if_scx.c revision 1.27 1 /* $NetBSD: if_scx.c,v 1.27 2021/12/16 11:36:25 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32
33 /*
34 * Socionext SC2A11 SynQuacer NetSec GbE driver
35 *
36 * Multiple Tx and Rx queues exist inside and dedicated descriptor
37 * fields specifies which queue is to use. Three internal micro-processors
38 * to handle incoming frames, outgoing frames and packet data crypto
39 * processing. uP programs are stored in an external flash memory and
40 * have to be loaded by device driver.
41 * NetSec uses Synopsys DesignWare Core EMAC. DWC implementation
42 * register (0x20) is known to have 0x10.36 and feature register (0x1058)
43 * to report XX.XX.
44 */
45
46 #define NOT_MP_SAFE 0
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.27 2021/12/16 11:36:25 nisimura Exp $");
50
51 #include <sys/param.h>
52 #include <sys/bus.h>
53 #include <sys/intr.h>
54 #include <sys/device.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/malloc.h>
58 #include <sys/errno.h>
59 #include <sys/rndsource.h>
60 #include <sys/kernel.h>
61 #include <sys/systm.h>
62
63 #include <net/if.h>
64 #include <net/if_media.h>
65 #include <net/if_dl.h>
66 #include <net/if_ether.h>
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 #include <net/bpf.h>
70
71 #include <dev/fdt/fdtvar.h>
72 #include <dev/acpi/acpireg.h>
73 #include <dev/acpi/acpivar.h>
74 #include <dev/acpi/acpi_intr.h>
75
76 /* SC2A11 GbE 64-bit paddr descriptor */
77 struct tdes {
78 uint32_t t0, t1, t2, t3;
79 };
80
81 struct rdes {
82 uint32_t r0, r1, r2, r3;
83 };
84
85 #define T0_OWN (1U<<31) /* desc is ready to Tx */
86 #define T0_EOD (1U<<30) /* end of descriptor array */
87 #define T0_DRID (24) /* 29:24 desc ring id */
88 #define T0_PT (1U<<21) /* 23:21 "pass-through" */
89 #define T0_TDRID (16) /* 20:16 target desc ring id: GMAC=15 */
90 #define T0_FS (1U<<9) /* first segment of frame */
91 #define T0_LS (1U<<8) /* last segment of frame */
92 #define T0_CSUM (1U<<7) /* enable check sum offload */
93 #define T0_TSO (1U<<6) /* enable TCP segment offload */
94 #define T0_TRS (1U<<4) /* 5:4 "TRS" */
95 /* T1 frame segment address 63:32 */
96 /* T2 frame segment address 31:0 */
97 /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
98
99 #define R0_OWN (1U<<31) /* desc is empty */
100 #define R0_EOD (1U<<30) /* end of descriptor array */
101 #define R0_SDRID (24) /* 29:24 source desc ring id */
102 #define R0_FR (1U<<23) /* found fragmented */
103 #define R0_ER (1U<<21) /* Rx error indication */
104 #define R0_ERR (3U<<16) /* 18:16 receive error code */
105 #define R0_TDRID (12) /* 15:12 target desc ring id */
106 #define R0_FS (1U<<9) /* first segment of frame */
107 #define R0_LS (1U<<8) /* last segment of frame */
108 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
109 #define R0_CERR (2U<<6) /* 0: undone, 1: found ok, 2: bad */
110 /* R1 frame address 63:32 */
111 /* R2 frame address 31:0 */
112 /* R3 31:16 received frame length, 15:0 buffer length to receive */
113
114 /*
115 * SC2A11 registers. 0x100 - 1204
116 */
117 #define SWRESET 0x104
118 #define SRST_RUN (1U<<31) /* instruct start, 0 to stop */
119 #define COMINIT 0x120
120 #define INIT_DB (1U<<2) /* ???; self clear when done */
121 #define INIT_CLS (1U<<1) /* ???; self clear when done */
122 #define PKTCTRL 0x140 /* pkt engine control */
123 #define MODENRM (1U<<28) /* change mode to normal */
124 #define ENJUMBO (1U<<27) /* allow jumbo frame */
125 #define RPTCSUMERR (1U<<3) /* log Rx checksum error */
126 #define RPTHDCOMP (1U<<2) /* log HD imcomplete condition */
127 #define RPTHDERR (1U<<1) /* log HD error */
128 #define DROPNOMATCH (1U<<0) /* drop no match frames */
129 #define xINTSR 0x200 /* aggregated interrupt status report */
130 #define IRQ_RX (1U<<1) /* top level Rx interrupt */
131 #define IRQ_TX (1U<<0) /* top level Rx interrupt */
132 #define IRQ_UCODE (1U<<20) /* ucode load completed */
133 #define xINTAEN 0x204 /* INT_A enable */
134 #define xINTAE_SET 0x234 /* bit to set */
135 #define xINTAE_CLR 0x238 /* bit to clr */
136 #define xINTBEN 0x23c /* INT_B enable */
137 #define xINTBE_SET 0x240 /* bit to set */
138 #define xINTBE_CLR 0x244 /* bit to clr */
139 #define TXISR 0x400 /* transmit status */
140 #define TXIEN 0x404 /* tx interrupt enable */
141 #define TXIE_SET 0x428 /* bit to set */
142 #define TXIE_CLR 0x42c /* bit to clr */
143 #define TXI_NTOWNR (1U<<17) /* ready desc got empty */
144 #define TXI_TR_ERR (1U<<16) /* tx error */
145 #define TXI_TXDONE (1U<<15) /* tx completed */
146 #define TXI_TMREXP (1U<<14) /* coalesce timer expired */
147 #define RXISR 0x440 /* receipt status */
148 #define RXIEN 0x444 /* rx interrupt enable */
149 #define RXIE_SET 0x468 /* bit to set */
150 #define RXIE_CLR 0x46c /* bit to clr */
151 #define RXI_RC_ERR (1U<<16) /* rx error */
152 #define RXI_PKTCNT (1U<<15) /* rx counter has new value report */
153 #define RXI_TMREXP (1U<<14) /* coalesce timer expired */
154 #define TDBA_LO 0x408 /* tdes array base addr 31:0 */
155 #define TDBA_HI 0x434 /* tdes array base addr 63:32 */
156 #define RDBA_LO 0x448 /* rdes array base addr 31:0 */
157 #define RDBA_HI 0x474 /* rdes array base addr 63:32 */
158 /* 13 pairs of special purpose desc array address registers exit */
159 #define TXCONF 0x430
160 #define RXCONF 0x470
161 #define DESCNF_UP (1U<<31) /* up-and-running */
162 #define DESCNF_CHRST (1U<<30) /* channel reset */
163 #define DESCNF_TMR (1U<<4) /* coalesce timer mode select */
164 #define DESCNF_LE (1) /* little endian desc format */
165 #define TXCOLMAX 0x410 /* tx intr coalesce upper bound */
166 #define RXCOLMAX 0x454 /* rx intr coalesce upper bound */
167 #define TXITIMER 0x420 /* coalesce timer usec, MSB to use */
168 #define RXITIMER 0x460 /* coalesce timer usec, MSB to use */
169 #define TXDONECNT 0x424 /* tx completion report, auto-clear */
170 #define RXDONECNT 0x458 /* rx completion report, auto-clear */
171 #define UCODE_H2M 0x210 /* host2media engine ucode port */
172 #define UCODE_M2H 0x21c /* media2host engine ucode port */
173 #define CORESTAT 0x218 /* engine run state */
174 #define PKTSTOP (1U<<2)
175 #define M2HSTOP (1U<<1)
176 #define H2MSTOP (1U<<0)
177 #define DMACTL_H2M 0x214 /* host2media engine control */
178 #define DMACTL_M2H 0x220 /* media2host engine control */
179 #define DMACTL_STOP (1U<<0) /* instruct stop; self-clear */
180 #define UCODE_PKT 0x0d0 /* packet engine ucode port */
181 #define CLKEN 0x100 /* clock distribution enable */
182 #define CLK_G (1U<<5) /* feed clk domain E */
183 #define CLK_C (1U<<1) /* feed clk domain C */
184 #define CLK_D (1U<<0) /* feed clk domain D */
185 #define CLK_ALL 0x23 /* all above; 0x24 ??? 0x3f ??? */
186
187 /* GMAC register indirect access. thru MACCMD/MACDATA operation */
188 #define MACDATA 0x11c0 /* gmac register rd/wr data */
189 #define MACCMD 0x11c4 /* gmac register operation */
190 #define CMD_IOWR (1U<<28) /* write op */
191 #define CMD_BUSY (1U<<31) /* busy bit */
192 #define MACSTAT 0x1024 /* gmac status; ??? */
193 #define MACINTE 0x1028 /* interrupt enable; ??? */
194
195 #define FLOWTHR 0x11cc /* flow control threshold */
196 /* 31:16 pause threshold, 15:0 resume threshold */
197 #define INTF_SEL 0x11d4 /* ??? */
198
199 #define DESC_INIT 0x11fc /* write 1 for desc init, SC */
200 #define DESC_SRST 0x1204 /* write 1 for desc sw reset, SC */
201 #define MODE_TRANS 0x500 /* mode change completion status */
202 #define N2T_DONE (1U<<20) /* normal->taiki change completed */
203 #define T2N_DONE (1U<<19) /* taiki->normal change completed */
204 #define MACADRH 0x10c /* ??? */
205 #define MACADRL 0x110 /* ??? */
206 #define MCVER 0x22c /* micro controller version */
207 #define HWVER 0x230 /* hardware version */
208
209 /*
210 * GMAC registers are mostly identical to Synopsys DesignWare Core
211 * Ethernet. These must be handled by indirect access.
212 */
213 #define GMACMCR 0x0000 /* MAC configuration */
214 #define MCR_IBN (1U<<30) /* ??? */
215 #define MCR_CST (1U<<25) /* strip CRC */
216 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
217 #define MCR_JE (1U<<20) /* ignore oversized >9018 condition */
218 #define MCR_IFG (7U<<17) /* 19:17 IFG value 0~7 */
219 #define MCR_DRCS (1U<<16) /* ignore (G)MII HDX Tx error */
220 #define MCR_USEMII (1U<<15) /* 1: RMII/MII, 0: RGMII (_PS) */
221 #define MCR_SPD100 (1U<<14) /* force speed 100 (_FES) */
222 #define MCR_DO (1U<<13) /* ??? don't receive my own Tx frames */
223 #define MCR_LOOP (1U<<12) /* run loop back */
224 #define MCR_USEFDX (1U<<11) /* force full duplex */
225 #define MCR_IPCEN (1U<<10) /* handle checksum */
226 #define MCR_ACS (1U<<7) /* auto pad strip CRC */
227 #define MCR_TE (1U<<3) /* run Tx MAC engine, 0 to stop */
228 #define MCR_RE (1U<<2) /* run Rx MAC engine, 0 to stop */
229 #define MCR_PREA (3U) /* 1:0 preamble len. 0~2 */
230 #define _MCR_FDX 0x0000280c /* XXX TBD */
231 #define _MCR_HDX 0x0001a00c /* XXX TBD */
232 #define GMACAFR 0x0004 /* frame DA/SA address filter */
233 #define AFR_RA (1U<<31) /* accept all irrespective of filt. */
234 #define AFR_HPF (1U<<10) /* hash+perfect filter, or hash only */
235 #define AFR_SAF (1U<<9) /* source address filter */
236 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
237 #define AFR_PCF (2U<<6) /* ??? */
238 #define AFR_DBF (1U<<5) /* reject broadcast frame */
239 #define AFR_PM (1U<<4) /* accept all multicast frame */
240 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
241 #define AFR_MHTE (1U<<2) /* use multicast hash table */
242 #define AFR_UHTE (1U<<1) /* use hash table for unicast */
243 #define AFR_PR (1U<<0) /* run promisc mode */
244 #define GMACGAR 0x0010 /* MDIO operation */
245 #define GAR_PHY (11) /* 15:11 mii phy */
246 #define GAR_REG (6) /* 10:6 mii reg */
247 #define GAR_CLK (2) /* 5:2 mdio clock tick ratio */
248 #define GAR_IOWR (1U<<1) /* MDIO write op */
249 #define GAR_BUSY (1U<<0) /* busy bit */
250 #define GAR_MDIO_25_35MHZ 2
251 #define GAR_MDIO_35_60MHZ 3
252 #define GAR_MDIO_60_100MHZ 0
253 #define GAR_MDIO_100_150MHZ 1
254 #define GAR_MDIO_150_250MHZ 4
255 #define GAR_MDIO_250_300MHZ 5
256 #define GMACGDR 0x0014 /* MDIO rd/wr data */
257 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
258 /* 31:16 pause timer value, 5:4 pause timer threshold */
259 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
260 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
261 #define GMACVTAG 0x001c /* VLAN tag control */
262 #define GMACIMPL 0x0020 /* implementation number XX.YY */
263 #define GMACLPIS 0x0030 /* ??? AXI LPI control */
264 #define GMACLPIC 0x0034 /* ??? AXI LPI control */
265 #define GMACISR 0x0038 /* interrupt status, clear when read */
266 #define GMACIMR 0x003c /* interrupt enable */
267 #define ISR_TS (1U<<9) /* time stamp operation detected */
268 #define ISR_CO (1U<<7) /* Rx checksum offload completed */
269 #define ISR_TX (1U<<6) /* Tx completed */
270 #define ISR_RX (1U<<5) /* Rx completed */
271 #define ISR_ANY (1U<<4) /* any of above 5-7 report */
272 #define ISR_LC (1U<<0) /* link status change detected */
273 #define GMACMAH0 0x0040 /* my own MAC address 47:32 */
274 #define GMACMAL0 0x0044 /* my own MAC address 31:0 */
275 #define GMACMAH(i) ((i)*8+0x40) /* supplemental MAC addr 1-15 */
276 #define GMACMAL(i) ((i)*8+0x44) /* 31:0 MAC address low part */
277 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
278 #define GMACAMAH(i) ((i)*8+0x800) /* supplemental MAC addr 16-31 */
279 #define GMACAMAL(i) ((i)*8+0x804) /* 31: MAC address low part */
280 /* MAH bit-31: slot in use, no other bit is effective */
281 #define GMACMHTH 0x0008 /* 64bit multicast hash table 63:32 */
282 #define GMACMHTL 0x000c /* 64bit multicast hash table 31:0 */
283 #define GMACMHT(i) ((i)*4+0x500) /* 256-bit alternative mcast hash 0-7 */
284 #define GMACVHT 0x0588 /* 16-bit VLAN tag hash */
285 #define GMACMIISR 0x00d8 /* resolved xMII link status */
286 /* 3: link up detected, 2:1 resolved speed (0/1/2), 1: fdx detected */
287
288 /* 0x0700 - 0734 ??? */
289
290 #define GMACBMR 0x1000 /* DMA bus mode control */
291 /* 24 4PBL 8???
292 * 23 USP
293 * 22:17 RPBL
294 * 16 fixed burst
295 * 15:14 priority between Rx and Tx
296 * 3 rxtx ratio 41
297 * 2 rxtx ratio 31
298 * 1 rxtx ratio 21
299 * 0 rxtx ratio 11
300 * 13:8 PBL possible DMA burst length
301 * 7 alternative des8
302 * 0 GMAC reset op. self-clear
303 */
304 #define _BMR 0x00412080 /* XXX TBD */
305 #define _BMR0 0x00020181 /* XXX TBD */
306 #define BMR_RST (1) /* reset op. self clear when done */
307 #define GMACTPD 0x1004 /* write any to resume tdes */
308 #define GMACRPD 0x1008 /* write any to resume rdes */
309 #define GMACRDLA 0x100c /* rdes base address 32bit paddr */
310 #define GMACTDLA 0x1010 /* tdes base address 32bit paddr */
311 #define _RDLA 0x18000 /* system RAM for GMAC rdes */
312 #define _TDLA 0x1c000 /* system RAM for GMAC tdes */
313 #define GMACDSR 0x1014 /* DMA status detail report; W1C */
314 #define GMACOMR 0x1018 /* DMA operation mode */
315 #define OMR_TSF (1U<<25) /* 1: Tx store&forword, 0: immed. */
316 #define OMR_RSF (1U<<21) /* 1: Rx store&forward, 0: immed. */
317 #define OMR_ST (1U<<13) /* run Tx DMA engine, 0 to stop */
318 #define OMR_EFC (1U<<8) /* transmit PAUSE to throttle Rx lvl. */
319 #define OMR_FEF (1U<<7) /* allow to receive error frames */
320 #define OMR_SR (1U<<1) /* run Rx DMA engine, 0 to stop */
321 #define GMACIE 0x101c /* interrupt enable */
322 #define GMACEVCS 0x1020 /* missed frame or ovf detected */
323 #define GMACRWDT 0x1024 /* receive watchdog timer count */
324 #define GMACAXIB 0x1028 /* AXI bus mode control */
325 #define GMACAXIS 0x102c /* AXI status report */
326 /* 0x1048 current tx desc address */
327 /* 0x104c current rx desc address */
328 /* 0x1050 current tx buffer address */
329 /* 0x1054 current rx buffer address */
330 #define HWFEA 0x1058 /* DWC feature report */
331
332 #define GMACEVCTL 0x0100 /* event counter control */
333 #define EVC_FHP (1U<<5) /* full-half preset */
334 #define EVC_CP (1U<<4) /* counters preset */
335 #define EVC_MCF (1U<<3) /* MMC counter freeze */
336 #define EVC_ROR (1U<<2) /* auto-zero on counter read */
337 #define EVC_CSR (1U<<1) /* counter stop rollover */
338 #define EVC_CR (1U<<0) /* reset counters */
339 #define GMACEVCNT(i) ((i)*4+0x114) /* 80 event counters 0x114 - 0x284 */
340
341 /*
342 * flash memory layout
343 * 0x00 - 07 48-bit MAC station address. 4 byte wise in BE order.
344 * 0x08 - 0b H->MAC xfer engine program start addr 63:32.
345 * 0x0c - 0f H2M program addr 31:0 (these are absolute addr, not offset)
346 * 0x10 - 13 H2M program length in 4 byte count.
347 * 0x14 - 0b M->HOST xfer engine program start addr 63:32.
348 * 0x18 - 0f M2H program addr 31:0 (absolute addr, not relative)
349 * 0x1c - 13 M2H program length in 4 byte count.
350 * 0x20 - 23 packet engine program addr 31:0, (absolute addr, not offset)
351 * 0x24 - 27 packet program length in 4 byte count.
352 *
353 * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
354 */
355
356 /*
357 * all below are software constraction.
358 */
359 #define MD_NTXSEGS 16 /* fixed */
360 #define MD_TXQUEUELEN 8 /* tunable */
361 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1)
362 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4)
363 #define MD_NTXDESC 128
364 #define MD_NTXDESC_MASK (MD_NTXDESC - 1)
365 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK)
366 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK)
367
368 #define MD_NRXDESC 64 /* tunable */
369 #define MD_NRXDESC_MASK (MD_NRXDESC - 1)
370 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK)
371
372 struct control_data {
373 struct tdes cd_txdescs[MD_NTXDESC];
374 struct rdes cd_rxdescs[MD_NRXDESC];
375 };
376 #define SCX_CDOFF(x) offsetof(struct control_data, x)
377 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
378 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
379
380 struct scx_txsoft {
381 struct mbuf *txs_mbuf; /* head of our mbuf chain */
382 bus_dmamap_t txs_dmamap; /* our DMA map */
383 int txs_firstdesc; /* first descriptor in packet */
384 int txs_lastdesc; /* last descriptor in packet */
385 int txs_ndesc; /* # of descriptors used */
386 };
387
388 struct scx_rxsoft {
389 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
390 bus_dmamap_t rxs_dmamap; /* our DMA map */
391 };
392
393 struct scx_softc {
394 device_t sc_dev; /* generic device information */
395 bus_space_tag_t sc_st; /* bus space tag */
396 bus_space_handle_t sc_sh; /* bus space handle */
397 bus_size_t sc_sz; /* csr map size */
398 bus_space_handle_t sc_eesh; /* eeprom section handle */
399 bus_size_t sc_eesz; /* eeprom map size */
400 bus_dma_tag_t sc_dmat; /* bus DMA tag */
401 bus_dma_tag_t sc_dmat32;
402 struct ethercom sc_ethercom; /* Ethernet common data */
403 struct mii_data sc_mii; /* MII */
404 callout_t sc_callout; /* PHY monitor callout */
405 bus_dma_segment_t sc_seg; /* descriptor store seg */
406 int sc_nseg; /* descriptor store nseg */
407 void *sc_ih; /* interrupt cookie */
408 int sc_phy_id; /* PHY address */
409 int sc_flowflags; /* 802.3x PAUSE flow control */
410 uint32_t sc_mdclk; /* GAR 5:2 clock selection */
411 uint32_t sc_t0cotso; /* T0_CSUM | T0_TSO to run */
412 int sc_ucodeloaded; /* ucode for H2M/M2H/PKT */
413 int sc_100mii; /* 1 for RMII/MII, 0 for RGMII */
414 int sc_phandle; /* fdt phandle */
415 uint64_t sc_freq;
416
417 bus_dmamap_t sc_cddmamap; /* control data DMA map */
418 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
419
420 struct control_data *sc_control_data;
421 #define sc_txdescs sc_control_data->cd_txdescs
422 #define sc_rxdescs sc_control_data->cd_rxdescs
423
424 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
425 struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
426 int sc_txfree; /* number of free Tx descriptors */
427 int sc_txnext; /* next ready Tx descriptor */
428 int sc_txsfree; /* number of free Tx jobs */
429 int sc_txsnext; /* next ready Tx job */
430 int sc_txsdirty; /* dirty Tx jobs */
431 int sc_rxptr; /* next ready Rx descriptor/descsoft */
432
433 krndsource_t rnd_source; /* random source */
434 #ifdef GMAC_EVENT_COUNTER
435 /* 80 event counter exist */
436 #endif
437 };
438
439 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
440 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
441
442 #define SCX_CDTXSYNC(sc, x, n, ops) \
443 do { \
444 int __x, __n; \
445 \
446 __x = (x); \
447 __n = (n); \
448 \
449 /* If it will wrap around, sync to the end of the ring. */ \
450 if ((__x + __n) > MD_NTXDESC) { \
451 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
452 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
453 (MD_NTXDESC - __x), (ops)); \
454 __n -= (MD_NTXDESC - __x); \
455 __x = 0; \
456 } \
457 \
458 /* Now sync whatever is left. */ \
459 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
460 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
461 } while (/*CONSTCOND*/0)
462
463 #define SCX_CDRXSYNC(sc, x, ops) \
464 do { \
465 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
466 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
467 } while (/*CONSTCOND*/0)
468
469 #define SCX_INIT_RXDESC(sc, x) \
470 do { \
471 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
472 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
473 struct mbuf *__m = __rxs->rxs_mbuf; \
474 bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr; \
475 __m->m_data = __m->m_ext.ext_buf; \
476 __rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len; \
477 __rxd->r2 = htole32(BUS_ADDR_LO32(__paddr)); \
478 __rxd->r1 = htole32(BUS_ADDR_HI32(__paddr)); \
479 __rxd->r0 = R0_OWN | R0_FS | R0_LS; \
480 if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD; \
481 } while (/*CONSTCOND*/0)
482
483 /* memory mapped CSR register access */
484 #define CSR_READ(sc,off) \
485 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
486 #define CSR_WRITE(sc,off,val) \
487 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
488
489 /* flash memory access */
490 #define EE_READ(sc,off) \
491 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
492
493 static int scx_fdt_match(device_t, cfdata_t, void *);
494 static void scx_fdt_attach(device_t, device_t, void *);
495 static int scx_acpi_match(device_t, cfdata_t, void *);
496 static void scx_acpi_attach(device_t, device_t, void *);
497
498 const CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
499 scx_fdt_match, scx_fdt_attach, NULL, NULL);
500
501 const CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
502 scx_acpi_match, scx_acpi_attach, NULL, NULL);
503
504 static void scx_attach_i(struct scx_softc *);
505 static void scx_reset(struct scx_softc *);
506 static int scx_init(struct ifnet *);
507 static void scx_stop(struct ifnet *, int);
508 static int scx_ioctl(struct ifnet *, u_long, void *);
509 static void scx_set_rcvfilt(struct scx_softc *);
510 static void scx_start(struct ifnet *);
511 static void scx_watchdog(struct ifnet *);
512 static int scx_intr(void *);
513 static void txreap(struct scx_softc *);
514 static void rxintr(struct scx_softc *);
515 static int add_rxbuf(struct scx_softc *, int);
516 static void rxdrain(struct scx_softc *sc);
517 static void mii_statchg(struct ifnet *);
518 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
519 static int mii_readreg(device_t, int, int, uint16_t *);
520 static int mii_writereg(device_t, int, int, uint16_t);
521 static void phy_tick(void *);
522
523 static void loaducode(struct scx_softc *);
524 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
525
526 static int get_mdioclk(uint32_t);
527
528 #define WAIT_FOR_SET(sc, reg, set, fail) \
529 wait_for_bits(sc, reg, set, ~0, fail)
530 #define WAIT_FOR_CLR(sc, reg, clr, fail) \
531 wait_for_bits(sc, reg, 0, clr, fail)
532
533 static int
534 wait_for_bits(struct scx_softc *sc, int reg,
535 uint32_t set, uint32_t clr, uint32_t fail)
536 {
537 uint32_t val;
538 int ntries;
539
540 for (ntries = 0; ntries < 1000; ntries++) {
541 val = CSR_READ(sc, reg);
542 if ((val & set) || !(val & clr))
543 return 0;
544 if (val & fail)
545 return 1;
546 DELAY(1);
547 }
548 return 1;
549 }
550
551 /* GMAC register indirect access */
552 static int
553 mac_read(struct scx_softc *sc, int reg)
554 {
555
556 CSR_WRITE(sc, MACCMD, reg);
557 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
558 return CSR_READ(sc, MACDATA);
559 }
560
561 static void
562 mac_write(struct scx_softc *sc, int reg, int val)
563 {
564
565 CSR_WRITE(sc, MACDATA, val);
566 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
567 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
568 }
569
570 static const struct device_compatible_entry compat_data[] = {
571 { .compat = "socionext,synquacer-netsec" },
572 DEVICE_COMPAT_EOL
573 };
574 static const struct device_compatible_entry compatible[] = {
575 { .compat = "SCX0001" },
576 DEVICE_COMPAT_EOL
577 };
578
579 static int
580 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
581 {
582 struct fdt_attach_args * const faa = aux;
583
584 return of_compatible_match(faa->faa_phandle, compat_data);
585 }
586
587 static void
588 scx_fdt_attach(device_t parent, device_t self, void *aux)
589 {
590 struct scx_softc * const sc = device_private(self);
591 struct fdt_attach_args * const faa = aux;
592 const int phandle = faa->faa_phandle;
593 bus_space_tag_t bst = faa->faa_bst;
594 bus_space_handle_t bsh;
595 bus_space_handle_t eebsh;
596 bus_addr_t addr[2];
597 bus_size_t size[2];
598 char intrstr[128];
599 const char *phy_mode;
600
601 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
602 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
603 aprint_error(": unable to map device csr\n");
604 return;
605 }
606 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
607 aprint_error(": failed to decode interrupt\n");
608 goto fail;
609 }
610 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
611 NOT_MP_SAFE, scx_intr, sc);
612 if (sc->sc_ih == NULL) {
613 aprint_error_dev(self, "couldn't establish interrupt\n");
614 goto fail;
615 }
616 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
617 || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
618 aprint_error(": unable to map device eeprom\n");
619 goto fail;
620 }
621
622 aprint_naive("\n");
623 /* aprint_normal(": Gigabit Ethernet Controller\n"); */
624 aprint_normal_dev(self, "interrupt on %s\n", intrstr);
625
626 sc->sc_dev = self;
627 sc->sc_st = bst;
628 sc->sc_sh = bsh;
629 sc->sc_sz = size[0];
630 sc->sc_eesh = eebsh;
631 sc->sc_eesz = size[1];
632 sc->sc_dmat = faa->faa_dmat;
633 sc->sc_dmat32 = faa->faa_dmat; /* XXX */
634 sc->sc_phandle = phandle;
635
636 phy_mode = fdtbus_get_string(phandle, "phy-mode");
637 if (phy_mode == NULL)
638 aprint_error(": missing 'phy-mode' property\n");
639 sc->sc_100mii = (phy_mode && strcmp(phy_mode, "rgmii") != 0);
640
641 scx_attach_i(sc);
642 return;
643 fail:
644 if (sc->sc_eesz)
645 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
646 if (sc->sc_sz)
647 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
648 return;
649 }
650
651 static int
652 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
653 {
654 struct acpi_attach_args *aa = aux;
655
656 return acpi_compatible_match(aa, compatible);
657 }
658
659 static void
660 scx_acpi_attach(device_t parent, device_t self, void *aux)
661 {
662 struct scx_softc * const sc = device_private(self);
663 struct acpi_attach_args * const aa = aux;
664 ACPI_HANDLE handle = aa->aa_node->ad_handle;
665 bus_space_tag_t bst = aa->aa_memt;
666 bus_space_handle_t bsh, eebsh;
667 struct acpi_resources res;
668 struct acpi_mem *mem;
669 struct acpi_irq *irq;
670 char *phy_mode;
671 ACPI_INTEGER acpi_phy, acpi_freq;
672 ACPI_STATUS rv;
673
674 aprint_normal(": Gigabit Ethernet Controller\n");
675 rv = acpi_resource_parse(self, handle, "_CRS",
676 &res, &acpi_resource_parse_ops_default);
677 if (ACPI_FAILURE(rv))
678 return;
679 mem = acpi_res_mem(&res, 0);
680 irq = acpi_res_irq(&res, 0);
681 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
682 aprint_error(": incomplete csr resources\n");
683 return;
684 }
685 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
686 aprint_error(": couldn't map registers\n");
687 return;
688 }
689 sc->sc_sz = mem->ar_length;
690 sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
691 NOT_MP_SAFE, scx_intr, sc, device_xname(self));
692 if (sc->sc_ih == NULL) {
693 aprint_error_dev(self, "couldn't establish interrupt\n");
694 goto fail;
695 }
696 mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
697 if (mem == NULL || mem->ar_length == 0) {
698 aprint_error(": incomplete eeprom resources\n");
699 goto fail;
700 }
701 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
702 aprint_error(": couldn't map registers\n");
703 goto fail;
704 }
705 sc->sc_eesz = mem->ar_length;
706
707 rv = acpi_dsd_string(handle, "phy-mode", &phy_mode);
708 if (ACPI_FAILURE(rv)) {
709 aprint_error(": missing 'phy-mode' property\n");
710 phy_mode = NULL;
711 }
712 rv = acpi_dsd_integer(handle, "phy-channel", &acpi_phy);
713 if (ACPI_FAILURE(rv))
714 acpi_phy = 31;
715 rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
716 &acpi_freq);
717 if (ACPI_FAILURE(rv))
718 acpi_freq = 999;
719
720 aprint_naive("\n");
721 /* aprint_normal(": Gigabit Ethernet Controller\n"); */
722
723 sc->sc_dev = self;
724 sc->sc_st = bst;
725 sc->sc_sh = bsh;
726 sc->sc_eesh = eebsh;
727 sc->sc_dmat = aa->aa_dmat64;
728 sc->sc_dmat32 = aa->aa_dmat;
729
730 aprint_normal_dev(self,
731 "phy mode %s, phy id %d, freq %ld\n", phy_mode, (int)acpi_phy, acpi_freq);
732 sc->sc_100mii = (phy_mode && strcmp(phy_mode, "rgmii") != 0);
733 sc->sc_phy_id = (int)acpi_phy;
734 sc->sc_freq = acpi_freq;
735 aprint_normal_dev(self,
736 "GMACGAR %08x\n", mac_read(sc, GMACGAR));
737
738 scx_attach_i(sc);
739
740 acpi_resource_cleanup(&res);
741 return;
742 fail:
743 if (sc->sc_eesz > 0)
744 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
745 if (sc->sc_sz > 0)
746 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
747 acpi_resource_cleanup(&res);
748 return;
749 }
750
751 static void
752 scx_attach_i(struct scx_softc *sc)
753 {
754 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
755 struct mii_data * const mii = &sc->sc_mii;
756 struct ifmedia * const ifm = &mii->mii_media;
757 uint32_t which, dwimp, dwfea;
758 uint8_t enaddr[ETHER_ADDR_LEN];
759 bus_dma_segment_t seg;
760 uint32_t csr;
761 int i, nseg, error = 0;
762
763 which = CSR_READ(sc, HWVER); /* Socionext version 5.00xx */
764 dwimp = mac_read(sc, GMACIMPL); /* DWC EMAC XX.YY */
765 dwfea = mac_read(sc, HWFEA); /* DWC feature */
766 aprint_normal_dev(sc->sc_dev,
767 "Socionext NetSec GbE %x.%x"
768 " (impl 0x%x, feature 0x%x)\n",
769 which >> 16, which & 0xffff,
770 dwimp, dwfea);
771
772 /* fetch MAC address in flash. stored in big endian order */
773 csr = EE_READ(sc, 0x00);
774 enaddr[0] = csr >> 24;
775 enaddr[1] = csr >> 16;
776 enaddr[2] = csr >> 8;
777 enaddr[3] = csr;
778 csr = EE_READ(sc, 0x04);
779 enaddr[4] = csr >> 24;
780 enaddr[5] = csr >> 16;
781 aprint_normal_dev(sc->sc_dev,
782 "Ethernet address %s\n", ether_sprintf(enaddr));
783
784 sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */
785
786 if (sc->sc_ucodeloaded == 0)
787 loaducode(sc);
788
789 mii->mii_ifp = ifp;
790 mii->mii_readreg = mii_readreg;
791 mii->mii_writereg = mii_writereg;
792 mii->mii_statchg = mii_statchg;
793
794 sc->sc_ethercom.ec_mii = mii;
795 ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
796 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
797 MII_OFFSET_ANY, MIIF_DOPAUSE);
798 if (LIST_FIRST(&mii->mii_phys) == NULL) {
799 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
800 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
801 } else
802 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
803 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
804
805 /*
806 * Allocate the control data structures, and create and load the
807 * DMA map for it.
808 */
809 error = bus_dmamem_alloc(sc->sc_dmat32,
810 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
811 if (error != 0) {
812 aprint_error_dev(sc->sc_dev,
813 "unable to allocate control data, error = %d\n", error);
814 goto fail_0;
815 }
816 error = bus_dmamem_map(sc->sc_dmat32, &seg, nseg,
817 sizeof(struct control_data), (void **)&sc->sc_control_data,
818 BUS_DMA_COHERENT);
819 if (error != 0) {
820 aprint_error_dev(sc->sc_dev,
821 "unable to map control data, error = %d\n", error);
822 goto fail_1;
823 }
824 error = bus_dmamap_create(sc->sc_dmat32,
825 sizeof(struct control_data), 1,
826 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
827 if (error != 0) {
828 aprint_error_dev(sc->sc_dev,
829 "unable to create control data DMA map, "
830 "error = %d\n", error);
831 goto fail_2;
832 }
833 error = bus_dmamap_load(sc->sc_dmat32, sc->sc_cddmamap,
834 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
835 if (error != 0) {
836 aprint_error_dev(sc->sc_dev,
837 "unable to load control data DMA map, error = %d\n",
838 error);
839 goto fail_3;
840 }
841 for (i = 0; i < MD_TXQUEUELEN; i++) {
842 if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
843 MD_NTXSEGS, MCLBYTES, 0, 0,
844 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
845 aprint_error_dev(sc->sc_dev,
846 "unable to create tx DMA map %d, error = %d\n",
847 i, error);
848 goto fail_4;
849 }
850 }
851 for (i = 0; i < MD_NRXDESC; i++) {
852 if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
853 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
854 aprint_error_dev(sc->sc_dev,
855 "unable to create rx DMA map %d, error = %d\n",
856 i, error);
857 goto fail_5;
858 }
859 sc->sc_rxsoft[i].rxs_mbuf = NULL;
860 }
861 sc->sc_seg = seg;
862 sc->sc_nseg = nseg;
863 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
864
865 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
866 ifp->if_softc = sc;
867 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
868 ifp->if_ioctl = scx_ioctl;
869 ifp->if_start = scx_start;
870 ifp->if_watchdog = scx_watchdog;
871 ifp->if_init = scx_init;
872 ifp->if_stop = scx_stop;
873 IFQ_SET_READY(&ifp->if_snd);
874
875 sc->sc_flowflags = 0;
876
877 if_attach(ifp);
878 if_deferred_start_init(ifp, NULL);
879 ether_ifattach(ifp, enaddr);
880
881 callout_init(&sc->sc_callout, 0);
882 callout_setfunc(&sc->sc_callout, phy_tick, sc);
883
884 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
885 RND_TYPE_NET, RND_FLAG_DEFAULT);
886
887 return;
888
889 fail_5:
890 for (i = 0; i < MD_NRXDESC; i++) {
891 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
892 bus_dmamap_destroy(sc->sc_dmat,
893 sc->sc_rxsoft[i].rxs_dmamap);
894 }
895 fail_4:
896 for (i = 0; i < MD_TXQUEUELEN; i++) {
897 if (sc->sc_txsoft[i].txs_dmamap != NULL)
898 bus_dmamap_destroy(sc->sc_dmat,
899 sc->sc_txsoft[i].txs_dmamap);
900 }
901 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
902 fail_3:
903 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
904 fail_2:
905 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
906 sizeof(struct control_data));
907 fail_1:
908 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
909 fail_0:
910 if (sc->sc_phandle)
911 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
912 else
913 acpi_intr_disestablish(sc->sc_ih);
914 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
915 return;
916 }
917
918 static void
919 scx_reset(struct scx_softc *sc)
920 {
921 int loop = 0, busy;
922
923 mac_write(sc, GMACOMR, 0);
924 mac_write(sc, GMACBMR, BMR_RST);
925 do {
926 DELAY(1);
927 busy = mac_read(sc, GMACBMR) & BMR_RST;
928 } while (++loop < 3000 && busy);
929 mac_write(sc, GMACBMR, _BMR);
930 mac_write(sc, GMACAFR, 0);
931
932 CSR_WRITE(sc, CLKEN, CLK_ALL); /* distribute clock sources */
933 CSR_WRITE(sc, SWRESET, 0); /* reset operation */
934 CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */
935 CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
936 WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
937
938 mac_write(sc, GMACEVCTL, 1);
939 }
940
941 static int
942 scx_init(struct ifnet *ifp)
943 {
944 struct scx_softc *sc = ifp->if_softc;
945 const uint8_t *ea = CLLADDR(ifp->if_sadl);
946 paddr_t paddr;
947 uint32_t csr;
948 int i, error;
949
950 /* Cancel pending I/O. */
951 scx_stop(ifp, 0);
952
953 /* Reset the chip to a known state. */
954 scx_reset(sc);
955
956 /* build sane Tx */
957 memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
958 sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
959 SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
960 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
961 sc->sc_txfree = MD_NTXDESC;
962 sc->sc_txnext = 0;
963 for (i = 0; i < MD_TXQUEUELEN; i++)
964 sc->sc_txsoft[i].txs_mbuf = NULL;
965 sc->sc_txsfree = MD_TXQUEUELEN;
966 sc->sc_txsnext = 0;
967 sc->sc_txsdirty = 0;
968
969 /* load Rx descriptors with fresh mbuf */
970 for (i = 0; i < MD_NRXDESC; i++) {
971 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
972 if ((error = add_rxbuf(sc, i)) != 0) {
973 aprint_error_dev(sc->sc_dev,
974 "unable to allocate or map rx "
975 "buffer %d, error = %d\n",
976 i, error);
977 rxdrain(sc);
978 goto out;
979 }
980 }
981 else
982 SCX_INIT_RXDESC(sc, i);
983 }
984 sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_EOD;
985 sc->sc_rxptr = 0;
986 sc->sc_rxptr = 0;
987
988 /* set my address in perfect match slot 0. little endian order */
989 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
990 mac_write(sc, GMACMAL0, csr);
991 csr = (ea[5] << 8) | ea[4];
992 mac_write(sc, GMACMAH0, csr);
993
994 /* accept multicast frame or run promisc mode */
995 scx_set_rcvfilt(sc);
996
997 /* set current media */
998 if ((error = ether_mediachange(ifp)) != 0)
999 goto out;
1000
1001 paddr = SCX_CDTXADDR(sc, 0);
1002 mac_write(sc, TDBA_HI, BUS_ADDR_HI32(paddr));
1003 mac_write(sc, TDBA_LO, BUS_ADDR_LO32(paddr));
1004 paddr = SCX_CDRXADDR(sc, 0);
1005 mac_write(sc, RDBA_HI, BUS_ADDR_HI32(paddr));
1006 mac_write(sc, RDBA_LO, BUS_ADDR_LO32(paddr));
1007
1008 CSR_WRITE(sc, TXCONF, DESCNF_LE); /* little endian */
1009 CSR_WRITE(sc, RXCONF, DESCNF_LE); /* little endian */
1010
1011 CSR_WRITE(sc, DESC_SRST, 01);
1012 WAIT_FOR_CLR(sc, DESC_SRST, 01, 0);
1013
1014 CSR_WRITE(sc, DESC_INIT, 01);
1015 WAIT_FOR_CLR(sc, DESC_INIT, 01, 0);
1016
1017 CSR_WRITE(sc, GMACRDLA, _RDLA);
1018 CSR_WRITE(sc, GMACTDLA, _TDLA);
1019
1020 CSR_WRITE(sc, FLOWTHR, (48<<16) | 36); /* pause|resume threshold */
1021 mac_write(sc, GMACFCR, 256 << 16); /* 31:16 pause value */
1022
1023 CSR_WRITE(sc, RXIE_CLR, ~0);
1024 CSR_WRITE(sc, TXIE_CLR, ~0);
1025
1026 /* kick to start GMAC engine */
1027 csr = mac_read(sc, GMACOMR);
1028 mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);
1029
1030 ifp->if_flags |= IFF_RUNNING;
1031 ifp->if_flags &= ~IFF_OACTIVE;
1032
1033 /* start one second timer */
1034 callout_schedule(&sc->sc_callout, hz);
1035 out:
1036 return error;
1037 }
1038
1039 static void
1040 scx_stop(struct ifnet *ifp, int disable)
1041 {
1042 struct scx_softc *sc = ifp->if_softc;
1043
1044 /* Stop the one second clock. */
1045 callout_stop(&sc->sc_callout);
1046
1047 /* Down the MII. */
1048 mii_down(&sc->sc_mii);
1049
1050 /* Mark the interface down and cancel the watchdog timer. */
1051 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1052 ifp->if_timer = 0;
1053
1054 if (CSR_READ(sc, CORESTAT) != 0) {
1055 CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
1056 CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
1057
1058 WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP, 0);
1059 WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP, 0);
1060 }
1061 }
1062
1063 static int
1064 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1065 {
1066 struct scx_softc *sc = ifp->if_softc;
1067 struct ifreq *ifr = (struct ifreq *)data;
1068 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1069 int s, error;
1070
1071 s = splnet();
1072
1073 switch (cmd) {
1074 case SIOCSIFMEDIA:
1075 /* Flow control requires full-duplex mode. */
1076 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1077 (ifr->ifr_media & IFM_FDX) == 0)
1078 ifr->ifr_media &= ~IFM_ETH_FMASK;
1079 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1080 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1081 /* We can do both TXPAUSE and RXPAUSE. */
1082 ifr->ifr_media |=
1083 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1084 }
1085 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1086 }
1087 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
1088 break;
1089 default:
1090 error = ether_ioctl(ifp, cmd, data);
1091 if (error != ENETRESET)
1092 break;
1093 error = 0;
1094 if (cmd == SIOCSIFCAP)
1095 error = (*ifp->if_init)(ifp);
1096 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1097 ;
1098 else if (ifp->if_flags & IFF_RUNNING) {
1099 /*
1100 * Multicast list has changed; set the hardware filter
1101 * accordingly.
1102 */
1103 scx_set_rcvfilt(sc);
1104 }
1105 break;
1106 }
1107
1108 splx(s);
1109 return error;
1110 }
1111
1112 static uint32_t
1113 bit_reverse_32(uint32_t x)
1114 {
1115 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
1116 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
1117 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
1118 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
1119 return (x >> 16) | (x << 16);
1120 }
1121
1122 static void
1123 scx_set_rcvfilt(struct scx_softc *sc)
1124 {
1125 struct ethercom * const ec = &sc->sc_ethercom;
1126 struct ifnet * const ifp = &ec->ec_if;
1127 struct ether_multistep step;
1128 struct ether_multi *enm;
1129 uint32_t mchash[2]; /* 2x 32 = 64 bit */
1130 uint32_t csr, crc;
1131 int i;
1132
1133 csr = mac_read(sc, GMACAFR);
1134 csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1135 mac_write(sc, GMACAFR, csr);
1136
1137 /* clear 15 entry supplemental perfect match filter */
1138 for (i = 1; i < 16; i++)
1139 mac_write(sc, GMACMAH(i), 0);
1140 /* build 64 bit multicast hash filter */
1141 crc = mchash[1] = mchash[0] = 0;
1142
1143 ETHER_LOCK(ec);
1144 if (ifp->if_flags & IFF_PROMISC) {
1145 ec->ec_flags |= ETHER_F_ALLMULTI;
1146 ETHER_UNLOCK(ec);
1147 /* run promisc. mode */
1148 csr |= AFR_PR;
1149 goto update;
1150 }
1151 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1152 ETHER_FIRST_MULTI(step, ec, enm);
1153 i = 1; /* slot 0 is occupied */
1154 while (enm != NULL) {
1155 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1156 /*
1157 * We must listen to a range of multicast addresses.
1158 * For now, just accept all multicasts, rather than
1159 * trying to set only those filter bits needed to match
1160 * the range. (At this time, the only use of address
1161 * ranges is for IP multicast routing, for which the
1162 * range is big enough to require all bits set.)
1163 */
1164 ec->ec_flags |= ETHER_F_ALLMULTI;
1165 ETHER_UNLOCK(ec);
1166 /* accept all multi */
1167 csr |= AFR_PM;
1168 goto update;
1169 }
1170 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1171 if (i < 16) {
1172 /* use 15 entry perfect match filter */
1173 uint32_t addr;
1174 uint8_t *ep = enm->enm_addrlo;
1175 addr = (ep[3] << 24) | (ep[2] << 16)
1176 | (ep[1] << 8) | ep[0];
1177 mac_write(sc, GMACMAL(i), addr);
1178 addr = (ep[5] << 8) | ep[4];
1179 mac_write(sc, GMACMAH(i), addr | 1U<<31);
1180 } else {
1181 /* use hash table when too many */
1182 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1183 crc = bit_reverse_32(~crc);
1184 /* 1(31) 5(30:26) bit sampling */
1185 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1186 }
1187 ETHER_NEXT_MULTI(step, enm);
1188 i++;
1189 }
1190 ETHER_UNLOCK(ec);
1191 if (crc)
1192 csr |= AFR_MHTE;
1193 csr |= AFR_HPF; /* use hash+perfect */
1194 mac_write(sc, GMACMHTH, mchash[1]);
1195 mac_write(sc, GMACMHTL, mchash[0]);
1196 update:
1197 /* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */
1198 mac_write(sc, GMACAFR, csr);
1199 return;
1200 }
1201
1202 static void
1203 scx_start(struct ifnet *ifp)
1204 {
1205 struct scx_softc *sc = ifp->if_softc;
1206 struct mbuf *m0;
1207 struct scx_txsoft *txs;
1208 bus_dmamap_t dmamap;
1209 int error, nexttx, lasttx, ofree, seg;
1210 uint32_t tdes0;
1211
1212 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1213 return;
1214
1215 /* Remember the previous number of free descriptors. */
1216 ofree = sc->sc_txfree;
1217
1218 /*
1219 * Loop through the send queue, setting up transmit descriptors
1220 * until we drain the queue, or use up all available transmit
1221 * descriptors.
1222 */
1223 for (;;) {
1224 IFQ_POLL(&ifp->if_snd, m0);
1225 if (m0 == NULL)
1226 break;
1227
1228 if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1229 txreap(sc);
1230 if (sc->sc_txsfree == 0)
1231 break;
1232 }
1233 txs = &sc->sc_txsoft[sc->sc_txsnext];
1234 dmamap = txs->txs_dmamap;
1235
1236 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1237 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1238 if (error) {
1239 if (error == EFBIG) {
1240 aprint_error_dev(sc->sc_dev,
1241 "Tx packet consumes too many "
1242 "DMA segments, dropping...\n");
1243 IFQ_DEQUEUE(&ifp->if_snd, m0);
1244 m_freem(m0);
1245 continue;
1246 }
1247 /* Short on resources, just stop for now. */
1248 break;
1249 }
1250
1251 if (dmamap->dm_nsegs > sc->sc_txfree) {
1252 /*
1253 * Not enough free descriptors to transmit this
1254 * packet. We haven't committed anything yet,
1255 * so just unload the DMA map, put the packet
1256 * back on the queue, and punt. Notify the upper
1257 * layer that there are not more slots left.
1258 */
1259 ifp->if_flags |= IFF_OACTIVE;
1260 bus_dmamap_unload(sc->sc_dmat, dmamap);
1261 break;
1262 }
1263
1264 IFQ_DEQUEUE(&ifp->if_snd, m0);
1265
1266 /*
1267 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1268 */
1269
1270 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1271 BUS_DMASYNC_PREWRITE);
1272
1273 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1274 lasttx = -1;
1275 for (nexttx = sc->sc_txnext, seg = 0;
1276 seg < dmamap->dm_nsegs;
1277 seg++, nexttx = MD_NEXTTX(nexttx)) {
1278 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1279 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1280 /*
1281 * If this is the first descriptor we're
1282 * enqueueing, don't set the OWN bit just
1283 * yet. That could cause a race condition.
1284 * We'll do it below.
1285 */
1286 tdes->t3 = dmamap->dm_segs[seg].ds_len;
1287 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1288 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1289 tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
1290 (15 << T0_TDRID) | T0_PT |
1291 sc->sc_t0cotso | T0_TRS;
1292 tdes0 = T0_OWN; /* 2nd and other segments */
1293 /* NB; t0 DRID field contains zero */
1294 lasttx = nexttx;
1295 }
1296
1297 /* Write deferred 1st segment T0_OWN at the final stage */
1298 sc->sc_txdescs[lasttx].t0 |= T0_LS;
1299 sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
1300 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1301 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1302
1303 /* Tell DMA start transmit */
1304 mac_write(sc, GMACTPD, 1);
1305
1306 txs->txs_mbuf = m0;
1307 txs->txs_firstdesc = sc->sc_txnext;
1308 txs->txs_lastdesc = lasttx;
1309 txs->txs_ndesc = dmamap->dm_nsegs;
1310
1311 sc->sc_txfree -= txs->txs_ndesc;
1312 sc->sc_txnext = nexttx;
1313 sc->sc_txsfree--;
1314 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1315 /*
1316 * Pass the packet to any BPF listeners.
1317 */
1318 bpf_mtap(ifp, m0, BPF_D_OUT);
1319 }
1320
1321 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1322 /* No more slots left; notify upper layer. */
1323 ifp->if_flags |= IFF_OACTIVE;
1324 }
1325 if (sc->sc_txfree != ofree) {
1326 /* Set a watchdog timer in case the chip flakes out. */
1327 ifp->if_timer = 5;
1328 }
1329 }
1330
1331 static void
1332 scx_watchdog(struct ifnet *ifp)
1333 {
1334 struct scx_softc *sc = ifp->if_softc;
1335
1336 /*
1337 * Since we're not interrupting every packet, sweep
1338 * up before we report an error.
1339 */
1340 txreap(sc);
1341
1342 if (sc->sc_txfree != MD_NTXDESC) {
1343 aprint_error_dev(sc->sc_dev,
1344 "device timeout (txfree %d txsfree %d txnext %d)\n",
1345 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1346 if_statinc(ifp, if_oerrors);
1347
1348 /* Reset the interface. */
1349 scx_init(ifp);
1350 }
1351
1352 scx_start(ifp);
1353 }
1354
1355 static int
1356 scx_intr(void *arg)
1357 {
1358 struct scx_softc *sc = arg;
1359 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1360
1361 (void)ifp;
1362 /* XXX decode interrupt cause to pick isr() XXX */
1363 rxintr(sc);
1364 txreap(sc);
1365 return 1;
1366 }
1367
1368 static void
1369 txreap(struct scx_softc *sc)
1370 {
1371 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1372 struct scx_txsoft *txs;
1373 uint32_t txstat;
1374 int i;
1375
1376 ifp->if_flags &= ~IFF_OACTIVE;
1377
1378 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1379 i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1380 txs = &sc->sc_txsoft[i];
1381
1382 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1383 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1384
1385 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1386 if (txstat & T0_OWN) /* desc is still in use */
1387 break;
1388
1389 /* There is no way to tell transmission status per frame */
1390
1391 if_statinc(ifp, if_opackets);
1392
1393 sc->sc_txfree += txs->txs_ndesc;
1394 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1395 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1396 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1397 m_freem(txs->txs_mbuf);
1398 txs->txs_mbuf = NULL;
1399 }
1400 sc->sc_txsdirty = i;
1401 if (sc->sc_txsfree == MD_TXQUEUELEN)
1402 ifp->if_timer = 0;
1403 }
1404
1405 static void
1406 rxintr(struct scx_softc *sc)
1407 {
1408 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1409 struct scx_rxsoft *rxs;
1410 struct mbuf *m;
1411 uint32_t rxstat;
1412 int i, len;
1413
1414 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1415 rxs = &sc->sc_rxsoft[i];
1416
1417 SCX_CDRXSYNC(sc, i,
1418 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1419
1420 rxstat = sc->sc_rxdescs[i].r0;
1421 if (rxstat & R0_OWN) /* desc is left empty */
1422 break;
1423
1424 /* R0_FS | R0_LS must have been marked for this desc */
1425
1426 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1427 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1428
1429 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1430 len -= ETHER_CRC_LEN; /* Trim CRC off */
1431 m = rxs->rxs_mbuf;
1432
1433 if (add_rxbuf(sc, i) != 0) {
1434 if_statinc(ifp, if_ierrors);
1435 SCX_INIT_RXDESC(sc, i);
1436 bus_dmamap_sync(sc->sc_dmat,
1437 rxs->rxs_dmamap, 0,
1438 rxs->rxs_dmamap->dm_mapsize,
1439 BUS_DMASYNC_PREREAD);
1440 continue;
1441 }
1442
1443 m_set_rcvif(m, ifp);
1444 m->m_pkthdr.len = m->m_len = len;
1445
1446 if (rxstat & R0_CSUM) {
1447 uint32_t csum = M_CSUM_IPv4;
1448 if (rxstat & R0_CERR)
1449 csum |= M_CSUM_IPv4_BAD;
1450 m->m_pkthdr.csum_flags |= csum;
1451 }
1452 if_percpuq_enqueue(ifp->if_percpuq, m);
1453 }
1454 sc->sc_rxptr = i;
1455 }
1456
1457 static int
1458 add_rxbuf(struct scx_softc *sc, int i)
1459 {
1460 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1461 struct mbuf *m;
1462 int error;
1463
1464 MGETHDR(m, M_DONTWAIT, MT_DATA);
1465 if (m == NULL)
1466 return ENOBUFS;
1467
1468 MCLGET(m, M_DONTWAIT);
1469 if ((m->m_flags & M_EXT) == 0) {
1470 m_freem(m);
1471 return ENOBUFS;
1472 }
1473
1474 if (rxs->rxs_mbuf != NULL)
1475 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1476
1477 rxs->rxs_mbuf = m;
1478
1479 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1480 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1481 if (error) {
1482 aprint_error_dev(sc->sc_dev,
1483 "can't load rx DMA map %d, error = %d\n", i, error);
1484 panic("add_rxbuf");
1485 }
1486
1487 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1488 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1489 SCX_INIT_RXDESC(sc, i);
1490
1491 return 0;
1492 }
1493
1494 static void
1495 rxdrain(struct scx_softc *sc)
1496 {
1497 struct scx_rxsoft *rxs;
1498 int i;
1499
1500 for (i = 0; i < MD_NRXDESC; i++) {
1501 rxs = &sc->sc_rxsoft[i];
1502 if (rxs->rxs_mbuf != NULL) {
1503 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1504 m_freem(rxs->rxs_mbuf);
1505 rxs->rxs_mbuf = NULL;
1506 }
1507 }
1508 }
1509
1510 void
1511 mii_statchg(struct ifnet *ifp)
1512 {
1513 struct scx_softc *sc = ifp->if_softc;
1514 struct mii_data *mii = &sc->sc_mii;
1515 const int Mbps[4] = { 10, 100, 1000, 0 };
1516 uint32_t miisr, mcr, fcr;
1517 int spd;
1518
1519 /* decode MIISR register value */
1520 miisr = mac_read(sc, GMACMIISR);
1521 spd = Mbps[(miisr >> 1) & 03];
1522 #if 1
1523 printf("MII link status (0x%x) %s",
1524 miisr, (miisr & 8) ? "up" : "down");
1525 if (miisr & 8) {
1526 printf(" spd%d", spd);
1527 if (miisr & 01)
1528 printf(",full-duplex");
1529 }
1530 printf("\n");
1531 #endif
1532 /* Get flow control negotiation result. */
1533 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1534 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1535 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1536
1537 /* Adjust speed 1000/100/10. */
1538 mcr = mac_read(sc, GMACMCR);
1539 if (spd == 1000)
1540 mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
1541 else {
1542 if (spd == 100 && sc->sc_100mii)
1543 mcr |= MCR_SPD100;
1544 mcr |= MCR_USEMII;
1545 }
1546 mcr |= MCR_CST | MCR_JE;
1547 if (sc->sc_100mii == 0)
1548 mcr |= MCR_IBN;
1549
1550 /* Adjust duplexity and PAUSE flow control. */
1551 mcr &= ~MCR_USEFDX;
1552 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1553 if (miisr & 01) {
1554 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1555 fcr |= FCR_TFE;
1556 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1557 fcr |= FCR_RFE;
1558 mcr |= MCR_USEFDX;
1559 }
1560 mac_write(sc, GMACMCR, mcr);
1561 mac_write(sc, GMACFCR, fcr);
1562
1563 printf("%ctxfe, %crxfe\n",
1564 (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
1565 }
1566
1567 static void
1568 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1569 {
1570 struct scx_softc *sc = ifp->if_softc;
1571 struct mii_data *mii = &sc->sc_mii;
1572
1573 mii_pollstat(mii);
1574 ifmr->ifm_status = mii->mii_media_status;
1575 ifmr->ifm_active = sc->sc_flowflags |
1576 (mii->mii_media_active & ~IFM_ETH_FMASK);
1577 }
1578
1579 static int
1580 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1581 {
1582 struct scx_softc *sc = device_private(self);
1583 uint32_t miia;
1584 int ntries;
1585
1586 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1587 mac_write(sc, GMACGAR, miia | GAR_BUSY);
1588 for (ntries = 0; ntries < 1000; ntries++) {
1589 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1590 goto unbusy;
1591 DELAY(1);
1592 }
1593 return ETIMEDOUT;
1594 unbusy:
1595 *val = mac_read(sc, GMACGDR);
1596 return 0;
1597 }
1598
1599 static int
1600 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1601 {
1602 struct scx_softc *sc = device_private(self);
1603 uint32_t miia;
1604 uint16_t dummy;
1605 int ntries;
1606
1607 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1608 mac_write(sc, GMACGDR, val);
1609 mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1610 for (ntries = 0; ntries < 1000; ntries++) {
1611 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1612 goto unbusy;
1613 DELAY(1);
1614 }
1615 return ETIMEDOUT;
1616 unbusy:
1617 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1618 return 0;
1619 }
1620
1621 static void
1622 phy_tick(void *arg)
1623 {
1624 struct scx_softc *sc = arg;
1625 struct mii_data *mii = &sc->sc_mii;
1626 int s;
1627
1628 s = splnet();
1629 mii_tick(mii);
1630 splx(s);
1631 #ifdef GMAC_EVENT_COUNTERS
1632 #endif
1633 callout_schedule(&sc->sc_callout, hz);
1634 }
1635
1636 /*
1637 * 3 independent uengines exist to process host2media, media2host and
1638 * packet data flows.
1639 */
1640 static void
1641 loaducode(struct scx_softc *sc)
1642 {
1643 uint32_t up, lo, sz;
1644 uint64_t addr;
1645
1646 sc->sc_ucodeloaded = 1;
1647
1648 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1649 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1650 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1651 sz *= 4;
1652 addr = ((uint64_t)up << 32) | lo;
1653 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1654 injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
1655
1656 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1657 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1658 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1659 sz *= 4;
1660 addr = ((uint64_t)up << 32) | lo;
1661 injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
1662 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1663
1664 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1665 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1666 sz *= 4;
1667 injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
1668 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1669 }
1670
1671 static void
1672 injectucode(struct scx_softc *sc, int port,
1673 bus_addr_t addr, bus_size_t size)
1674 {
1675 bus_space_handle_t bsh;
1676 bus_size_t off;
1677 uint32_t ucode;
1678
1679 if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1680 aprint_error_dev(sc->sc_dev,
1681 "eeprom map failure for ucode port 0x%x\n", port);
1682 return;
1683 }
1684 for (off = 0; off < size; off += 4) {
1685 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1686 CSR_WRITE(sc, port, ucode);
1687 }
1688 bus_space_unmap(sc->sc_st, bsh, size);
1689 }
1690
1691 /* GAR 5:2 MDIO frequency selection */
1692 static int
1693 get_mdioclk(uint32_t freq)
1694 {
1695
1696
1697 freq /= 1000 * 1000;
1698
1699 if (freq < 35)
1700 return GAR_MDIO_25_35MHZ;
1701 if (freq < 60)
1702 return GAR_MDIO_35_60MHZ;
1703 if (freq < 100)
1704 return GAR_MDIO_60_100MHZ;
1705 if (freq < 150)
1706 return GAR_MDIO_100_150MHZ;
1707 if (freq < 250)
1708 return GAR_MDIO_150_250MHZ;
1709 return GAR_MDIO_250_300MHZ;
1710 }
1711