* fetch MAC address in flash. stored in big endian order */
727 csr = EE_READ(sc, 0x00);
728 enaddr[0] = csr >> 24;
729 enaddr[1] = csr >> 16;
730 enaddr[2] = csr >> 8;
731 enaddr[3] = csr;
732 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
733 csr = EE_READ(sc, 0x04);
734 enaddr[4] = csr >> 24;
735 enaddr[5] = csr >> 16;
736 aprint_normal_dev(sc->sc_dev,
737 "Ethernet address %s\n", ether_sprintf(enaddr));
738
739 sc->sc_mdclk = get_mdioclk(sc->sc_freq); /* 5:2 clk control */
740
741 if (sc->sc_ucodeloaded == 0)
742 loaducode(sc);
743
744 mii->mii_ifp = ifp;
745 mii->mii_readreg = mii_readreg;
746 mii->mii_writereg = mii_writereg;
747 mii->mii_statchg = mii_statchg;
748
749 sc->sc_ethercom.ec_mii = mii;
750 ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
751 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
752 MII_OFFSET_ANY, MIIF_DOPAUSE);
753 if (LIST_FIRST(&mii->mii_phys) == NULL) {
754 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
755 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
756 } else
757 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
758 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
759
760 /*
761 * Allocate the control data structures, and create and load the
762 * DMA map for it.
763 */
764 error = bus_dmamem_alloc(sc->sc_dmat32,
765 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
766 if (error != 0) {
767 aprint_error_dev(sc->sc_dev,
768 "unable to allocate control data, error = %d\n", error);
769 goto fail_0;
770 }
771 error = bus_dmamem_map(sc->sc_dmat32, &seg, nseg,
772 sizeof(struct control_data), (void **)&sc->sc_control_data,
773 BUS_DMA_COHERENT);
774 if (error != 0) {
775 aprint_error_dev(sc->sc_dev,
776 "unable to map control data, error = %d\n", error);
777 goto fail_1;
778 }
779 error = bus_dmamap_create(sc->sc_dmat32,
780 sizeof(struct control_data), 1,
781 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
782 if (error != 0) {
783 aprint_error_dev(sc->sc_dev,
784 "unable to create control data DMA map, "
785 "error = %d\n", error);
786 goto fail_2;
787 }
788 error = bus_dmamap_load(sc->sc_dmat32, sc->sc_cddmamap,
789 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
790 if (error != 0) {
791 aprint_error_dev(sc->sc_dev,
792 "unable to load control data DMA map, error = %d\n",
793 error);
794 goto fail_3;
795 }
796 for (i = 0; i < MD_TXQUEUELEN; i++) {
797 if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
798 MD_NTXSEGS, MCLBYTES, 0, 0,
799 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
800 aprint_error_dev(sc->sc_dev,
801 "unable to create tx DMA map %d, error = %d\n",
802 i, error);
803 goto fail_4;
804 }
805 }
806 for (i = 0; i < MD_NRXDESC; i++) {
807 if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
808 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
809 aprint_error_dev(sc->sc_dev,
810 "unable to create rx DMA map %d, error = %d\n",
811 i, error);
812 goto fail_5;
813 }
814 sc->sc_rxsoft[i].rxs_mbuf = NULL;
815 }
816 sc->sc_seg = seg;
817 sc->sc_nseg = nseg;
818 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
819
820 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
821 ifp->if_softc = sc;
822 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
823 ifp->if_ioctl = scx_ioctl;
824 ifp->if_start = scx_start;
825 ifp->if_watchdog = scx_watchdog;
826 ifp->if_init = scx_init;
827 ifp->if_stop = scx_stop;
828 IFQ_SET_READY(&ifp->if_snd);
829
830 sc->sc_flowflags = 0;
831
832 if_attach(ifp);
833 if_deferred_start_init(ifp, NULL);
834 ether_ifattach(ifp, enaddr);
835
836 callout_init(&sc->sc_callout, 0);
837 callout_setfunc(&sc->sc_callout, phy_tick, sc);
838
839 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
840 RND_TYPE_NET, RND_FLAG_DEFAULT);
841
842 return;
843
844 fail_5:
845 for (i = 0; i < MD_NRXDESC; i++) {
846 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
847 bus_dmamap_destroy(sc->sc_dmat,
848 sc->sc_rxsoft[i].rxs_dmamap);
849 }
850 fail_4:
851 for (i = 0; i < MD_TXQUEUELEN; i++) {
852 if (sc->sc_txsoft[i].txs_dmamap != NULL)
853 bus_dmamap_destroy(sc->sc_dmat,
854 sc->sc_txsoft[i].txs_dmamap);
855 }
856 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
857 fail_3:
858 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
859 fail_2:
860 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
861 sizeof(struct control_data));
862 fail_1:
863 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
864 fail_0:
865 if (sc->sc_phandle)
866 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
867 else
868 acpi_intr_disestablish(sc->sc_ih);
869 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
870 return;
871 }
872
873 static void
874 scx_reset(struct scx_softc *sc)
875 {
876 int loop = 0, busy;
877
878 mac_write(sc, GMACOMR, 0);
879 mac_write(sc, GMACBMR, BMR_RST);
880 do {
881 DELAY(1);
882 busy = mac_read(sc, GMACBMR) & BMR_RST;
883 } while (++loop < 3000 && busy);
884 mac_write(sc, GMACBMR, _BMR);
885 mac_write(sc, GMACAFR, 0);
886
887 CSR_WRITE(sc, CLKEN, CLK_ALL); /* distribute clock sources */
888 CSR_WRITE(sc, SWRESET, 0); /* reset operation */
889 CSR_WRITE(sc, SWRESET, 1U<<31); /* manifest run */
890 CSR_WRITE(sc, COMINIT, 3); /* DB|CLS */
891
892 mac_write(sc, GMACEVCTL, 1);
893 }
894
895 static int
896 scx_init(struct ifnet *ifp)
897 {
898 struct scx_softc *sc = ifp->if_softc;
899 const uint8_t *ea = CLLADDR(ifp->if_sadl);
900 uint32_t csr;
901 int i, error;
902
903 /* Cancel pending I/O. */
904 scx_stop(ifp, 0);
905
906 /* Reset the chip to a known state. */
907 scx_reset(sc);
908
909 /* build sane Tx */
910 memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
911 sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
912 SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
913 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
914 sc->sc_txfree = MD_NTXDESC;
915 sc->sc_txnext = 0;
916 for (i = 0; i < MD_TXQUEUELEN; i++)
917 sc->sc_txsoft[i].txs_mbuf = NULL;
918 sc->sc_txsfree = MD_TXQUEUELEN;
919 sc->sc_txsnext = 0;
920 sc->sc_txsdirty = 0;
921
922 /* load Rx descriptors with fresh mbuf */
923 for (i = 0; i < MD_NRXDESC; i++) {
924 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
925 if ((error = add_rxbuf(sc, i)) != 0) {
926 aprint_error_dev(sc->sc_dev,
927 "unable to allocate or map rx "
928 "buffer %d, error = %d\n",
929 i, error);
930 rxdrain(sc);
931 goto out;
932 }
933 }
934 else
935 SCX_INIT_RXDESC(sc, i);
936 }
937 sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_EOD;
938 sc->sc_rxptr = 0;
939 sc->sc_rxptr = 0;
940
941 /* set my address in perfect match slot 0. little endin order */
942 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
943 mac_write(sc, GMACMAL0, csr);
944 csr = (ea[5] << 8) | ea[4];
945 mac_write(sc, GMACMAH0, csr);
946
947 /* accept multicast frame or run promisc mode */
948 scx_set_rcvfilt(sc);
949
950 /* set current media */
951 if ((error = ether_mediachange(ifp)) != 0)
952 goto out;
953
954 /* XXX 32 bit paddr XXX hand Tx/Rx rings to HW XXX */
955 mac_write(sc, GMACTDLA, SCX_CDTXADDR(sc, 0));
956 mac_write(sc, GMACRDLA, SCX_CDRXADDR(sc, 0));
957
958 /* kick to start GMAC engine */
959 CSR_WRITE(sc, RXI_CLR, ~0);
960 CSR_WRITE(sc, TXI_CLR, ~0);
961 csr = mac_read(sc, GMACOMR);
962 mac_write(sc, GMACOMR, csr | OMR_RS | OMR_ST);
963
964 ifp->if_flags |= IFF_RUNNING;
965 ifp->if_flags &= ~IFF_OACTIVE;
966
967 /* start one second timer */
968 callout_schedule(&sc->sc_callout, hz);
969 out:
970 return error;
971 }
972
973 static void
974 scx_stop(struct ifnet *ifp, int disable)
975 {
976 struct scx_softc *sc = ifp->if_softc;
977
978 /* Stop the one second clock. */
979 callout_stop(&sc->sc_callout);
980
981 /* Down the MII. */
982 mii_down(&sc->sc_mii);
983
984 /* Mark the interface down and cancel the watchdog timer. */
985 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
986 ifp->if_timer = 0;
987 }
988
989 static int
990 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
991 {
992 struct scx_softc *sc = ifp->if_softc;
993 struct ifreq *ifr = (struct ifreq *)data;
994 struct ifmedia *ifm = &sc->sc_mii.mii_media;
995 int s, error;
996
997 s = splnet();
998
999 switch (cmd) {
1000 case SIOCSIFMEDIA:
1001 /* Flow control requires full-duplex mode. */
1002 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1003 (ifr->ifr_media & IFM_FDX) == 0)
1004 ifr->ifr_media &= ~IFM_ETH_FMASK;
1005 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1006 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1007 /* We can do both TXPAUSE and RXPAUSE. */
1008 ifr->ifr_media |=
1009 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1010 }
1011 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1012 }
1013 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
1014 break;
1015 default:
1016 error = ether_ioctl(ifp, cmd, data);
1017 if (error != ENETRESET)
1018 break;
1019 error = 0;
1020 if (cmd == SIOCSIFCAP)
1021 error = (*ifp->if_init)(ifp);
1022 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1023 ;
1024 else if (ifp->if_flags & IFF_RUNNING) {
1025 /*
1026 * Multicast list has changed; set the hardware filter
1027 * accordingly.
1028 */
1029 scx_set_rcvfilt(sc);
1030 }
1031 break;
1032 }
1033
1034 splx(s);
1035 return error;
1036 }
1037
1038 static void
1039 scx_set_rcvfilt(struct scx_softc *sc)
1040 {
1041 struct ethercom * const ec = &sc->sc_ethercom;
1042 struct ifnet * const ifp = &ec->ec_if;
1043 struct ether_multistep step;
1044 struct ether_multi *enm;
1045 uint32_t mchash[2]; /* 2x 32 = 64 bit */
1046 uint32_t csr, crc;
1047 int i;
1048
1049 csr = mac_read(sc, GMACAFR);
1050 csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1051 mac_write(sc, GMACAFR, csr);
1052
1053 /* clear 15 entry supplimental perfect match filter */
1054 for (i = 1; i < 16; i++)
1055 mac_write(sc, GMACMAH(i), 0);
1056 /* build 64 bit multicast hash filter */
1057 crc = mchash[1] = mchash[0] = 0;
1058
1059 ETHER_LOCK(ec);
1060 if (ifp->if_flags & IFF_PROMISC) {
1061 ec->ec_flags |= ETHER_F_ALLMULTI;
1062 ETHER_UNLOCK(ec);
1063 /* run promisc. mode */
1064 csr |= AFR_PR;
1065 goto update;
1066 }
1067 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1068 ETHER_FIRST_MULTI(step, ec, enm);
1069 i = 1; /* slot 0 is occupied */
1070 while (enm != NULL) {
1071 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1072 /*
1073 * We must listen to a range of multicast addresses.
1074 * For now, just accept all multicasts, rather than
1075 * trying to set only those filter bits needed to match
1076 * the range. (At this time, the only use of address
1077 * ranges is for IP multicast routing, for which the
1078 * range is big enough to require all bits set.)
1079 */
1080 ec->ec_flags |= ETHER_F_ALLMULTI;
1081 ETHER_UNLOCK(ec);
1082 /* accept all multi */
1083 csr |= AFR_PM;
1084 goto update;
1085 }
1086 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1087 if (i < 16) {
1088 /* use 15 entry perfect match filter */
1089 uint32_t addr;
1090 uint8_t *ep = enm->enm_addrlo;
1091 addr = (ep[3] << 24) | (ep[2] << 16)
1092 | (ep[1] << 8) | ep[0];
1093 mac_write(sc, GMACMAL(i), addr);
1094 addr = (ep[5] << 8) | ep[4];
1095 mac_write(sc, GMACMAH(i), addr | 1U<<31);
1096 } else {
1097 /* use hash table when too many */
1098 /* bit_reserve_32(~crc) !? */
1099 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1100 /* 1(31) 5(30:26) bit sampling */
1101 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1102 }
1103 ETHER_NEXT_MULTI(step, enm);
1104 i++;
1105 }
1106 ETHER_UNLOCK(ec);
1107 if (crc)
1108 csr |= AFR_MHTE;
1109 csr |= AFR_HPF; /* use hash+perfect */
1110 mac_write(sc, GMACMHTH, mchash[1]);
1111 mac_write(sc, GMACMHTL, mchash[0]);
1112 update:
1113 /* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */
1114 mac_write(sc, GMACAFR, csr);
1115 return;
1116 }
1117
1118 static void
1119 scx_start(struct ifnet *ifp)
1120 {
1121 struct scx_softc *sc = ifp->if_softc;
1122 struct mbuf *m0, *m;
1123 struct scx_txsoft *txs;
1124 bus_dmamap_t dmamap;
1125 int error, nexttx, lasttx, ofree, seg;
1126 uint32_t tdes0;
1127
1128 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1129 return;
1130
1131 /* Remember the previous number of free descriptors. */
1132 ofree = sc->sc_txfree;
1133
1134 /*
1135 * Loop through the send queue, setting up transmit descriptors
1136 * until we drain the queue, or use up all available transmit
1137 * descriptors.
1138 */
1139 for (;;) {
1140 IFQ_POLL(&ifp->if_snd, m0);
1141 if (m0 == NULL)
1142 break;
1143
1144 if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1145 txreap(sc);
1146 if (sc->sc_txsfree == 0)
1147 break;
1148 }
1149 txs = &sc->sc_txsoft[sc->sc_txsnext];
1150 dmamap = txs->txs_dmamap;
1151
1152 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1153 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1154 if (error) {
1155 if (error == EFBIG) {
1156 aprint_error_dev(sc->sc_dev,
1157 "Tx packet consumes too many "
1158 "DMA segments, dropping...\n");
1159 IFQ_DEQUEUE(&ifp->if_snd, m0);
1160 m_freem(m0);
1161 continue;
1162 }
1163 /* Short on resources, just stop for now. */
1164 break;
1165 }
1166
1167 if (dmamap->dm_nsegs > sc->sc_txfree) {
1168 /*
1169 * Not enough free descriptors to transmit this
1170 * packet. We haven't committed anything yet,
1171 * so just unload the DMA map, put the packet
1172 * back on the queue, and punt. Notify the upper
1173 * layer that there are not more slots left.
1174 */
1175 ifp->if_flags |= IFF_OACTIVE;
1176 bus_dmamap_unload(sc->sc_dmat, dmamap);
1177 break;
1178 }
1179
1180 IFQ_DEQUEUE(&ifp->if_snd, m0);
1181
1182 /*
1183 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1184 */
1185
1186 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1187 BUS_DMASYNC_PREWRITE);
1188
1189 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1190 lasttx = -1;
1191 for (nexttx = sc->sc_txnext, seg = 0;
1192 seg < dmamap->dm_nsegs;
1193 seg++, nexttx = MD_NEXTTX(nexttx)) {
1194 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1195 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1196 /*
1197 * If this is the first descriptor we're
1198 * enqueueing, don't set the OWN bit just
1199 * yet. That could cause a race condition.
1200 * We'll do it below.
1201 */
1202 tdes->t3 = dmamap->dm_segs[seg].ds_len;
1203 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1204 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1205 tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
1206 (15 << T0_TRID) | T0_PT |
1207 sc->sc_t0coso | T0_TRS;
1208 tdes0 = T0_OWN; /* 2nd and other segments */
1209 lasttx = nexttx;
1210 }
1211 /*
1212 * Outgoing NFS mbuf must be unloaded when Tx completed.
1213 * Without T1_IC NFS mbuf is left unack'ed for excessive
1214 * time and NFS stops to proceed until scx_watchdog()
1215 * calls txreap() to reclaim the unack'ed mbuf.
1216 * It's painful to traverse every mbuf chain to determine
1217 * whether someone is waiting for Tx completion.
1218 */
1219 m = m0;
1220 do {
1221 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1222 sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
1223 break;
1224 }
1225 } while ((m = m->m_next) != NULL);
1226
1227 /* Write deferred 1st segment T0_OWN at the final stage */
1228 sc->sc_txdescs[lasttx].t0 |= T0_LS;
1229 sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
1230 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1231 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1232
1233 /* Tell DMA start transmit */
1234 mac_write(sc, GMACTPD, 1);
1235
1236 txs->txs_mbuf = m0;
1237 txs->txs_firstdesc = sc->sc_txnext;
1238 txs->txs_lastdesc = lasttx;
1239 txs->txs_ndesc = dmamap->dm_nsegs;
1240
1241 sc->sc_txfree -= txs->txs_ndesc;
1242 sc->sc_txnext = nexttx;
1243 sc->sc_txsfree--;
1244 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1245 /*
1246 * Pass the packet to any BPF listeners.
1247 */
1248 bpf_mtap(ifp, m0, BPF_D_OUT);
1249 }
1250
1251 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1252 /* No more slots left; notify upper layer. */
1253 ifp->if_flags |= IFF_OACTIVE;
1254 }
1255 if (sc->sc_txfree != ofree) {
1256 /* Set a watchdog timer in case the chip flakes out. */
1257 ifp->if_timer = 5;
1258 }
1259 }
1260
1261 static void
1262 scx_watchdog(struct ifnet *ifp)
1263 {
1264 struct scx_softc *sc = ifp->if_softc;
1265
1266 /*
1267 * Since we're not interrupting every packet, sweep
1268 * up before we report an error.
1269 */
1270 txreap(sc);
1271
1272 if (sc->sc_txfree != MD_NTXDESC) {
1273 aprint_error_dev(sc->sc_dev,
1274 "device timeout (txfree %d txsfree %d txnext %d)\n",
1275 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1276 if_statinc(ifp, if_oerrors);
1277
1278 /* Reset the interface. */
1279 scx_init(ifp);
1280 }
1281
1282 scx_start(ifp);
1283 }
1284
1285 static int
1286 scx_intr(void *arg)
1287 {
1288 struct scx_softc *sc = arg;
1289 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1290
1291 (void)ifp;
1292 /* XXX decode interrupt cause to pick isr() XXX */
1293 rxintr(sc);
1294 txreap(sc);
1295 return 1;
1296 }
1297
1298 static void
1299 txreap(struct scx_softc *sc)
1300 {
1301 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1302 struct scx_txsoft *txs;
1303 uint32_t txstat;
1304 int i;
1305
1306 ifp->if_flags &= ~IFF_OACTIVE;
1307
1308 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1309 i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1310 txs = &sc->sc_txsoft[i];
1311
1312 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1313 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1314
1315 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1316 if (txstat & T0_OWN) /* desc is still in use */
1317 break;
1318
1319 /* There is no way to tell transmission status per frame */
1320
1321 if_statinc(ifp, if_opackets);
1322
1323 sc->sc_txfree += txs->txs_ndesc;
1324 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1325 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1326 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1327 m_freem(txs->txs_mbuf);
1328 txs->txs_mbuf = NULL;
1329 }
1330 sc->sc_txsdirty = i;
1331 if (sc->sc_txsfree == MD_TXQUEUELEN)
1332 ifp->if_timer = 0;
1333 }
1334
1335 static void
1336 rxintr(struct scx_softc *sc)
1337 {
1338 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1339 struct scx_rxsoft *rxs;
1340 struct mbuf *m;
1341 uint32_t rxstat;
1342 int i, len;
1343
1344 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1345 rxs = &sc->sc_rxsoft[i];
1346
1347 SCX_CDRXSYNC(sc, i,
1348 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1349
1350 rxstat = sc->sc_rxdescs[i].r0;
1351 if (rxstat & R0_OWN) /* desc is left empty */
1352 break;
1353
1354 /* R0_FS | R0_LS must have been marked for this desc */
1355
1356 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1357 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1358
1359 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1360 len -= ETHER_CRC_LEN; /* Trim CRC off */
1361 m = rxs->rxs_mbuf;
1362
1363 if (add_rxbuf(sc, i) != 0) {
1364 if_statinc(ifp, if_ierrors);
1365 SCX_INIT_RXDESC(sc, i);
1366 bus_dmamap_sync(sc->sc_dmat,
1367 rxs->rxs_dmamap, 0,
1368 rxs->rxs_dmamap->dm_mapsize,
1369 BUS_DMASYNC_PREREAD);
1370 continue;
1371 }
1372
1373 m_set_rcvif(m, ifp);
1374 m->m_pkthdr.len = m->m_len = len;
1375
1376 if (rxstat & R0_CSUM) {
1377 uint32_t csum = M_CSUM_IPv4;
1378 if (rxstat & R0_CERR)
1379 csum |= M_CSUM_IPv4_BAD;
1380 m->m_pkthdr.csum_flags |= csum;
1381 }
1382 if_percpuq_enqueue(ifp->if_percpuq, m);
1383 }
1384 sc->sc_rxptr = i;
1385 }
1386
1387 static int
1388 add_rxbuf(struct scx_softc *sc, int i)
1389 {
1390 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1391 struct mbuf *m;
1392 int error;
1393
1394 MGETHDR(m, M_DONTWAIT, MT_DATA);
1395 if (m == NULL)
1396 return ENOBUFS;
1397
1398 MCLGET(m, M_DONTWAIT);
1399 if ((m->m_flags & M_EXT) == 0) {
1400 m_freem(m);
1401 return ENOBUFS;
1402 }
1403
1404 if (rxs->rxs_mbuf != NULL)
1405 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1406
1407 rxs->rxs_mbuf = m;
1408
1409 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1410 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1411 if (error) {
1412 aprint_error_dev(sc->sc_dev,
1413 "can't load rx DMA map %d, error = %d\n", i, error);
1414 panic("add_rxbuf");
1415 }
1416
1417 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1418 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1419 SCX_INIT_RXDESC(sc, i);
1420
1421 return 0;
1422 }
1423
1424 static void
1425 rxdrain(struct scx_softc *sc)
1426 {
1427 struct scx_rxsoft *rxs;
1428 int i;
1429
1430 for (i = 0; i < MD_NRXDESC; i++) {
1431 rxs = &sc->sc_rxsoft[i];
1432 if (rxs->rxs_mbuf != NULL) {
1433 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1434 m_freem(rxs->rxs_mbuf);
1435 rxs->rxs_mbuf = NULL;
1436 }
1437 }
1438 }
1439
1440 void
1441 mii_statchg(struct ifnet *ifp)
1442 {
1443 struct scx_softc *sc = ifp->if_softc;
1444 struct mii_data *mii = &sc->sc_mii;
1445 const int Mbps[4] = { 10, 100, 1000, 0 };
1446 uint32_t miisr, mcr, fcr;
1447 int spd;
1448
1449 /* decode MIISR register value */
1450 miisr = mac_read(sc, GMACMIISR);
1451 spd = Mbps[(miisr >> 1) & 03];
1452 #if 1
1453 printf("MII link status (0x%x) %s",
1454 miisr, (miisr & 8) ? "up" : "down");
1455 if (miisr & 8) {
1456 printf(" spd%d", spd);
1457 if (miisr & 01)
1458 printf(",full-duplex");
1459 }
1460 printf("\n");
1461 #endif
1462 /* Get flow control negotiation result. */
1463 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1464 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1465 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1466
1467 /* Adjust speed 1000/100/10. */
1468 mcr = mac_read(sc, GMACMCR);
1469 if (spd == 1000)
1470 mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
1471 else {
1472 if (spd == 100 && sc->sc_100mii)
1473 mcr |= MCR_SPD100;
1474 mcr |= MCR_USEMII;
1475 }
1476 mcr |= MCR_CST | MCR_JE;
1477 if (sc->sc_100mii == 0)
1478 mcr |= MCR_IBN;
1479
1480 /* Adjust duplexity and PAUSE flow control. */
1481 mcr &= ~MCR_USEFDX;
1482 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1483 if (miisr & 01) {
1484 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1485 fcr |= FCR_TFE;
1486 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1487 fcr |= FCR_RFE;
1488 mcr |= MCR_USEFDX;
1489 }
1490 mac_write(sc, GMACMCR, mcr);
1491 mac_write(sc, GMACFCR, fcr);
1492
1493 printf("%ctxfe, %crxfe\n",
1494 (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
1495 }
1496
1497 static void
1498 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1499 {
1500 struct scx_softc *sc = ifp->if_softc;
1501 struct mii_data *mii = &sc->sc_mii;
1502
1503 mii_pollstat(mii);
1504 ifmr->ifm_status = mii->mii_media_status;
1505 ifmr->ifm_active = sc->sc_flowflags |
1506 (mii->mii_media_active & ~IFM_ETH_FMASK);
1507 }
1508
1509 static int
1510 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1511 {
1512 struct scx_softc *sc = device_private(self);
1513 uint32_t miia;
1514 int ntries;
1515
1516 #define CLK_150_250M (1<<2)
1517 uint32_t clk = CSR_READ(sc, CLKEN);
1518 CSR_WRITE(sc, CLKEN, clk | CLK_G);
1519
1520 miia = (phy << GAR_PHY) | (reg << GAR_REG) | CLK_150_250M;
1521 mac_write(sc, GMACGAR, miia | GAR_BUSY);
1522 for (ntries = 0; ntries < 1000; ntries++) {
1523 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1524 goto unbusy;
1525 DELAY(1);
1526 }
1527 return ETIMEDOUT;
1528 unbusy:
1529 *val = mac_read(sc, GMACGDR);
1530 return 0;
1531 }
1532
1533 static int
1534 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1535 {
1536 struct scx_softc *sc = device_private(self);
1537 uint32_t miia;
1538 uint16_t dummy;
1539 int ntries;
1540
1541 uint32_t clk = CSR_READ(sc, CLKEN);
1542 CSR_WRITE(sc, CLKEN, clk | CLK_G);
1543
1544 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1545 mac_write(sc, GMACGDR, val);
1546 mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1547 for (ntries = 0; ntries < 1000; ntries++) {
1548 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1549 goto unbusy;
1550 DELAY(1);
1551 }
1552 return ETIMEDOUT;
1553 unbusy:
1554 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1555 return 0;
1556 }
1557
1558 static void
1559 phy_tick(void *arg)
1560 {
1561 struct scx_softc *sc = arg;
1562 struct mii_data *mii = &sc->sc_mii;
1563 int s;
1564
1565 s = splnet();
1566 mii_tick(mii);
1567 splx(s);
1568 #ifdef SCX_EVENT_COUNTERS /* if tally counter details are made clear */
1569 #endif
1570 callout_schedule(&sc->sc_callout, hz);
1571 }
1572
1573 /*
1574 * 3 independent uengines exist to process host2media, media2host and
1575 * packet data flows.
1576 */
1577 static void
1578 loaducode(struct scx_softc *sc)
1579 {
1580 uint32_t up, lo, sz;
1581 uint64_t addr;
1582
1583 sc->sc_ucodeloaded = 1;
1584
1585 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1586 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1587 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1588 sz *= 4;
1589 addr = ((uint64_t)up << 32) | lo;
1590 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1591 injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
1592
1593 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1594 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1595 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1596 sz *= 4;
1597 addr = ((uint64_t)up << 32) | lo;
1598 injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
1599 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1600
1601 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1602 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1603 sz *= 4;
1604 injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
1605 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1606 }
1607
1608 static void
1609 injectucode(struct scx_softc *sc, int port,
1610 bus_addr_t addr, bus_size_t size)
1611 {
1612 bus_space_handle_t bsh;
1613 bus_size_t off;
1614 uint32_t ucode;
1615
1616 if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1617 aprint_error_dev(sc->sc_dev,
1618 "eeprom map failure for ucode port 0x%x\n", port);
1619 return;
1620 }
1621 for (off = 0; off < size; off += 4) {
1622 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1623 CSR_WRITE(sc, port, ucode);
1624 }
1625 bus_space_unmap(sc->sc_st, bsh, size);
1626 }
1627
1628 /* bit selection to determine MDIO speed */
1629
1630 static int
1631 get_mdioclk(uint32_t freq)
1632 {
1633
1634 const struct {
1635 uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
1636 } mdioclk[] = {
1637 { 35, 2 }, /* 25-35 MHz */
1638 { 60, 3 }, /* 35-60 MHz */
1639 { 100, 0 }, /* 60-100 MHz */
1640 { 150, 1 }, /* 100-150 MHz */
1641 { 250, 4 }, /* 150-250 MHz */
1642 { 300, 5 }, /* 250-300 MHz */
1643 };
1644 int i;
1645
1646 freq /= 1000 * 1000;
1647 /* convert MDIO clk to a divisor value */
1648 if (freq < mdioclk[0].freq)
1649 return mdioclk[0].bit;
1650 for (i = 1; i < __arraycount(mdioclk); i++) {
1651 if (freq < mdioclk[i].freq)
1652 return mdioclk[i-1].bit;
1653 }
1654 return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
1655 }
1656