if_scx.c revision 1.3 1 /* $NetBSD: if_scx.c,v 1.3 2020/03/23 04:34:16 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #define NOT_MP_SAFE 0
33
34 /*
35 * Socionext SC2A11 SynQuacer NetSec GbE driver
36 *
37 * (possibly incorrect notes to be removed eventually)
38 * - 32 byte descriptor for 64 bit paddr design.
39 * - multiple rings seems available. There are special descriptor fields
40 * to designify ring number from which to arrive or to which go.
41 * - memory mapped EEPROM to hold MAC address. The rest of the area is
42 * occupied by a set of ucode for two DMA engines and one packet engine.
43 * - The size of frame address filter is unknown. Might be 32
44 * - The first slot is my own station address. Always enabled to perform
45 * to identify oneself.
46 * - 1~31 are for supplimental MAC addresses. Independently enabled
47 * for use. Good to catch multicast. Byte-wise selective match available.
48 * Use to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
49 * - The size of multicast hash filter store is unknown. Might be 256 bit.
50 */
51
52 #include <sys/cdefs.h>
53 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.3 2020/03/23 04:34:16 nisimura Exp $");
54
55 #include <sys/param.h>
56 #include <sys/bus.h>
57 #include <sys/intr.h>
58 #include <sys/device.h>
59 #include <sys/callout.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63 #include <sys/rndsource.h>
64 #include <sys/kernel.h>
65 #include <sys/systm.h>
66
67 #include <net/if.h>
68 #include <net/if_media.h>
69 #include <net/if_dl.h>
70 #include <net/if_ether.h>
71 #include <dev/mii/mii.h>
72 #include <dev/mii/miivar.h>
73 #include <net/bpf.h>
74
75 #include <dev/fdt/fdtvar.h>
76 #include <dev/acpi/acpireg.h>
77 #include <dev/acpi/acpivar.h>
78 #include <dev/acpi/acpi_intr.h>
79
80 #define SWRESET 0x104
81 #define COMINIT 0x120
82 #define INTRST 0x200
83 #define IRQ_RX (1U<<1)
84 #define IRQ_TX (1U<<0)
85 #define INTREN 0x204
86 #define INTR_SET 0x234
87 #define INTR_CLR 0x238
88 #define TXINTST 0x400
89 #define TXINTEN 0x404
90 #define TXINT_SET 0x428
91 #define TXINT_CLR 0x42c
92 #define TXI_NTOWNR (1U<<17)
93 #define TXI_TR_ERR (1U<<16)
94 #define TXI_TXDONE (1U<<15)
95 #define TXI_TMREXP (1U<<14)
96 #define RXINTST 0x440
97 #define RXINTEN 0x444
98 #define RXINT_SET 0x468
99 #define RXINT_CLR 0x46c
100 #define RXI_RC_ERR (1U<<16)
101 #define RXI_PKTCNT (1U<<15)
102 #define RXI_TMREXP (1U<<14)
103 #define TXTIMER 0x41c
104 #define RXTIMER 0x45c
105 #define TXCOUNT 0x410
106 #define RXCOUNT 0x454
107 #define H2MENG 0x210 /* DMAC host2media ucode port */
108 #define M2HENG 0x21c /* DMAC media2host ucode port */
109 #define PKTENG 0x0d0 /* packet engine ucode port */
110 #define HWVER0 0x22c
111 #define HWVER1 0x230
112
113 #define MACSTAT 0x1024 /* gmac status */
114 #define MACDATA 0x11c0 /* gmac rd/wr data */
115 #define MACCMD 0x11c4 /* gmac operation */
116 #define CMD_IOWR (1U<<28) /* write op */
117 #define CMD_BUSY (1U<<31) /* busy bit */
118 #define DESCENG_INIT 0x11fc
119 #define DESCENG_SRST 0x1204
120
121 #define GMACMCR 0x0000 /* MAC configuration */
122 #define MCR_IBN (1U<<30) /* */
123 #define MCR_CST (1U<<25) /* strip CRC */
124 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
125 #define MCR_JE (1U<<20) /* ignore oversized >9018 condition */
126 #define MCR_USEMII (1U<<15) /* 1: RMII/MII, 0: RGMII */
127 #define MCR_SPD100 (1U<<14) /* force speed 100 */
128 #define MCR_USEFDX (1U<<11) /* force full duplex */
129 #define MCR_IPCKEN (1U<<10) /* handle checksum */
130 #define MCR_ACS (1U<<7) /* auto pad CRC strip */
131 #define MCR_TXE (1U<<3) /* start Tx DMA engine */
132 #define MCR_RXE (1U<<2) /* start Rx DMA engine */
133 #define _MCR_FDX 0x0000280c /* XXX TBD */
134 #define _MCR_HDX 0x0001a00c /* XXX TBD */
135 #define GMACAFR 0x0004 /* frame DA/SA address filter */
136 #define AFR_RA (1U<<31) /* receive block all on */
137 #define AFR_HPF (1U<<10) /* activate hash or perfect filter */
138 #define AFR_SAF (1U<<9) /* source address filter */
139 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
140 #define AFR_PCF (3U<<6) /* */
141 #define AFR_RB (1U<<5) /* reject broadcast frame */
142 #define AFR_AM (1U<<4) /* accept all multicast frame */
143 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
144 #define AFR_MHTE (1U<<2) /* use multicast hash table */
145 #define AFR_UHTE (1U<<1) /* use additional MAC addresses */
146 #define AFR_PM (1U<<0) /* run promisc mode */
147 #define _AFR 0x80000001 /* XXX TBD */
148 #define GMACMHTH 0x0008 /* XXX multicast hash table 63:32 */
149 #define GMACMHTL 0x000c /* XXX multicast hash table 31:0 */
150 #define GMACGAR 0x0010 /* MDIO operation */
151 #define GAR_PHY (11) /* mii phy 15:11 */
152 #define GAR_REG (6) /* mii reg 10:6 */
153 #define GAR_CTL (2) /* control 5:2 */
154 #define GAR_IOWR (1U<<1) /* MDIO write op */
155 #define GAR_BUSY (1U) /* busy bit */
156 #define GMACGDR 0x0014 /* MDIO rd/wr data */
157 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
158 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
159 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
160 #define GMACIMPL 0x0020 /* implementation number XXXX.YYYY */
161 #define GMACVTAG 0x001c /* VLAN tag control */
162 #define GMACMAH0 0x0040 /* MAC address 0 47:32 */
163 #define GMACMAL0 0x0044 /* MAC address 0 31:0 */
164 #define GMACMAH(i) ((i)*8+0x40) /* supplimental MAC addr 1 - 15 */
165 #define GMACMAL(i) ((i)*8+0x44)
166 #define GMACMHT0 0x0500 /* multicast hash table 0 - 8*/
167
168 #define GMACBMR 0x1000 /* DMA bus mode control
169 * 24 4PBL
170 * 22:17 RPBL
171 * 16 fix burst
172 * 15:14 priority between Rx and Tx
173 * 3 rxtx41
174 * 2 rxtx31
175 * 1 rxtx21
176 * 0 rxtx11
177 * 13:8 PBL possible DMA burst len
178 * 0 reset op. self clear
179 */
180 #define _BMR 0x00412080 /* XXX TBD */
181 #define _BMR0 0x00020181 /* XXX TBD */
182 #define BMR_RST (1U<<0) /* reset op. self clear when done */
183 #define GMACRDLAR 0x100c /* */
184 #define _RDLAR 0x18000 /* XXX TBD */
185 #define GMACTDLAR 0x1010 /* */
186 #define _TDLAR 0x1c000 /* XXX TBD */
187 #define GMACOMR 0x1018 /* DMA operation */
188 #define OMR_TXE (1U<<13) /* start Tx DMA engine, 0 to stop */
189 #define OMR_RXE (1U<<1) /* start Rx DMA engine, 0 to stop */
190
191 const struct {
192 uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
193 } garclk[] = {
194 { 35, 2 }, /* 25-35 MHz */
195 { 60, 3 }, /* 35-60 MHz */
196 { 100, 0 }, /* 60-100 MHz */
197 { 150, 1 }, /* 100-150 MHz */
198 { 250, 4 }, /* 150-250 MHz */
199 { 300, 5 }, /* 250-300 MHz */
200 { 0 },
201 };
202 static int get_garclk(uint32_t);
203
204 /* descriptor format definition */
205 struct tdes {
206 uint32_t t0, t1, t2, t3;
207 };
208
209 struct rdes {
210 uint32_t r0, r1, r2, r3;
211 };
212
213 #define T0_OWN (1U<<31) /* desc is ready to Tx */
214 #define T0_EOD (1U<<30) /* end of descriptor array */
215 #define T0_DRID (24) /* 29:24 DRID */
216 #define T0_PT (1U<<21) /* 23:21 PT */
217 #define T0_TRID (16) /* 20:16 TRID */
218 #define T0_FS (1U<<9) /* first segment of frame */
219 #define T0_LS (1U<<8) /* last segment of frame */
220 #define T0_CSUM (1U<<7) /* enable check sum offload */
221 #define T0_SGOL (1U<<6) /* enable TCP segment offload */
222 #define T0_TRS (1U<<4) /* 5:4 TRS */
223 #define T0_IOC (0) /* XXX TBD interrupt when completed */
224 /* T1 segment address 63:32 */
225 /* T2 segment address 31:0 */
226 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
227 #define R0_OWN (1U<<31) /* desc is empty */
228 #define R0_EOD (1U<<30) /* end of descriptor array */
229 #define R0_SRID (24) /* 29:24 SRID */
230 #define R0_FR (1U<<23) /* FR */
231 #define R0_ER (1U<<21) /* Rx error indication */
232 #define R0_ERR (3U<<16) /* 18:16 receive error code */
233 #define R0_TDRID (14) /* 15:14 TDRID */
234 #define R0_FS (1U<<9) /* first segment of frame */
235 #define R0_LS (1U<<8) /* last segment of frame */
236 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
237 #define R0_CERR (2U<<6) /* 0 (undone), 1 (found ok), 2 (bad) */
238 /* R1 frame address 63:32 */
239 /* R2 frame address 31:0 */
240 /* R3 31:16 received frame length, 15:0 buffer length to receive */
241
242 #define SCX_NTXSEGS 16
243 #define SCX_TXQUEUELEN 16
244 #define SCX_TXQUEUELEN_MASK (SCX_TXQUEUELEN - 1)
245 #define SCX_TXQUEUE_GC (SCX_TXQUEUELEN / 4)
246 #define SCX_NTXDESC (SCX_TXQUEUELEN * SCX_NTXSEGS)
247 #define SCX_NTXDESC_MASK (SCX_NTXDESC - 1)
248 #define SCX_NEXTTX(x) (((x) + 1) & SCX_NTXDESC_MASK)
249 #define SCX_NEXTTXS(x) (((x) + 1) & SCX_TXQUEUELEN_MASK)
250
251 #define SCX_NRXDESC 64
252 #define SCX_NRXDESC_MASK (SCX_NRXDESC - 1)
253 #define SCX_NEXTRX(x) (((x) + 1) & SCX_NRXDESC_MASK)
254
255 #define SCX_INIT_RXDESC(sc, x) \
256 do { \
257 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
258 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
259 struct mbuf *__m = __rxs->rxs_mbuf; \
260 bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr; \
261 __m->m_data = __m->m_ext.ext_buf; \
262 __rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len; \
263 __rxd->r2 = htole32(BUS_ADDR_LO32(__paddr)); \
264 __rxd->r1 = htole32(BUS_ADDR_HI32(__paddr)); \
265 __rxd->r0 = R0_OWN | R0_FS | R0_LS; \
266 if ((x) == SCX_NRXDESC - 1) __rxd->r0 |= R0_EOD; \
267 } while (/*CONSTCOND*/0)
268
269 struct control_data {
270 struct tdes cd_txdescs[SCX_NTXDESC];
271 struct rdes cd_rxdescs[SCX_NRXDESC];
272 };
273 #define SCX_CDOFF(x) offsetof(struct control_data, x)
274 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
275 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
276
277 struct scx_txsoft {
278 struct mbuf *txs_mbuf; /* head of our mbuf chain */
279 bus_dmamap_t txs_dmamap; /* our DMA map */
280 int txs_firstdesc; /* first descriptor in packet */
281 int txs_lastdesc; /* last descriptor in packet */
282 int txs_ndesc; /* # of descriptors used */
283 };
284
285 struct scx_rxsoft {
286 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
287 bus_dmamap_t rxs_dmamap; /* our DMA map */
288 };
289
290 struct scx_softc {
291 device_t sc_dev; /* generic device information */
292 bus_space_tag_t sc_st; /* bus space tag */
293 bus_space_handle_t sc_sh; /* bus space handle */
294 bus_size_t sc_sz; /* csr map size */
295 bus_space_handle_t sc_eesh; /* eeprom section handle */
296 bus_size_t sc_eesz; /* eeprom map size */
297 bus_dma_tag_t sc_dmat; /* bus DMA tag */
298 struct ethercom sc_ethercom; /* Ethernet common data */
299 struct mii_data sc_mii; /* MII */
300 callout_t sc_tick_ch; /* PHY monitor callout */
301 bus_dma_segment_t sc_seg; /* descriptor store seg */
302 int sc_nseg; /* descriptor store nseg */
303 void *sc_ih; /* interrupt cookie */
304 int sc_phy_id; /* PHY address */
305 int sc_flowflags; /* 802.3x PAUSE flow control */
306 uint32_t sc_gar; /* GAR 5:2 clock selection */
307 uint32_t sc_t0coso; /* T0_CSUM | T0_SGOL to run */
308 int sc_ucodeloaded; /* ucode for H2M/M2H/PKT */
309 int sc_phandle; /* fdt phandle */
310
311 bus_dmamap_t sc_cddmamap; /* control data DMA map */
312 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
313
314 struct control_data *sc_control_data;
315 #define sc_txdescs sc_control_data->cd_txdescs
316 #define sc_rxdescs sc_control_data->cd_rxdescs
317
318 struct scx_txsoft sc_txsoft[SCX_TXQUEUELEN];
319 struct scx_rxsoft sc_rxsoft[SCX_NRXDESC];
320 int sc_txfree; /* number of free Tx descriptors */
321 int sc_txnext; /* next ready Tx descriptor */
322 int sc_txsfree; /* number of free Tx jobs */
323 int sc_txsnext; /* next ready Tx job */
324 int sc_txsdirty; /* dirty Tx jobs */
325 int sc_rxptr; /* next ready Rx descriptor/descsoft */
326
327 krndsource_t rnd_source; /* random source */
328 };
329
330 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
331 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
332
333 #define SCX_CDTXSYNC(sc, x, n, ops) \
334 do { \
335 int __x, __n; \
336 \
337 __x = (x); \
338 __n = (n); \
339 \
340 /* If it will wrap around, sync to the end of the ring. */ \
341 if ((__x + __n) > SCX_NTXDESC) { \
342 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
343 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
344 (SCX_NTXDESC - __x), (ops)); \
345 __n -= (SCX_NTXDESC - __x); \
346 __x = 0; \
347 } \
348 \
349 /* Now sync whatever is left. */ \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
352 } while (/*CONSTCOND*/0)
353
354 #define SCX_CDRXSYNC(sc, x, ops) \
355 do { \
356 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
357 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
358 } while (/*CONSTCOND*/0)
359
360 static int scx_fdt_match(device_t, cfdata_t, void *);
361 static void scx_fdt_attach(device_t, device_t, void *);
362 static int scx_acpi_match(device_t, cfdata_t, void *);
363 static void scx_acpi_attach(device_t, device_t, void *);
364
365 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
366 scx_fdt_match, scx_fdt_attach, NULL, NULL);
367
368 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
369 scx_acpi_match, scx_acpi_attach, NULL, NULL);
370
371 static void scx_attach_i(struct scx_softc *);
372 static void scx_reset(struct scx_softc *);
373 static int scx_init(struct ifnet *);
374 static void scx_start(struct ifnet *);
375 static void scx_stop(struct ifnet *, int);
376 static void scx_watchdog(struct ifnet *);
377 static int scx_ioctl(struct ifnet *, u_long, void *);
378 static void scx_set_rcvfilt(struct scx_softc *);
379 static int scx_ifmedia_upd(struct ifnet *);
380 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
381 static void mii_statchg(struct ifnet *);
382 static void phy_tick(void *);
383 static int mii_readreg(device_t, int, int, uint16_t *);
384 static int mii_writereg(device_t, int, int, uint16_t);
385 static int scx_intr(void *);
386 static void txreap(struct scx_softc *);
387 static void rxintr(struct scx_softc *);
388 static int add_rxbuf(struct scx_softc *, int);
389 static int spin_waitfor(struct scx_softc *, int, int);
390 static int mac_read(struct scx_softc *, int);
391 static void mac_write(struct scx_softc *, int, int);
392 static void loaducode(struct scx_softc *);
393 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
394
395 #define CSR_READ(sc,off) \
396 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
397 #define CSR_WRITE(sc,off,val) \
398 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
399 #define EE_READ(sc,off) \
400 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
401
402 static int
403 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
404 {
405 static const char * compatible[] = {
406 "socionext,synquacer-netsec",
407 NULL
408 };
409 struct fdt_attach_args * const faa = aux;
410
411 return of_match_compatible(faa->faa_phandle, compatible);
412 }
413
414 static void
415 scx_fdt_attach(device_t parent, device_t self, void *aux)
416 {
417 struct scx_softc * const sc = device_private(self);
418 struct fdt_attach_args * const faa = aux;
419 const int phandle = faa->faa_phandle;
420 bus_space_tag_t bst = faa->faa_bst;
421 bus_space_handle_t bsh;
422 bus_space_handle_t eebsh;
423 bus_addr_t addr[2];
424 bus_size_t size[2];
425 char intrstr[128];
426
427 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
428 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
429 aprint_error(": unable to map device csr\n");
430 return;
431 }
432 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
433 aprint_error(": failed to decode interrupt\n");
434 goto fail;
435 }
436 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
437 NOT_MP_SAFE, scx_intr, sc);
438 if (sc->sc_ih == NULL) {
439 aprint_error_dev(self, "couldn't establish interrupt\n");
440 goto fail;
441 }
442 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
443 || bus_space_map(faa->faa_bst, addr[0], size[1], 0, &eebsh) != 0) {
444 aprint_error(": unable to map device eeprom\n");
445 goto fail;
446 }
447
448 aprint_naive("\n");
449 aprint_normal(": Gigabit Ethernet Controller\n");
450 aprint_normal_dev(self, "interrupt on %s\n", intrstr);
451
452 sc->sc_dev = self;
453 sc->sc_st = bst;
454 sc->sc_sh = bsh;
455 sc->sc_sz = size[0];
456 sc->sc_eesh = eebsh;
457 sc->sc_eesz = size[1];
458 sc->sc_dmat = faa->faa_dmat;
459 sc->sc_phandle = phandle;
460
461 scx_attach_i(sc);
462 return;
463 fail:
464 if (sc->sc_eesz)
465 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
466 if (sc->sc_sz)
467 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
468 return;
469 }
470
471 static int
472 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
473 {
474 static const char * compatible[] = {
475 "SCX0001",
476 NULL
477 };
478 struct acpi_attach_args *aa = aux;
479
480 if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
481 return 0;
482 return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
483 }
484
485 static void
486 scx_acpi_attach(device_t parent, device_t self, void *aux)
487 {
488 struct scx_softc * const sc = device_private(self);
489 struct acpi_attach_args * const aa = aux;
490 ACPI_HANDLE handle = aa->aa_node->ad_handle;
491 bus_space_tag_t bst = aa->aa_memt;
492 bus_space_handle_t bsh, eebsh;
493 struct acpi_resources res;
494 struct acpi_mem *mem;
495 struct acpi_irq *irq;
496 ACPI_STATUS rv;
497
498 rv = acpi_resource_parse(self, handle, "_CRS",
499 &res, &acpi_resource_parse_ops_default);
500 if (ACPI_FAILURE(rv))
501 return;
502 mem = acpi_res_mem(&res, 0);
503 irq = acpi_res_irq(&res, 0);
504 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
505 aprint_error(": incomplete csr resources\n");
506 return;
507 }
508 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
509 aprint_error(": couldn't map registers\n");
510 return;
511 }
512 sc->sc_sz = mem->ar_length;
513 sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
514 NOT_MP_SAFE, scx_intr, sc, device_xname(self));
515 if (sc->sc_ih == NULL) {
516 aprint_error_dev(self, "couldn't establish interrupt\n");
517 goto fail;
518 }
519 mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
520 if (mem == NULL || mem->ar_length == 0) {
521 aprint_error(": incomplete eeprom resources\n");
522 goto fail;
523 }
524 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
525 aprint_error(": couldn't map registers\n");
526 goto fail;
527 }
528 sc->sc_eesz = mem->ar_length;
529
530 aprint_naive("\n");
531 aprint_normal(": Gigabit Ethernet Controller\n");
532
533 sc->sc_dev = self;
534 sc->sc_st = bst;
535 sc->sc_sh = bsh;
536 sc->sc_eesh = eebsh;
537 sc->sc_dmat = aa->aa_dmat64;
538
539 scx_attach_i(sc);
540
541 acpi_resource_cleanup(&res);
542 return;
543 fail:
544 if (sc->sc_eesz > 0)
545 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
546 if (sc->sc_sz > 0)
547 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
548 acpi_resource_cleanup(&res);
549 return;
550 }
551
552 static void
553 scx_attach_i(struct scx_softc *sc)
554 {
555 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
556 struct mii_data * const mii = &sc->sc_mii;
557 struct ifmedia * const ifm = &mii->mii_media;
558 uint32_t hwver, phyfreq;
559 uint8_t enaddr[ETHER_ADDR_LEN];
560 bus_dma_segment_t seg;
561 uint32_t csr;
562 int i, nseg, error = 0;
563
564 hwver = CSR_READ(sc, HWVER1);
565 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
566 enaddr[0] = csr >> 24;
567 enaddr[1] = csr >> 16;
568 enaddr[2] = csr >> 8;
569 enaddr[3] = csr;
570 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
571 enaddr[4] = csr >> 24;
572 enaddr[5] = csr >> 16;
573 csr = CSR_READ(sc, GMACIMPL);
574
575 aprint_normal_dev(sc->sc_dev, "NetSec GbE (%d.%d) impl (%x.%x)\n",
576 hwver >> 16, hwver & 0xffff, csr >> 16, csr & 0xffff);
577 aprint_normal_dev(sc->sc_dev,
578 "Ethernet address %s\n", ether_sprintf(enaddr));
579
580 phyfreq = 0;
581 sc->sc_phy_id = MII_PHY_ANY;
582 sc->sc_gar = get_garclk(phyfreq) << GAR_CTL; /* 5:2 gar control */
583
584 sc->sc_flowflags = 0;
585
586 if (sc->sc_ucodeloaded == 0)
587 loaducode(sc);
588
589 mii->mii_ifp = ifp;
590 mii->mii_readreg = mii_readreg;
591 mii->mii_writereg = mii_writereg;
592 mii->mii_statchg = mii_statchg;
593
594 sc->sc_ethercom.ec_mii = mii;
595 ifmedia_init(ifm, 0, scx_ifmedia_upd, scx_ifmedia_sts);
596 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
597 MII_OFFSET_ANY, MIIF_DOPAUSE);
598 if (LIST_FIRST(&mii->mii_phys) == NULL) {
599 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
600 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
601 } else
602 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
603 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
604
605 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
606 ifp->if_softc = sc;
607 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
608 ifp->if_ioctl = scx_ioctl;
609 ifp->if_start = scx_start;
610 ifp->if_watchdog = scx_watchdog;
611 ifp->if_init = scx_init;
612 ifp->if_stop = scx_stop;
613 IFQ_SET_READY(&ifp->if_snd);
614
615 if_attach(ifp);
616 if_deferred_start_init(ifp, NULL);
617 ether_ifattach(ifp, enaddr);
618
619 callout_init(&sc->sc_tick_ch, 0);
620 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
621
622 /*
623 * Allocate the control data structures, and create and load the
624 * DMA map for it.
625 */
626 error = bus_dmamem_alloc(sc->sc_dmat,
627 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
628 if (error != 0) {
629 aprint_error_dev(sc->sc_dev,
630 "unable to allocate control data, error = %d\n", error);
631 goto fail_0;
632 }
633 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
634 sizeof(struct control_data), (void **)&sc->sc_control_data,
635 BUS_DMA_COHERENT);
636 if (error != 0) {
637 aprint_error_dev(sc->sc_dev,
638 "unable to map control data, error = %d\n", error);
639 goto fail_1;
640 }
641 error = bus_dmamap_create(sc->sc_dmat,
642 sizeof(struct control_data), 1,
643 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
644 if (error != 0) {
645 aprint_error_dev(sc->sc_dev,
646 "unable to create control data DMA map, "
647 "error = %d\n", error);
648 goto fail_2;
649 }
650 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
651 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
652 if (error != 0) {
653 aprint_error_dev(sc->sc_dev,
654 "unable to load control data DMA map, error = %d\n",
655 error);
656 goto fail_3;
657 }
658 for (i = 0; i < SCX_TXQUEUELEN; i++) {
659 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
660 SCX_NTXSEGS, MCLBYTES, 0, 0,
661 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
662 aprint_error_dev(sc->sc_dev,
663 "unable to create tx DMA map %d, error = %d\n",
664 i, error);
665 goto fail_4;
666 }
667 }
668 for (i = 0; i < SCX_NRXDESC; i++) {
669 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
670 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
671 aprint_error_dev(sc->sc_dev,
672 "unable to create rx DMA map %d, error = %d\n",
673 i, error);
674 goto fail_5;
675 }
676 sc->sc_rxsoft[i].rxs_mbuf = NULL;
677 }
678 sc->sc_seg = seg;
679 sc->sc_nseg = nseg;
680 printf("bus_dmaseg ds_addr %08lx, ds_len %08lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
681
682 if (pmf_device_register(sc->sc_dev, NULL, NULL))
683 pmf_class_network_register(sc->sc_dev, ifp);
684 else
685 aprint_error_dev(sc->sc_dev,
686 "couldn't establish power handler\n");
687
688 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
689 RND_TYPE_NET, RND_FLAG_DEFAULT);
690
691 return;
692
693 fail_5:
694 for (i = 0; i < SCX_NRXDESC; i++) {
695 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
696 bus_dmamap_destroy(sc->sc_dmat,
697 sc->sc_rxsoft[i].rxs_dmamap);
698 }
699 fail_4:
700 for (i = 0; i < SCX_TXQUEUELEN; i++) {
701 if (sc->sc_txsoft[i].txs_dmamap != NULL)
702 bus_dmamap_destroy(sc->sc_dmat,
703 sc->sc_txsoft[i].txs_dmamap);
704 }
705 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
706 fail_3:
707 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
708 fail_2:
709 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
710 sizeof(struct control_data));
711 fail_1:
712 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
713 fail_0:
714 if (sc->sc_phandle)
715 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
716 else
717 acpi_intr_disestablish(sc->sc_ih);
718 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
719 return;
720 }
721
722 static void
723 scx_reset(struct scx_softc *sc)
724 {
725
726 mac_write(sc, GMACBMR, BMR_RST); /* may take for a while */
727 (void)spin_waitfor(sc, GMACBMR, BMR_RST);
728
729 CSR_WRITE(sc, DESCENG_SRST, 1);
730 CSR_WRITE(sc, DESCENG_INIT, 1);
731 mac_write(sc, GMACBMR, _BMR);
732 mac_write(sc, GMACRDLAR, _RDLAR);
733 mac_write(sc, GMACTDLAR, _TDLAR);
734 mac_write(sc, GMACAFR, _AFR);
735 }
736
737 static int
738 scx_init(struct ifnet *ifp)
739 {
740 struct scx_softc *sc = ifp->if_softc;
741 const uint8_t *ea = CLLADDR(ifp->if_sadl);
742 uint32_t csr;
743 int i;
744
745 /* Cancel pending I/O. */
746 scx_stop(ifp, 0);
747
748 /* Reset the chip to a known state. */
749 scx_reset(sc);
750
751 /* build sane Tx and load Rx descriptors with mbuf */
752 for (i = 0; i < SCX_NTXDESC; i++)
753 sc->sc_txdescs[i].t0 = T0_OWN;
754 sc->sc_txdescs[SCX_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
755 for (i = 0; i < SCX_NRXDESC; i++)
756 (void)add_rxbuf(sc, i);
757
758 /* set my address in perfect match slot 0 */
759 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
760 CSR_WRITE(sc, GMACMAL0, csr);
761 csr = (ea[5] << 8) | ea[4];
762 CSR_WRITE(sc, GMACMAH0, csr | 1U<<31); /* always valid? */
763
764 /* accept multicast frame or run promisc mode */
765 scx_set_rcvfilt(sc);
766
767 (void)scx_ifmedia_upd(ifp);
768
769 /* kick to start GMAC engine */
770 csr = mac_read(sc, GMACOMR);
771 CSR_WRITE(sc, RXINT_CLR, ~0);
772 CSR_WRITE(sc, TXINT_CLR, ~0);
773 mac_write(sc, GMACOMR, csr | OMR_RXE | OMR_TXE);
774
775 ifp->if_flags |= IFF_RUNNING;
776 ifp->if_flags &= ~IFF_OACTIVE;
777
778 /* start one second timer */
779 callout_schedule(&sc->sc_tick_ch, hz);
780
781 return 0;
782 }
783
784 static void
785 scx_stop(struct ifnet *ifp, int disable)
786 {
787 struct scx_softc *sc = ifp->if_softc;
788
789 /* Stop the one second clock. */
790 callout_stop(&sc->sc_tick_ch);
791
792 /* Down the MII. */
793 mii_down(&sc->sc_mii);
794
795 /* Mark the interface down and cancel the watchdog timer. */
796 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
797 ifp->if_timer = 0;
798 }
799
800 static void
801 scx_watchdog(struct ifnet *ifp)
802 {
803 struct scx_softc *sc = ifp->if_softc;
804
805 /*
806 * Since we're not interrupting every packet, sweep
807 * up before we report an error.
808 */
809 txreap(sc);
810
811 if (sc->sc_txfree != SCX_NTXDESC) {
812 aprint_error_dev(sc->sc_dev,
813 "device timeout (txfree %d txsfree %d txnext %d)\n",
814 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
815 if_statinc(ifp, if_oerrors);
816
817 /* Reset the interface. */
818 scx_init(ifp);
819 }
820
821 scx_start(ifp);
822 }
823
824 static int
825 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
826 {
827 struct scx_softc *sc = ifp->if_softc;
828 struct ifreq *ifr = (struct ifreq *)data;
829 struct ifmedia *ifm;
830 int s, error;
831
832 s = splnet();
833
834 switch (cmd) {
835 case SIOCSIFMEDIA:
836 /* Flow control requires full-duplex mode. */
837 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
838 (ifr->ifr_media & IFM_FDX) == 0)
839 ifr->ifr_media &= ~IFM_ETH_FMASK;
840 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
841 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
842 /* We can do both TXPAUSE and RXPAUSE. */
843 ifr->ifr_media |=
844 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
845 }
846 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
847 }
848 ifm = &sc->sc_mii.mii_media;
849 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
850 break;
851 default:
852 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
853 break;
854
855 error = 0;
856
857 if (cmd == SIOCSIFCAP)
858 error = (*ifp->if_init)(ifp);
859 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
860 ;
861 else if (ifp->if_flags & IFF_RUNNING) {
862 /*
863 * Multicast list has changed; set the hardware filter
864 * accordingly.
865 */
866 scx_set_rcvfilt(sc);
867 }
868 break;
869 }
870
871 splx(s);
872 return error;
873 }
874
875 static void
876 scx_set_rcvfilt(struct scx_softc *sc)
877 {
878 struct ethercom * const ec = &sc->sc_ethercom;
879 struct ifnet * const ifp = &ec->ec_if;
880 struct ether_multistep step;
881 struct ether_multi *enm;
882 uint32_t mchash[8]; /* 8x 32 = 256 bit */
883 uint32_t csr, crc;
884 int i;
885
886 csr = CSR_READ(sc, GMACAFR);
887 csr &= ~(AFR_PM | AFR_AM | AFR_MHTE);
888 CSR_WRITE(sc, GMACAFR, csr);
889
890 ETHER_LOCK(ec);
891 if (ifp->if_flags & IFF_PROMISC) {
892 ec->ec_flags |= ETHER_F_ALLMULTI;
893 ETHER_UNLOCK(ec);
894 goto update;
895 }
896 ec->ec_flags &= ~ETHER_F_ALLMULTI;
897
898 /* clear 15 entry supplimental perfect match filter */
899 for (i = 1; i < 16; i++)
900 CSR_WRITE(sc, GMACMAH(i), 0);
901 /* build 256 bit multicast hash filter */
902 memset(mchash, 0, sizeof(mchash));
903 crc = 0;
904
905 ETHER_FIRST_MULTI(step, ec, enm);
906 i = 1; /* slot 0 is occupied */
907 while (enm != NULL) {
908 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
909 /*
910 * We must listen to a range of multicast addresses.
911 * For now, just accept all multicasts, rather than
912 * trying to set only those filter bits needed to match
913 * the range. (At this time, the only use of address
914 * ranges is for IP multicast routing, for which the
915 * range is big enough to require all bits set.)
916 */
917 ec->ec_flags |= ETHER_F_ALLMULTI;
918 ETHER_UNLOCK(ec);
919 goto update;
920 }
921 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
922 if (i < 16) {
923 /* use 31 entry perfect match filter */
924 uint32_t addr;
925 uint8_t *ep = enm->enm_addrlo;
926 addr = (ep[3] << 24) | (ep[2] << 16)
927 | (ep[1] << 8) | ep[0];
928 CSR_WRITE(sc, GMACMAL(i), addr);
929 addr = (ep[5] << 8) | ep[4];
930 CSR_WRITE(sc, GMACMAH(i), addr | 1U<<31);
931 } else {
932 /* use hash table when too many */
933 /* bit_reserve_32(~crc) !? */
934 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
935 /* 3(31:29) 5(28:24) bit sampling */
936 mchash[crc >> 29] |= 1 << ((crc >> 24) & 0x1f);
937 }
938 ETHER_NEXT_MULTI(step, enm);
939 i++;
940 }
941 ETHER_UNLOCK(ec);
942
943 if (crc)
944 csr |= AFR_MHTE;
945 for (i = 0; i < 8; i++)
946 CSR_WRITE(sc, GMACMHT0 + i * 4, mchash[i]);
947 CSR_WRITE(sc, GMACAFR, csr);
948 return;
949
950 update:
951 /* With PM or AM, MHTE/MHTL/MHTH are never consulted. really? */
952 if (ifp->if_flags & IFF_PROMISC)
953 csr |= AFR_PM; /* run promisc. mode */
954 else
955 csr |= AFR_AM; /* accept all multicast */
956 CSR_WRITE(sc, GMACAFR, csr);
957 return;
958 }
959
960 static int
961 scx_ifmedia_upd(struct ifnet *ifp)
962 {
963 struct scx_softc *sc = ifp->if_softc;
964 struct ifmedia *ifm = &sc->sc_mii.mii_media;
965
966 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
967 ; /* restart AN */
968 ; /* enable AN */
969 ; /* advertise flow control pause */
970 ; /* adv. 100FDX,100HDX,10FDX,10HDX */
971 } else {
972 #if 1
973 uint32_t mcr = mac_read(sc, GMACMCR);
974 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_1000_T)
975 mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
976 else {
977 mcr |= MCR_USEMII; /* RMII/MII */
978 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
979 mcr |= MCR_SPD100;
980 }
981 if (ifm->ifm_cur->ifm_media & IFM_FDX)
982 mcr |= MCR_USEFDX;
983 mcr |= MCR_CST | MCR_JE;
984 mcr |= MCR_IBN;
985 mac_write(sc, GMACMCR, mcr);
986 #endif
987 }
988 return 0;
989 }
990
991 static void
992 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
993 {
994 struct scx_softc *sc = ifp->if_softc;
995 struct mii_data *mii = &sc->sc_mii;
996
997 mii_pollstat(mii);
998 ifmr->ifm_status = mii->mii_media_status;
999 ifmr->ifm_active = sc->sc_flowflags |
1000 (mii->mii_media_active & ~IFM_ETH_FMASK);
1001 }
1002
1003 void
1004 mii_statchg(struct ifnet *ifp)
1005 {
1006 struct scx_softc *sc = ifp->if_softc;
1007 struct mii_data *mii = &sc->sc_mii;
1008 uint32_t fcr;
1009
1010 /* Get flow control negotiation result. */
1011 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1012 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1013 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1014
1015 /* Adjust PAUSE flow control. */
1016 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1017 if (mii->mii_media_active & IFM_FDX) {
1018 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1019 fcr |= FCR_TFE;
1020 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1021 fcr |= FCR_RFE;
1022 }
1023 mac_write(sc, GMACFCR, fcr);
1024
1025 printf("%ctxfe, %crxfe\n",
1026 (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
1027 }
1028
1029 static void
1030 phy_tick(void *arg)
1031 {
1032 struct scx_softc *sc = arg;
1033 struct mii_data *mii = &sc->sc_mii;
1034 int s;
1035
1036 s = splnet();
1037 mii_tick(mii);
1038 splx(s);
1039
1040 callout_schedule(&sc->sc_tick_ch, hz);
1041 }
1042
1043 static int
1044 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1045 {
1046 struct scx_softc *sc = device_private(self);
1047 uint32_t gar;
1048 int error;
1049
1050 gar = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_gar;
1051 mac_write(sc, GMACGAR, gar | GAR_BUSY);
1052 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1053 if (error)
1054 return error;
1055 *val = mac_read(sc, GMACGDR);
1056 return 0;
1057 }
1058
1059 static int
1060 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1061 {
1062 struct scx_softc *sc = device_private(self);
1063 uint32_t gar;
1064 uint16_t dummy;
1065 int error;
1066
1067 gar = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_gar;
1068 mac_write(sc, GMACGDR, val);
1069 mac_write(sc, GMACGAR, gar | GAR_IOWR | GAR_BUSY);
1070 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1071 if (error)
1072 return error;
1073 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1074 return 0;
1075 }
1076
1077 static void
1078 scx_start(struct ifnet *ifp)
1079 {
1080 struct scx_softc *sc = ifp->if_softc;
1081 struct mbuf *m0, *m;
1082 struct scx_txsoft *txs;
1083 bus_dmamap_t dmamap;
1084 int error, nexttx, lasttx, ofree, seg;
1085 uint32_t tdes0;
1086
1087 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1088 return;
1089
1090 /* Remember the previous number of free descriptors. */
1091 ofree = sc->sc_txfree;
1092
1093 /*
1094 * Loop through the send queue, setting up transmit descriptors
1095 * until we drain the queue, or use up all available transmit
1096 * descriptors.
1097 */
1098 for (;;) {
1099 IFQ_POLL(&ifp->if_snd, m0);
1100 if (m0 == NULL)
1101 break;
1102
1103 if (sc->sc_txsfree < SCX_TXQUEUE_GC) {
1104 txreap(sc);
1105 if (sc->sc_txsfree == 0)
1106 break;
1107 }
1108 txs = &sc->sc_txsoft[sc->sc_txsnext];
1109 dmamap = txs->txs_dmamap;
1110
1111 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1112 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1113 if (error) {
1114 if (error == EFBIG) {
1115 aprint_error_dev(sc->sc_dev,
1116 "Tx packet consumes too many "
1117 "DMA segments, dropping...\n");
1118 IFQ_DEQUEUE(&ifp->if_snd, m0);
1119 m_freem(m0);
1120 continue;
1121 }
1122 /* Short on resources, just stop for now. */
1123 break;
1124 }
1125
1126 if (dmamap->dm_nsegs > sc->sc_txfree) {
1127 /*
1128 * Not enough free descriptors to transmit this
1129 * packet. We haven't committed anything yet,
1130 * so just unload the DMA map, put the packet
1131 * back on the queue, and punt. Notify the upper
1132 * layer that there are not more slots left.
1133 */
1134 ifp->if_flags |= IFF_OACTIVE;
1135 bus_dmamap_unload(sc->sc_dmat, dmamap);
1136 break;
1137 }
1138
1139 IFQ_DEQUEUE(&ifp->if_snd, m0);
1140
1141 /*
1142 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1143 */
1144
1145 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1146 BUS_DMASYNC_PREWRITE);
1147
1148 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1149 lasttx = -1;
1150 for (nexttx = sc->sc_txnext, seg = 0;
1151 seg < dmamap->dm_nsegs;
1152 seg++, nexttx = SCX_NEXTTX(nexttx)) {
1153 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1154 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1155 /*
1156 * If this is the first descriptor we're
1157 * enqueueing, don't set the OWN bit just
1158 * yet. That could cause a race condition.
1159 * We'll do it below.
1160 */
1161 tdes->t3 = dmamap->dm_segs[seg].ds_len;
1162 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1163 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1164 tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
1165 (15 << T0_TRID) | T0_PT |
1166 sc->sc_t0coso | T0_TRS;
1167 tdes0 = T0_OWN; /* 2nd and other segments */
1168 lasttx = nexttx;
1169 }
1170 /*
1171 * Outgoing NFS mbuf must be unloaded when Tx completed.
1172 * Without T1_IC NFS mbuf is left unack'ed for excessive
1173 * time and NFS stops to proceed until scx_watchdog()
1174 * calls txreap() to reclaim the unack'ed mbuf.
1175 * It's painful to traverse every mbuf chain to determine
1176 * whether someone is waiting for Tx completion.
1177 */
1178 m = m0;
1179 do {
1180 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1181 sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
1182 break;
1183 }
1184 } while ((m = m->m_next) != NULL);
1185
1186 /* Write deferred 1st segment T0_OWN at the final stage */
1187 sc->sc_txdescs[lasttx].t0 |= T0_LS;
1188 sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
1189 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1190 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1191
1192 /* Tell DMA start transmit */
1193 /* CSR_WRITE(sc, MDTSC, 1); */
1194
1195 txs->txs_mbuf = m0;
1196 txs->txs_firstdesc = sc->sc_txnext;
1197 txs->txs_lastdesc = lasttx;
1198 txs->txs_ndesc = dmamap->dm_nsegs;
1199
1200 sc->sc_txfree -= txs->txs_ndesc;
1201 sc->sc_txnext = nexttx;
1202 sc->sc_txsfree--;
1203 sc->sc_txsnext = SCX_NEXTTXS(sc->sc_txsnext);
1204 /*
1205 * Pass the packet to any BPF listeners.
1206 */
1207 bpf_mtap(ifp, m0, BPF_D_OUT);
1208 }
1209
1210 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1211 /* No more slots left; notify upper layer. */
1212 ifp->if_flags |= IFF_OACTIVE;
1213 }
1214 if (sc->sc_txfree != ofree) {
1215 /* Set a watchdog timer in case the chip flakes out. */
1216 ifp->if_timer = 5;
1217 }
1218 }
1219
1220 static int
1221 scx_intr(void *arg)
1222 {
1223 struct scx_softc *sc = arg;
1224 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1225
1226 (void)ifp;
1227 rxintr(sc);
1228 txreap(sc);
1229 return 1;
1230 }
1231
1232 static void
1233 txreap(struct scx_softc *sc)
1234 {
1235 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1236 struct scx_txsoft *txs;
1237 uint32_t txstat;
1238 int i;
1239
1240 ifp->if_flags &= ~IFF_OACTIVE;
1241
1242 for (i = sc->sc_txsdirty; sc->sc_txsfree != SCX_TXQUEUELEN;
1243 i = SCX_NEXTTXS(i), sc->sc_txsfree++) {
1244 txs = &sc->sc_txsoft[i];
1245
1246 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1247 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1248
1249 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1250 if (txstat & T0_OWN) /* desc is still in use */
1251 break;
1252
1253 /* There is no way to tell transmission status per frame */
1254
1255 if_statinc(ifp, if_opackets);
1256
1257 sc->sc_txfree += txs->txs_ndesc;
1258 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1259 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1260 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1261 m_freem(txs->txs_mbuf);
1262 txs->txs_mbuf = NULL;
1263 }
1264 sc->sc_txsdirty = i;
1265 if (sc->sc_txsfree == SCX_TXQUEUELEN)
1266 ifp->if_timer = 0;
1267 }
1268
1269 static void
1270 rxintr(struct scx_softc *sc)
1271 {
1272 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1273 struct scx_rxsoft *rxs;
1274 struct mbuf *m;
1275 uint32_t rxstat;
1276 int i, len;
1277
1278 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = SCX_NEXTRX(i)) {
1279 rxs = &sc->sc_rxsoft[i];
1280
1281 SCX_CDRXSYNC(sc, i,
1282 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1283
1284 rxstat = sc->sc_rxdescs[i].r0;
1285 if (rxstat & R0_OWN) /* desc is left empty */
1286 break;
1287
1288 /* R0_FS | R0_LS must have been marked for this desc */
1289
1290 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1291 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1292
1293 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1294 len -= ETHER_CRC_LEN; /* Trim CRC off */
1295 m = rxs->rxs_mbuf;
1296
1297 if (add_rxbuf(sc, i) != 0) {
1298 if_statinc(ifp, if_ierrors);
1299 SCX_INIT_RXDESC(sc, i);
1300 bus_dmamap_sync(sc->sc_dmat,
1301 rxs->rxs_dmamap, 0,
1302 rxs->rxs_dmamap->dm_mapsize,
1303 BUS_DMASYNC_PREREAD);
1304 continue;
1305 }
1306
1307 m_set_rcvif(m, ifp);
1308 m->m_pkthdr.len = m->m_len = len;
1309
1310 if (rxstat & R0_CSUM) {
1311 uint32_t csum = M_CSUM_IPv4;
1312 if (rxstat & R0_CERR)
1313 csum |= M_CSUM_IPv4_BAD;
1314 m->m_pkthdr.csum_flags |= csum;
1315 }
1316 if_percpuq_enqueue(ifp->if_percpuq, m);
1317 }
1318 sc->sc_rxptr = i;
1319 }
1320
1321 static int
1322 add_rxbuf(struct scx_softc *sc, int i)
1323 {
1324 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1325 struct mbuf *m;
1326 int error;
1327
1328 MGETHDR(m, M_DONTWAIT, MT_DATA);
1329 if (m == NULL)
1330 return ENOBUFS;
1331
1332 MCLGET(m, M_DONTWAIT);
1333 if ((m->m_flags & M_EXT) == 0) {
1334 m_freem(m);
1335 return ENOBUFS;
1336 }
1337
1338 if (rxs->rxs_mbuf != NULL)
1339 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1340
1341 rxs->rxs_mbuf = m;
1342
1343 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1344 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1345 if (error) {
1346 aprint_error_dev(sc->sc_dev,
1347 "can't load rx DMA map %d, error = %d\n", i, error);
1348 panic("add_rxbuf");
1349 }
1350
1351 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1352 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1353 SCX_INIT_RXDESC(sc, i);
1354
1355 return 0;
1356 }
1357
1358 static int
1359 spin_waitfor(struct scx_softc *sc, int reg, int exist)
1360 {
1361 int val, loop;
1362
1363 val = CSR_READ(sc, reg);
1364 if ((val & exist) == 0)
1365 return 0;
1366 loop = 3000;
1367 do {
1368 DELAY(10);
1369 val = CSR_READ(sc, reg);
1370 } while (--loop > 0 && (val & exist) != 0);
1371 return (loop > 0) ? 0 : ETIMEDOUT;
1372 }
1373
1374 static int
1375 mac_read(struct scx_softc *sc, int reg)
1376 {
1377
1378 CSR_WRITE(sc, MACCMD, reg);
1379 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1380 return CSR_READ(sc, MACDATA);
1381 }
1382
1383 static void
1384 mac_write(struct scx_softc *sc, int reg, int val)
1385 {
1386
1387 CSR_WRITE(sc, MACDATA, val);
1388 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
1389 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1390 }
1391
1392 static int
1393 get_garclk(uint32_t freq)
1394 {
1395 int i;
1396
1397 for (i = 0; garclk[i].freq != 0; i++) {
1398 if (freq < garclk[i].freq)
1399 return garclk[i].bit;
1400 }
1401 return garclk[i - 1].bit;
1402 }
1403
1404 static void
1405 loaducode(struct scx_softc *sc)
1406 {
1407 uint32_t up, lo, sz;
1408 uint64_t addr;
1409
1410 sc->sc_ucodeloaded = 1;
1411
1412 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1413 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1414 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1415 sz *= 4;
1416 addr = ((uint64_t)up << 32) | lo;
1417 aprint_normal_dev(sc->sc_dev, "H2M ucode %u\n", sz);
1418 injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
1419
1420 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1421 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1422 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1423 sz *= 4;
1424 addr = ((uint64_t)up << 32) | lo;
1425 injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
1426 aprint_normal_dev(sc->sc_dev, "M2H ucode %u\n", sz);
1427
1428 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1429 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1430 sz *= 4;
1431 injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
1432 aprint_normal_dev(sc->sc_dev, "PKT ucode %u\n", sz);
1433 }
1434
1435 static void
1436 injectucode(struct scx_softc *sc, int port,
1437 bus_addr_t addr, bus_size_t size)
1438 {
1439 bus_space_handle_t bsh;
1440 bus_size_t off;
1441 uint32_t ucode;
1442 int i;
1443
1444 port &= 03;
1445 if (!bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1446 aprint_error_dev(sc->sc_dev,
1447 "eeprom map failure for ucode port 0x%x\n", port);
1448 return;
1449 }
1450 off = 0;
1451 for (i = 0; i < size; i++) {
1452 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1453 CSR_WRITE(sc, port, ucode);
1454 off += 4;
1455 }
1456 bus_space_unmap(sc->sc_st, bsh, size);
1457 }
1458