Home | History | Annotate | Line # | Download | only in sociox
if_scx.c revision 1.32
      1 /*	$NetBSD: if_scx.c,v 1.32 2021/12/21 12:12:52 nisimura Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 
     33 /*
     34  * Socionext SC2A11 SynQuacer NetSec GbE driver
     35  *
     36  * Multiple Tx and Rx queues exist inside and dedicated descriptor
     37  * fields specifies which queue is to use. Three internal micro-processors
     38  * to handle incoming frames, outgoing frames and packet data crypto
     39  * processing. uP programs are stored in an external flash memory and
     40  * have to be loaded by device driver.
     41  * NetSec uses Synopsys DesignWare Core EMAC.  DWC implementation
     42  * register (0x20) is known to have 0x10.36 and feature register (0x1058)
     43  * to report XX.XX.
     44  */
     45 
     46 #define NOT_MP_SAFE	0
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.32 2021/12/21 12:12:52 nisimura Exp $");
     50 
     51 #include <sys/param.h>
     52 #include <sys/bus.h>
     53 #include <sys/intr.h>
     54 #include <sys/device.h>
     55 #include <sys/callout.h>
     56 #include <sys/mbuf.h>
     57 #include <sys/malloc.h>
     58 #include <sys/errno.h>
     59 #include <sys/rndsource.h>
     60 #include <sys/kernel.h>
     61 #include <sys/systm.h>
     62 
     63 #include <net/if.h>
     64 #include <net/if_media.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_ether.h>
     67 #include <dev/mii/mii.h>
     68 #include <dev/mii/miivar.h>
     69 #include <net/bpf.h>
     70 
     71 #include <dev/fdt/fdtvar.h>
     72 #include <dev/acpi/acpireg.h>
     73 #include <dev/acpi/acpivar.h>
     74 #include <dev/acpi/acpi_intr.h>
     75 
     76 /* SC2A11 GbE 64-bit paddr descriptor */
     77 struct tdes {
     78 	uint32_t t0, t1, t2, t3;
     79 };
     80 
     81 struct rdes {
     82 	uint32_t r0, r1, r2, r3;
     83 };
     84 
     85 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
     86 #define T0_EOD		(1U<<30)	/* end of descriptor array */
     87 #define T0_DRID		(24)		/* 29:24 desc ring id */
     88 #define T0_PT		(1U<<21)	/* 23:21 "pass-through" */
     89 #define T0_TDRID	(16)		/* 20:16 target desc ring id: GMAC=15 */
     90 #define T0_FS		(1U<<9)		/* first segment of frame */
     91 #define T0_LS		(1U<<8)		/* last segment of frame */
     92 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
     93 #define T0_TSO		(1U<<6)		/* enable TCP segment offload */
     94 #define T0_TRS		(1U<<4)		/* 5:4 "TRS" */
     95 /* T1 frame segment address 63:32 */
     96 /* T2 frame segment address 31:0 */
     97 /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
     98 
     99 #define R0_OWN		(1U<<31)	/* desc is empty */
    100 #define R0_EOD		(1U<<30)	/* end of descriptor array */
    101 #define R0_SDRID	(24)		/* 29:24 source desc ring id */
    102 #define R0_FR		(1U<<23)	/* found fragmented */
    103 #define R0_ER		(1U<<21)	/* Rx error indication */
    104 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
    105 #define R0_TDRID	(12)		/* 15:12 target desc ring id */
    106 #define R0_FS		(1U<<9)		/* first segment of frame */
    107 #define R0_LS		(1U<<8)		/* last segment of frame */
    108 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status */
    109 #define R0_CERR		(2U<<6)		/* 0: undone, 1: found ok, 2: bad */
    110 /* R1 frame address 63:32 */
    111 /* R2 frame address 31:0 */
    112 /* R3 31:16 received frame length, 15:0 buffer length to receive */
    113 
    114 /*
    115  * SC2A11 registers. 0x100 - 1204
    116  */
    117 #define SWRESET		0x104
    118 #define  SRST_RUN	(1U<<31)	/* instruct start, 0 to stop */
    119 #define COMINIT		0x120
    120 #define  INIT_DB	(1U<<2)		/* ???; self clear when done */
    121 #define  INIT_CLS	(1U<<1)		/* ???; self clear when done */
    122 #define PKTCTRL		0x140		/* pkt engine control */
    123 #define  MODENRM	(1U<<28)	/* change mode to normal */
    124 #define  ENJUMBO	(1U<<27)	/* allow jumbo frame */
    125 #define  RPTCSUMERR	(1U<<3)		/* log Rx checksum error */
    126 #define  RPTHDCOMP	(1U<<2)		/* log HD imcomplete condition */
    127 #define  RPTHDERR	(1U<<1)		/* log HD error */
    128 #define  DROPNOMATCH	(1U<<0)		/* drop no match frames */
    129 #define xINTSR		0x200		/* aggregated interrupt status */
    130 #define  IRQ_RX		(1U<<1)		/* top level Rx interrupt */
    131 #define  IRQ_TX		(1U<<0)		/* top level Rx interrupt */
    132 #define  IRQ_UCODE	(1U<<20)	/* ucode load completed; W1C */
    133 #define xINTAEN		0x204		/* INT_A enable */
    134 #define xINTAE_SET	0x234		/* bit to set */
    135 #define xINTAE_CLR	0x238		/* bit to clr */
    136 #define xINTBEN		0x23c		/* INT_B enable */
    137 #define xINTBE_SET	0x240		/* bit to set */
    138 #define xINTBE_CLR	0x244		/* bit to clr */
    139 #define TXISR		0x400		/* transmit status; W1C */
    140 #define TXIEN		0x404		/* tx interrupt enable */
    141 #define TXIE_SET	0x428		/* bit to set */
    142 #define TXIE_CLR	0x42c		/* bit to clr */
    143 #define  TXI_NTOWNR	(1U<<17)	/* ??? desc array got empty */
    144 #define  TXI_TR_ERR	(1U<<16)	/* tx error */
    145 #define  TXI_TXDONE	(1U<<15)	/* tx completed */
    146 #define  TXI_TMREXP	(1U<<14)	/* coalesce timer expired */
    147 #define RXISR		0x440		/* receive status; W1C */
    148 #define RXIEN		0x444		/* rx interrupt enable */
    149 #define RXIE_SET	0x468		/* bit to set */
    150 #define RXIE_CLR	0x46c		/* bit to clr */
    151 #define  RXI_RC_ERR	(1U<<16)	/* rx error */
    152 #define  RXI_PKTCNT	(1U<<15)	/* rx counter has new value */
    153 #define  RXI_TMREXP	(1U<<14)	/* coalesce timer expired */
    154 /* 13 sets of special purpose desc interrupt handling register exist */
    155 #define TDBA_LO		0x408		/* tdes array base addr 31:0 */
    156 #define TDBA_HI		0x434		/* tdes array base addr 63:32 */
    157 #define RDBA_LO		0x448		/* rdes array base addr 31:0 */
    158 #define RDBA_HI		0x474		/* rdes array base addr 63:32 */
    159 /* 13 pairs of special purpose desc array base address register exist */
    160 #define TXCONF		0x430
    161 #define RXCONF		0x470
    162 #define  DESCNF_UP	(1U<<31)	/* up-and-running */
    163 #define  DESCNF_CHRST	(1U<<30)	/* channel reset */
    164 #define  DESCNF_TMR	(1U<<4)		/* coalesce timer mode select */
    165 #define  DESCNF_LE	(1)		/* little endian desc format */
    166 #define TXSUBMIT	0x410		/* submit loaded tx frame */
    167 #define TXCLSCMAX	0x418		/* tx intr coalesce upper bound */
    168 #define RXCLSCMAX	0x458		/* rx intr coalesce upper bound */
    169 #define TXITIMER	0x420		/* coalesce timer usec, MSB to use */
    170 #define RXITIMER	0x460		/* coalesce timer usec, MSB to use */
    171 #define TXDONECNT	0x414		/* tx completed count, auto-zero */
    172 #define RXDONECNT	0x454		/* rx available count, auto-zero */
    173 #define UCODE_H2M	0x210		/* host2media engine ucode port */
    174 #define UCODE_M2H	0x21c		/* media2host engine ucode port */
    175 #define CORESTAT	0x218		/* engine run state */
    176 #define  PKTSTOP	(1U<<2)
    177 #define  M2HSTOP	(1U<<1)
    178 #define  H2MSTOP	(1U<<0)
    179 #define DMACTL_H2M	0x214		/* host2media engine control */
    180 #define DMACTL_M2H	0x220		/* media2host engine control */
    181 #define  DMACTL_STOP	(1U<<0)		/* instruct stop; self-clear */
    182 #define UCODE_PKT	0x0d0		/* packet engine ucode port */
    183 #define CLKEN		0x100		/* clock distribution enable */
    184 #define  CLK_G		(1U<<5)		/* feed clk domain E */
    185 #define  CLK_C		(1U<<1)		/* feed clk domain C */
    186 #define  CLK_D		(1U<<0)		/* feed clk domain D */
    187 #define  CLK_ALL	0x23		/* all above; 0x24 ??? 0x3f ??? */
    188 
    189 /* GMAC register indirect access. thru MACCMD/MACDATA operation */
    190 #define MACDATA		0x11c0		/* gmac register rd/wr data */
    191 #define MACCMD		0x11c4		/* gmac register operation */
    192 #define  CMD_IOWR	(1U<<28)	/* write op */
    193 #define  CMD_BUSY	(1U<<31)	/* busy bit */
    194 #define MACSTAT		0x1024		/* gmac status; ??? */
    195 #define MACINTE		0x1028		/* interrupt enable; ??? */
    196 
    197 #define FLOWTHR		0x11cc		/* flow control threshold */
    198 /* 31:16 pause threshold, 15:0 resume threshold */
    199 #define INTF_SEL	0x11d4		/* ??? */
    200 
    201 #define DESC_INIT	0x11fc		/* write 1 for desc init, SC */
    202 #define DESC_SRST	0x1204		/* write 1 for desc sw reset, SC */
    203 #define MODE_TRANS	0x500		/* mode change completion status */
    204 #define  N2T_DONE	(1U<<20)	/* normal->taiki change completed */
    205 #define  T2N_DONE	(1U<<19)	/* taiki->normal change completed */
    206 #define MACADRH		0x10c		/* ??? */
    207 #define MACADRL		0x110		/* ??? */
    208 #define MCVER		0x22c		/* micro controller version */
    209 #define HWVER		0x230		/* hardware version */
    210 
    211 /*
    212  * GMAC registers are mostly identical to Synopsys DesignWare Core
    213  * Ethernet. These must be handled by indirect access.
    214  */
    215 #define GMACMCR		0x0000		/* MAC configuration */
    216 #define  MCR_IBN	(1U<<30)	/* ??? */
    217 #define  MCR_CST	(1U<<25)	/* strip CRC */
    218 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
    219 #define  MCR_WD		(1U<<23)	/* allow long >2048 tx frame */
    220 #define  MCR_JE		(1U<<20)	/* allow ~9018 tx jumbo frame */
    221 #define  MCR_IFG	(7U<<17)	/* 19:17 IFG value 0~7 */
    222 #define  MCR_DRCS	(1U<<16)	/* ignore (G)MII HDX Tx error */
    223 #define  MCR_USEMII	(1U<<15)	/* 1: RMII/MII, 0: RGMII (_PS) */
    224 #define  MCR_SPD100	(1U<<14)	/* force speed 100 (_FES) */
    225 #define  MCR_DO		(1U<<13)	/* don't receive my own HDX Tx frames */
    226 #define  MCR_LOOP	(1U<<12)	/* run loop back */
    227 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
    228 #define  MCR_IPCEN	(1U<<10)	/* handle checksum */
    229 #define  MCR_DR		(1U<<9)		/* attempt no tx retry, send once */
    230 #define  MCR_LUD	(1U<<8)		/* link condition report when RGMII */
    231 #define  MCR_ACS	(1U<<7)		/* auto pad strip CRC */
    232 #define  MCR_TE		(1U<<3)		/* run Tx MAC engine, 0 to stop */
    233 #define  MCR_RE		(1U<<2)		/* run Rx MAC engine, 0 to stop */
    234 #define  MCR_PREA	(3U)		/* 1:0 preamble len. 0~2 */
    235 #define  _MCR_FDX	0x0000280c	/* XXX TBD */
    236 #define  _MCR_HDX	0x0001a00c	/* XXX TBD */
    237 #define GMACAFR		0x0004		/* frame DA/SA address filter */
    238 #define  AFR_RA		(1U<<31)	/* accept all irrespective of filt. */
    239 #define  AFR_HPF	(1U<<10)	/* hash+perfect filter, or hash only */
    240 #define  AFR_SAF	(1U<<9)		/* source address filter */
    241 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
    242 #define  AFR_PCF	(2U<<6)		/* ??? */
    243 #define  AFR_DBF	(1U<<5)		/* reject broadcast frame */
    244 #define  AFR_PM		(1U<<4)		/* accept all multicast frame */
    245 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
    246 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
    247 #define  AFR_UHTE	(1U<<1)		/* use hash table for unicast */
    248 #define  AFR_PR		(1U<<0)		/* run promisc mode */
    249 #define GMACGAR		0x0010		/* MDIO operation */
    250 #define  GAR_PHY	(11)		/* 15:11 mii phy */
    251 #define  GAR_REG	(6)		/* 10:6 mii reg */
    252 #define  GAR_CLK	(2)		/* 5:2 mdio clock tick ratio */
    253 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
    254 #define  GAR_BUSY	(1U<<0)		/* busy bit */
    255 #define  GAR_MDIO_25_35MHZ	2
    256 #define  GAR_MDIO_35_60MHZ	3
    257 #define  GAR_MDIO_60_100MHZ	0
    258 #define  GAR_MDIO_100_150MHZ	1
    259 #define  GAR_MDIO_150_250MHZ	4
    260 #define  GAR_MDIO_250_300MHZ	5
    261 #define GMACGDR		0x0014		/* MDIO rd/wr data */
    262 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
    263 /* 31:16 pause timer value, 5:4 pause timer threshold */
    264 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
    265 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
    266 #define GMACIMPL	0x0020		/* implementation id XX.YY (no use) */
    267 #define GMACISR		0x0038		/* interrupt status indication */
    268 #define GMACIMR		0x003c		/* interrupt mask to inhibit */
    269 #define  ISR_TS		(1U<<9)		/* time stamp operation detected */
    270 #define  ISR_CO		(1U<<7)		/* Rx checksum offload completed */
    271 #define  ISR_TX		(1U<<6)		/* Tx completed */
    272 #define  ISR_RX		(1U<<5)		/* Rx completed */
    273 #define  ISR_ANY	(1U<<4)		/* any of above 5-7 report */
    274 #define  ISR_LC		(1U<<0)		/* link status change detected */
    275 #define GMACMAH0	0x0040		/* my own MAC address 47:32 */
    276 #define GMACMAL0	0x0044		/* my own MAC address 31:0 */
    277 #define GMACMAH(i) 	((i)*8+0x40)	/* supplemental MAC addr 1-15 */
    278 #define GMACMAL(i) 	((i)*8+0x44)	/* 31:0 MAC address low part */
    279 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
    280 #define GMACAMAH(i)	((i)*8+0x800)	/* supplemental MAC addr 16-31 */
    281 #define GMACAMAL(i)	((i)*8+0x804)	/* 31: MAC address low part */
    282 /* supplimental MAH bit-31: slot in use, no other bit is effective */
    283 #define GMACMHTH	0x0008		/* 64bit multicast hash table 63:32 */
    284 #define GMACMHTL	0x000c		/* 64bit multicast hash table 31:0 */
    285 #define GMACMHT(i)	((i)*4+0x500)	/* 256-bit alternative mcast hash 0-7 */
    286 #define EMACVTAG	0x001c		/* VLAN tag control */
    287 #define  VTAG_HASH	(1U<<19)	/* use VLAN tag hash table */
    288 #define  VTAG_SVLAN	(1U<<18)	/* handle type 0x88A8 SVLAN frame */
    289 #define  VTAG_INV	(1U<<17)	/* run inverse match logic */
    290 #define  VTAG_ETV	(1U<<16)	/* use only 12bit VID field to match */
    291 /* 15:0 concat of PRIO+CFI+VID */
    292 #define GMACVHT		0x0588		/* 16-bit VLAN tag hash */
    293 #define GMACMIISR	0x00d8		/* resolved xMII link status */
    294 #define  MIISR_LUP	(1U<<3)		/* link up(1)/down(0) report */
    295 #define  MIISR_SPD	(3U<<1)		/* 2:1 speed 10(0)/100(1)/1000(2) */
    296 #define  MIISR_FDX	(1U<<0)		/* fdx detected */
    297 
    298 #define GMACLPIS	0x0030		/* LPI control & status */
    299 #define  LPIS_TXA	(1U<<19)	/* complete Tx in progress and LPI */
    300 #define  LPIS_PLS	(1U<<17)
    301 #define  LPIS_EN	(1U<<16)	/* 1: enter LPI mode, 0: exit */
    302 #define  LPIS_TEN	(1U<<0)		/* Tx LPI report */
    303 #define GMACLPIC	0x0034		/* LPI timer control */
    304 #define  LPIC_LST	(5)		/* 16:5 ??? */
    305 #define  LPIC_TWT	(0)		/* 15:0 ??? */
    306 #define GMACTSC		0x0700		/* timestamp control */
    307 #define GMACSTM		0x071c		/* start time */
    308 #define GMACTGT		0x0720		/* target time */
    309 #define GMACTSS		0x0728		/* timestamp status */
    310 #define GMACPPS		0x072c		/* PPS control */
    311 #define GMACPPS0	0x0764		/* PPS0 width */
    312 
    313 #define GMACBMR		0x1000		/* DMA bus mode control */
    314 /* 24    multiply by x8 for RPBL & PBL values
    315  * 23    use RPBL for Rx DMA
    316  * 22:17 RPBL
    317  * 16    fixed burst
    318  * 15:14 priority between Rx and Tx
    319  *  3    rxtx ratio 41
    320  *  2    rxtx ratio 31
    321  *  1    rxtx ratio 21
    322  *  0    rxtx ratio 11
    323  * 13:8  PBL possible DMA burst length
    324  *  7    select alternative 32-byte descriptor format for new features
    325  *  6:2  descriptor spacing. 0 for adjuscent
    326  *  0    GMAC reset op. self-clear
    327  */
    328 #define  _BMR		0x00412080	/* XXX TBD */
    329 #define  _BMR0		0x00020181	/* XXX TBD */
    330 #define  BMR_RST	(1)		/* reset op. self clear when done */
    331 #define GMACTPD		0x1004		/* write any to resume tdes */
    332 #define GMACRPD		0x1008		/* write any to resume rdes */
    333 #define GMACRDLA	0x100c		/* rdes base address 32bit paddr */
    334 #define GMACTDLA	0x1010		/* tdes base address 32bit paddr */
    335 #define  _RDLA		0x18000		/* system RAM for GMAC rdes */
    336 #define  _TDLA		0x1c000		/* system RAM for GMAC tdes */
    337 #define GMACDSR		0x1014		/* DMA status detail report; W1C */
    338 #define GMACDIE		0x101c		/* DMA interrupt enable */
    339 #define  DMAI_LPI	(1U<<30)	/* LPI interrupt */
    340 #define  DMAI_TTI	(1U<<29)	/* timestamp trigger interrupt */
    341 #define  DMAI_GMI	(1U<<27)	/* management counter interrupt */
    342 #define  DMAI_GLI	(1U<<26)	/* xMII link change detected */
    343 #define  DMAI_EB	(23)		/* 25:23 DMA bus error detected */
    344 #define  DMAI_TS	(20)		/* 22:20 Tx DMA state report */
    345 #define  DMAI_RS	(17)		/* 29:17 Rx DMA state report */
    346 #define  DMAI_NIS	(1U<<16)	/* normal interrupt summary; W1C */
    347 #define  DMAI_AIS	(1U<<15)	/* abnormal interrupt summary; W1C */
    348 #define  DMAI_ERI	(1U<<14)	/* the first Rx buffer is filled */
    349 #define  DMAI_FBI	(1U<<13)	/* DMA bus error detected */
    350 #define  DMAI_ETI	(1U<<10)	/* single frame Tx completed */
    351 #define  DMAI_RWT	(1U<<9)		/* longer than 2048 frame received */
    352 #define  DMAI_RPS	(1U<<8)		/* Rx process is now stopped */
    353 #define  DMAI_RU	(1U<<7)		/* Rx descriptor not available */
    354 #define  DMAI_RI	(1U<<6)		/* frame Rx completed by !R1_DIC */
    355 #define  DMAI_UNF	(1U<<5)		/* Tx underflow detected */
    356 #define  DMAI_OVF	(1U<<4)		/* receive buffer overflow detected */
    357 #define  DMAI_TJT	(1U<<3)		/* longer than 2048 frame sent */
    358 #define  DMAI_TU	(1U<<2)		/* Tx discriptor not available */
    359 #define  DMAI_TPS	(1U<<1)		/* transmission is stopped */
    360 #define  DMAI_TI	(1U<<0)		/* frame Tx completed by T0_IC */
    361 #define GMACOMR		0x1018		/* DMA operation mode */
    362 #define  OMR_RSF	(1U<<25)	/* 1: Rx store&forword, 0: immed. */
    363 #define  OMR_TSF	(1U<<21)	/* 1: Tx store&forward, 0: immed. */
    364 #define  OMR_TTC	(14)		/* 16:14 Tx threshold */
    365 #define  OMR_ST		(1U<<13)	/* run Tx DMA engine, 0 to stop */
    366 #define  OMR_RFD	(11)		/* 12:11 Rx FIFO fill level */
    367 #define  OMR_EFC	(1U<<8)		/* transmit PAUSE to throttle Rx lvl. */
    368 #define  OMR_FEF	(1U<<7)		/* allow to receive error frames */
    369 #define  OMR_SR		(1U<<1)		/* run Rx DMA engine, 0 to stop */
    370 #define GMACEVCS	0x1020		/* missed frame or ovf detected */
    371 #define GMACRWDT	0x1024		/* enable rx watchdog timer interrupt */
    372 #define GMACAXIB	0x1028		/* AXI bus mode control */
    373 #define GMACAXIS	0x102c		/* AXI status report */
    374 /* 0x1048 current tx desc address */
    375 /* 0x104c current rx desc address */
    376 /* 0x1050 current tx buffer address */
    377 /* 0x1054 current rx buffer address */
    378 #define HWFEA		0x1058		/* DWC feature report */
    379 #define  FEA_EXDESC	(1U<<24)	/* new desc layout */
    380 #define  FEA_2COE	(1U<<18)	/* Rx type 2 IP checksum offload */
    381 #define  FEA_1COE	(1U<<17)	/* Rx type 1 IP checksum offload */
    382 #define  FEA_TXOE	(1U<<16)	/* Tx checksum offload */
    383 #define  FEA_MMC	(1U<<11)	/* RMON management block */
    384 
    385 #define GMACEVCTL	0x0100		/* event counter control */
    386 #define  EVC_FHP	(1U<<5)		/* full-half preset */
    387 #define  EVC_CP		(1U<<4)		/* counters preset */
    388 #define  EVC_MCF	(1U<<3)		/* MMC counter freeze */
    389 #define  EVC_ROR	(1U<<2)		/* auto-zero on counter read */
    390 #define  EVC_CSR	(1U<<1)		/* counter stop rollover */
    391 #define  EVC_CR		(1U<<0)		/* reset counters */
    392 #define GMACEVCNT(i)	((i)*4+0x114)	/* 80 event counters 0x114 - 0x284 */
    393 
    394 /*
    395  * flash memory layout
    396  * 0x00 - 07	48-bit MAC station address. 4 byte wise in BE order.
    397  * 0x08 - 0b	H->MAC xfer engine program start addr 63:32.
    398  * 0x0c - 0f	H2M program addr 31:0 (these are absolute addr, not offset)
    399  * 0x10 - 13	H2M program length in 4 byte count.
    400  * 0x14 - 0b	M->HOST xfer engine program start addr 63:32.
    401  * 0x18 - 0f	M2H program addr 31:0 (absolute addr, not relative)
    402  * 0x1c - 13	M2H program length in 4 byte count.
    403  * 0x20 - 23	packet engine program addr 31:0, (absolute addr, not offset)
    404  * 0x24 - 27	packet program length in 4 byte count.
    405  *
    406  * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
    407  */
    408 
    409 /*
    410  * all below are software constraction.
    411  */
    412 #define MD_NTXSEGS		16		/* fixed */
    413 #define MD_TXQUEUELEN		8		/* tunable */
    414 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
    415 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
    416 #define MD_NTXDESC		128
    417 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
    418 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
    419 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
    420 
    421 #define MD_NRXDESC		64		/* tunable */
    422 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
    423 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
    424 
    425 struct control_data {
    426 	struct tdes cd_txdescs[MD_NTXDESC];
    427 	struct rdes cd_rxdescs[MD_NRXDESC];
    428 };
    429 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
    430 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
    431 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
    432 
    433 struct scx_txsoft {
    434 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    435 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    436 	int txs_firstdesc;		/* first descriptor in packet */
    437 	int txs_lastdesc;		/* last descriptor in packet */
    438 	int txs_ndesc;			/* # of descriptors used */
    439 };
    440 
    441 struct scx_rxsoft {
    442 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    443 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    444 };
    445 
    446 struct scx_softc {
    447 	device_t sc_dev;		/* generic device information */
    448 	bus_space_tag_t sc_st;		/* bus space tag */
    449 	bus_space_handle_t sc_sh;	/* bus space handle */
    450 	bus_size_t sc_sz;		/* csr map size */
    451 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
    452 	bus_size_t sc_eesz;		/* eeprom map size */
    453 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    454 	struct ethercom sc_ethercom;	/* Ethernet common data */
    455 	struct mii_data sc_mii;		/* MII */
    456 	callout_t sc_callout;		/* PHY monitor callout */
    457 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
    458 	int sc_nseg;			/* descriptor store nseg */
    459 	void *sc_ih;			/* interrupt cookie */
    460 	int sc_phy_id;			/* PHY address */
    461 	int sc_flowflags;		/* 802.3x PAUSE flow control */
    462 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
    463 	uint32_t sc_t0cotso;		/* T0_CSUM | T0_TSO to run */
    464 	int sc_100mii;			/* 1 for RMII/MII, 0 for RGMII */
    465 	int sc_phandle;			/* fdt phandle */
    466 	uint64_t sc_freq;
    467 
    468 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    469 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    470 
    471 	struct control_data *sc_control_data;
    472 #define sc_txdescs	sc_control_data->cd_txdescs
    473 #define sc_rxdescs	sc_control_data->cd_rxdescs
    474 
    475 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
    476 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
    477 	int sc_txfree;			/* number of free Tx descriptors */
    478 	int sc_txnext;			/* next ready Tx descriptor */
    479 	int sc_txsfree;			/* number of free Tx jobs */
    480 	int sc_txsnext;			/* next ready Tx job */
    481 	int sc_txsdirty;		/* dirty Tx jobs */
    482 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    483 
    484 	krndsource_t rnd_source;	/* random source */
    485 #ifdef GMAC_EVENT_COUNTERS
    486 	/* 80 event counters exist */
    487 #endif
    488 };
    489 
    490 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
    491 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
    492 
    493 #define SCX_CDTXSYNC(sc, x, n, ops)					\
    494 do {									\
    495 	int __x, __n;							\
    496 									\
    497 	__x = (x);							\
    498 	__n = (n);							\
    499 									\
    500 	/* If it will wrap around, sync to the end of the ring. */	\
    501 	if ((__x + __n) > MD_NTXDESC) {				\
    502 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    503 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
    504 		    (MD_NTXDESC - __x), (ops));			\
    505 		__n -= (MD_NTXDESC - __x);				\
    506 		__x = 0;						\
    507 	}								\
    508 									\
    509 	/* Now sync whatever is left. */				\
    510 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    511 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    512 } while (/*CONSTCOND*/0)
    513 
    514 #define SCX_CDRXSYNC(sc, x, ops)					\
    515 do {									\
    516 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    517 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    518 } while (/*CONSTCOND*/0)
    519 
    520 #define SCX_INIT_RXDESC(sc, x)						\
    521 do {									\
    522 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    523 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    524 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    525 	bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
    526 	__m->m_data = __m->m_ext.ext_buf;				\
    527 	__rxd->r3 = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_len);	\
    528 	__rxd->r2 = htole32(BUS_ADDR_LO32(__paddr));			\
    529 	__rxd->r1 = htole32(BUS_ADDR_HI32(__paddr));			\
    530 	__rxd->r0 = htole32(R0_OWN | R0_FS | R0_LS);			\
    531 	if ((x) == MD_NRXDESC - 1) __rxd->r0 |= htole32(R0_EOD);	\
    532 } while (/*CONSTCOND*/0)
    533 
    534 /* memory mapped CSR register access */
    535 #define CSR_READ(sc,off) \
    536 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
    537 #define CSR_WRITE(sc,off,val) \
    538 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
    539 
    540 /* flash memory access */
    541 #define EE_READ(sc,off) \
    542 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
    543 
    544 static int scx_fdt_match(device_t, cfdata_t, void *);
    545 static void scx_fdt_attach(device_t, device_t, void *);
    546 static int scx_acpi_match(device_t, cfdata_t, void *);
    547 static void scx_acpi_attach(device_t, device_t, void *);
    548 
    549 const CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
    550     scx_fdt_match, scx_fdt_attach, NULL, NULL);
    551 
    552 const CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
    553     scx_acpi_match, scx_acpi_attach, NULL, NULL);
    554 
    555 static void scx_attach_i(struct scx_softc *);
    556 static void scx_reset(struct scx_softc *);
    557 static int scx_init(struct ifnet *);
    558 static void scx_stop(struct ifnet *, int);
    559 static int scx_ioctl(struct ifnet *, u_long, void *);
    560 static void scx_set_rcvfilt(struct scx_softc *);
    561 static void scx_start(struct ifnet *);
    562 static void scx_watchdog(struct ifnet *);
    563 static int scx_intr(void *);
    564 static void txreap(struct scx_softc *);
    565 static void rxintr(struct scx_softc *);
    566 static int add_rxbuf(struct scx_softc *, int);
    567 static void rxdrain(struct scx_softc *sc);
    568 static void mii_statchg(struct ifnet *);
    569 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    570 static int mii_readreg(device_t, int, int, uint16_t *);
    571 static int mii_writereg(device_t, int, int, uint16_t);
    572 static void phy_tick(void *);
    573 
    574 static void loaducode(struct scx_softc *);
    575 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
    576 
    577 static int get_mdioclk(uint32_t);
    578 
    579 #define WAIT_FOR_SET(sc, reg, set, fail) \
    580 	wait_for_bits(sc, reg, set, ~0, fail)
    581 #define WAIT_FOR_CLR(sc, reg, clr, fail) \
    582 	wait_for_bits(sc, reg, 0, clr, fail)
    583 
    584 static int
    585 wait_for_bits(struct scx_softc *sc, int reg,
    586     uint32_t set, uint32_t clr, uint32_t fail)
    587 {
    588 	uint32_t val;
    589 	int ntries;
    590 
    591 	for (ntries = 0; ntries < 1000; ntries++) {
    592 		val = CSR_READ(sc, reg);
    593 		if ((val & set) || !(val & clr))
    594 			return 0;
    595 		if (val & fail)
    596 			return 1;
    597 		DELAY(1);
    598 	}
    599 	return 1;
    600 }
    601 
    602 /* GMAC register indirect access */
    603 static int
    604 mac_read(struct scx_softc *sc, int reg)
    605 {
    606 
    607 	CSR_WRITE(sc, MACCMD, reg | CMD_BUSY);
    608 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
    609 	return CSR_READ(sc, MACDATA);
    610 }
    611 
    612 static void
    613 mac_write(struct scx_softc *sc, int reg, int val)
    614 {
    615 
    616 	CSR_WRITE(sc, MACDATA, val);
    617 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY);
    618 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
    619 }
    620 
    621 /* dig and decode "clock-frequency" value for a given clkname */
    622 static int
    623 get_clk_freq(int phandle, const char *clkname)
    624 {
    625 	u_int index, n, cells;
    626 	const u_int *p;
    627 	int err, len, resid;
    628 	unsigned int freq = 0;
    629 
    630 	err = fdtbus_get_index(phandle, "clock-names", clkname, &index);
    631 	if (err == -1)
    632 		return -1;
    633 	p = fdtbus_get_prop(phandle, "clocks", &len);
    634 	if (p == NULL)
    635 		return -1;
    636 	for (n = 0, resid = len; resid > 0; n++) {
    637 		const int cc_phandle =
    638 		    fdtbus_get_phandle_from_native(be32toh(p[0]));
    639 		if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells))
    640 			return -1;
    641 		if (n == index) {
    642 			if (of_getprop_uint32(cc_phandle,
    643 			    "clock-frequency", &freq))
    644 				return -1;
    645 			return freq;
    646 		}
    647 		resid -= (cells + 1) * 4;
    648 		p += (cells + 1) * 4;
    649 	}
    650 	return -1;
    651 }
    652 
    653 static const struct device_compatible_entry compat_data[] = {
    654 	{ .compat = "socionext,synquacer-netsec" },
    655 	DEVICE_COMPAT_EOL
    656 };
    657 static const struct device_compatible_entry compatible[] = {
    658 	{ .compat = "SCX0001" },
    659 	DEVICE_COMPAT_EOL
    660 };
    661 
    662 static int
    663 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
    664 {
    665 	struct fdt_attach_args * const faa = aux;
    666 
    667 	return of_compatible_match(faa->faa_phandle, compat_data);
    668 }
    669 
    670 static void
    671 scx_fdt_attach(device_t parent, device_t self, void *aux)
    672 {
    673 	struct scx_softc * const sc = device_private(self);
    674 	struct fdt_attach_args * const faa = aux;
    675 	const int phandle = faa->faa_phandle;
    676 	bus_space_handle_t bsh;
    677 	bus_space_handle_t eebsh;
    678 	bus_addr_t addr[2];
    679 	bus_size_t size[2];
    680 	char intrstr[128];
    681 	int phy_phandle;
    682 	bus_addr_t phy_id;
    683 	const char *phy_type;
    684 	long ref_clk;
    685 
    686 	aprint_naive("\n");
    687 	aprint_normal(": Socionext Gigabit Ethernet controller\n");
    688 
    689 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
    690 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
    691 		aprint_error_dev(self, "unable to map device csr\n");
    692 		return;
    693 	}
    694 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
    695 		aprint_error_dev(self, "failed to decode interrupt\n");
    696 		goto fail;
    697 	}
    698 	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
    699 		NOT_MP_SAFE, scx_intr, sc);
    700 	if (sc->sc_ih == NULL) {
    701 		aprint_error_dev(self, "couldn't establish interrupt\n");
    702 		goto fail;
    703 	}
    704 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
    705 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
    706 		aprint_error_dev(self, "unable to map device eeprom\n");
    707 		goto fail;
    708 	}
    709 
    710 	sc->sc_dev = self;
    711 	sc->sc_st = faa->faa_bst;
    712 	sc->sc_sh = bsh;
    713 	sc->sc_sz = size[0];
    714 	sc->sc_eesh = eebsh;
    715 	sc->sc_eesz = size[1];
    716 	sc->sc_dmat = faa->faa_dmat;
    717 	sc->sc_phandle = phandle;
    718 
    719 	phy_type = fdtbus_get_string(phandle, "phy-mode");
    720 	if (phy_type == NULL)
    721 		aprint_error_dev(self, "missing 'phy-mode' property\n");
    722 	phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
    723 	if (phy_phandle == -1
    724 	    || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0)
    725 		phy_id = MII_PHY_ANY;
    726 	ref_clk = get_clk_freq(phandle, "phy_ref_clk");
    727 	if (ref_clk == -1)
    728 		ref_clk = 250 * 1000 * 1000;
    729 
    730 	sc->sc_100mii = (phy_type && strncmp(phy_type, "rgmii", 5) != 0);
    731 	sc->sc_phy_id = phy_id;
    732 	sc->sc_freq = ref_clk;
    733 
    734 	scx_attach_i(sc);
    735 	return;
    736  fail:
    737 	if (sc->sc_eesz)
    738 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    739 	if (sc->sc_sz)
    740 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    741 	return;
    742 }
    743 
    744 static int
    745 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
    746 {
    747 	struct acpi_attach_args *aa = aux;
    748 
    749 	return acpi_compatible_match(aa, compatible);
    750 }
    751 
    752 static void
    753 scx_acpi_attach(device_t parent, device_t self, void *aux)
    754 {
    755 	struct scx_softc * const sc = device_private(self);
    756 	struct acpi_attach_args * const aa = aux;
    757 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
    758 	bus_space_handle_t bsh, eebsh;
    759 	struct acpi_resources res;
    760 	struct acpi_mem *mem;
    761 	struct acpi_irq *irq;
    762 	ACPI_INTEGER phy_type, phy_id, ref_freq;
    763 	ACPI_STATUS rv;
    764 
    765 	aprint_naive("\n");
    766 	aprint_normal(": Socionext Gigabit Ethernet controller\n");
    767 
    768 	rv = acpi_resource_parse(self, handle, "_CRS",
    769 	    &res, &acpi_resource_parse_ops_default);
    770 	if (ACPI_FAILURE(rv)) {
    771 		aprint_error_dev(self, "missing crs resources\n");
    772 		return;
    773 	}
    774 	mem = acpi_res_mem(&res, 0);
    775 	irq = acpi_res_irq(&res, 0);
    776 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
    777 		aprint_error_dev(self, "incomplete crs resources\n");
    778 		return;
    779 	}
    780 	if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
    781 	    &bsh) != 0) {
    782 		aprint_error_dev(self, "couldn't map registers\n");
    783 		return;
    784 	}
    785 	sc->sc_sz = mem->ar_length;
    786 	sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
    787 	    NOT_MP_SAFE, scx_intr, sc, device_xname(self));
    788 	if (sc->sc_ih == NULL) {
    789 		aprint_error_dev(self, "couldn't establish interrupt\n");
    790 		goto fail;
    791 	}
    792 	mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
    793 	if (mem == NULL || mem->ar_length == 0) {
    794 		aprint_error_dev(self, "incomplete eeprom resources\n");
    795 		goto fail;
    796 	}
    797 	if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
    798 	    &eebsh)) {
    799 		aprint_error_dev(self, "couldn't map registers\n");
    800 		goto fail;
    801 	}
    802 	sc->sc_eesz = mem->ar_length;
    803 
    804 	rv = acpi_dsd_integer(handle, "max-speed", &phy_type);
    805 	if (ACPI_FAILURE(rv)) {
    806 		aprint_error_dev(self, "missing 'max-speed' property\n");
    807 		phy_type = 1000;
    808 	}
    809 	rv = acpi_dsd_integer(handle, "phy-channel", &phy_id);
    810 	if (ACPI_FAILURE(rv))
    811 		phy_id = 7;
    812 	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
    813 			&ref_freq);
    814 	if (ACPI_FAILURE(rv))
    815 		ref_freq = 250 * 1000 * 1000;
    816 
    817 	sc->sc_dev = self;
    818 	sc->sc_st = aa->aa_memt;
    819 	sc->sc_sh = bsh;
    820 	sc->sc_eesh = eebsh;
    821 	sc->sc_dmat = aa->aa_dmat64;
    822 
    823 aprint_normal_dev(self,
    824 "phy type %d, phy id %d, freq %ld\n", (int)phy_type, (int)phy_id, ref_freq);
    825 	sc->sc_100mii = (phy_type != 1000);
    826 	sc->sc_phy_id = (int)phy_id;
    827 	sc->sc_freq = ref_freq;
    828 aprint_normal_dev(self,
    829 "GMACGAR %08x\n", mac_read(sc, GMACGAR));
    830 
    831 	scx_attach_i(sc);
    832 
    833 	acpi_resource_cleanup(&res);
    834 	return;
    835  fail:
    836 	if (sc->sc_eesz > 0)
    837 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    838 	if (sc->sc_sz > 0)
    839 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    840 	acpi_resource_cleanup(&res);
    841 	return;
    842 }
    843 
    844 static void
    845 scx_attach_i(struct scx_softc *sc)
    846 {
    847 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
    848 	struct mii_data * const mii = &sc->sc_mii;
    849 	struct ifmedia * const ifm = &mii->mii_media;
    850 	uint32_t which, dwimp, dwfea;
    851 	uint8_t enaddr[ETHER_ADDR_LEN];
    852 	bus_dma_segment_t seg;
    853 	uint32_t csr;
    854 	int i, nseg, error = 0;
    855 
    856 	which = CSR_READ(sc, HWVER);	/* Socionext version 5.00xx */
    857 	dwimp = mac_read(sc, GMACIMPL);	/* DWC EMAC XX.YY */
    858 	dwfea = mac_read(sc, HWFEA);	/* DWC feature */
    859 	aprint_normal_dev(sc->sc_dev,
    860 	    "Socionext NetSec GbE %x.%x"
    861 	    " (impl 0x%x, feature 0x%x)\n",
    862 	    which >> 16, which & 0xffff,
    863 	    dwimp, dwfea);
    864 
    865 	/* fetch MAC address in flash. stored in big endian order */
    866 	csr = EE_READ(sc, 0x00);
    867 	enaddr[0] = csr >> 24;
    868 	enaddr[1] = csr >> 16;
    869 	enaddr[2] = csr >> 8;
    870 	enaddr[3] = csr;
    871 	csr = EE_READ(sc, 0x04);
    872 	enaddr[4] = csr >> 24;
    873 	enaddr[5] = csr >> 16;
    874 	aprint_normal_dev(sc->sc_dev,
    875 	    "Ethernet address %s\n", ether_sprintf(enaddr));
    876 
    877 	sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */
    878 
    879 	loaducode(sc);
    880 
    881 	mii->mii_ifp = ifp;
    882 	mii->mii_readreg = mii_readreg;
    883 	mii->mii_writereg = mii_writereg;
    884 	mii->mii_statchg = mii_statchg;
    885 
    886 	sc->sc_ethercom.ec_mii = mii;
    887 	ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
    888 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    889 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    890 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    891 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    892 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    893 	} else
    894 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    895 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
    896 
    897 	/*
    898 	 * Allocate the control data structures, and create and load the
    899 	 * DMA map for it.
    900 	 */
    901 	error = bus_dmamem_alloc(sc->sc_dmat,
    902 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    903 	if (error != 0) {
    904 		aprint_error_dev(sc->sc_dev,
    905 		    "unable to allocate control data, error = %d\n", error);
    906 		goto fail_0;
    907 	}
    908 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    909 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
    910 	    BUS_DMA_COHERENT);
    911 	if (error != 0) {
    912 		aprint_error_dev(sc->sc_dev,
    913 		    "unable to map control data, error = %d\n", error);
    914 		goto fail_1;
    915 	}
    916 	error = bus_dmamap_create(sc->sc_dmat,
    917 	    sizeof(struct control_data), 1,
    918 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
    919 	if (error != 0) {
    920 		aprint_error_dev(sc->sc_dev,
    921 		    "unable to create control data DMA map, "
    922 		    "error = %d\n", error);
    923 		goto fail_2;
    924 	}
    925 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    926 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
    927 	if (error != 0) {
    928 		aprint_error_dev(sc->sc_dev,
    929 		    "unable to load control data DMA map, error = %d\n",
    930 		    error);
    931 		goto fail_3;
    932 	}
    933 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    934 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    935 		    MD_NTXSEGS, MCLBYTES, 0, 0,
    936 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    937 			aprint_error_dev(sc->sc_dev,
    938 			    "unable to create tx DMA map %d, error = %d\n",
    939 			    i, error);
    940 			goto fail_4;
    941 		}
    942 	}
    943 	for (i = 0; i < MD_NRXDESC; i++) {
    944 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    945 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    946 			aprint_error_dev(sc->sc_dev,
    947 			    "unable to create rx DMA map %d, error = %d\n",
    948 			    i, error);
    949 			goto fail_5;
    950 		}
    951 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    952 	}
    953 	sc->sc_seg = seg;
    954 	sc->sc_nseg = nseg;
    955 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
    956 
    957 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    958 	ifp->if_softc = sc;
    959 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    960 	ifp->if_ioctl = scx_ioctl;
    961 	ifp->if_start = scx_start;
    962 	ifp->if_watchdog = scx_watchdog;
    963 	ifp->if_init = scx_init;
    964 	ifp->if_stop = scx_stop;
    965 	IFQ_SET_READY(&ifp->if_snd);
    966 
    967 	sc->sc_flowflags = 0;
    968 
    969 	if_attach(ifp);
    970 	if_deferred_start_init(ifp, NULL);
    971 	ether_ifattach(ifp, enaddr);
    972 
    973 	callout_init(&sc->sc_callout, 0);
    974 	callout_setfunc(&sc->sc_callout, phy_tick, sc);
    975 
    976 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    977 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    978 
    979 	return;
    980 
    981   fail_5:
    982 	for (i = 0; i < MD_NRXDESC; i++) {
    983 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    984 			bus_dmamap_destroy(sc->sc_dmat,
    985 			    sc->sc_rxsoft[i].rxs_dmamap);
    986 	}
    987   fail_4:
    988 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    989 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    990 			bus_dmamap_destroy(sc->sc_dmat,
    991 			    sc->sc_txsoft[i].txs_dmamap);
    992 	}
    993 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    994   fail_3:
    995 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    996   fail_2:
    997 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    998 	    sizeof(struct control_data));
    999   fail_1:
   1000 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
   1001   fail_0:
   1002 	if (sc->sc_phandle)
   1003 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
   1004 	else
   1005 		acpi_intr_disestablish(sc->sc_ih);
   1006 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
   1007 	return;
   1008 }
   1009 
   1010 static void
   1011 scx_reset(struct scx_softc *sc)
   1012 {
   1013 	int loop = 0, busy;
   1014 
   1015 	mac_write(sc, GMACOMR, 0);
   1016 	mac_write(sc, GMACBMR, BMR_RST);
   1017 	do {
   1018 		DELAY(1);
   1019 		busy = mac_read(sc, GMACBMR) & BMR_RST;
   1020 	} while (++loop < 3000 && busy);
   1021 	mac_write(sc, GMACBMR, _BMR);
   1022 	mac_write(sc, GMACAFR, 0);
   1023 
   1024 	CSR_WRITE(sc, CLKEN, CLK_ALL);		/* distribute clock sources */
   1025 	CSR_WRITE(sc, SWRESET, 0);		/* reset operation */
   1026 	CSR_WRITE(sc, SWRESET, SRST_RUN);	/* manifest run */
   1027 	CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
   1028 	WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
   1029 
   1030 	CSR_WRITE(sc, TXISR, ~0);
   1031 	CSR_WRITE(sc, xINTAE_CLR, ~0);
   1032 
   1033 	mac_write(sc, GMACEVCTL, 1);
   1034 }
   1035 
   1036 static int
   1037 scx_init(struct ifnet *ifp)
   1038 {
   1039 	struct scx_softc *sc = ifp->if_softc;
   1040 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
   1041 	paddr_t paddr;
   1042 	uint32_t csr;
   1043 	int i, error;
   1044 
   1045 	/* Cancel pending I/O. */
   1046 	scx_stop(ifp, 0);
   1047 
   1048 	/* Reset the chip to a known state. */
   1049 	scx_reset(sc);
   1050 
   1051 	/* build sane Tx */
   1052 	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
   1053 	sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
   1054 	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
   1055 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1056 	sc->sc_txfree = MD_NTXDESC;
   1057 	sc->sc_txnext = 0;
   1058 	for (i = 0; i < MD_TXQUEUELEN; i++)
   1059 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1060 	sc->sc_txsfree = MD_TXQUEUELEN;
   1061 	sc->sc_txsnext = 0;
   1062 	sc->sc_txsdirty = 0;
   1063 
   1064 	/* load Rx descriptors with fresh mbuf */
   1065 	for (i = 0; i < MD_NRXDESC; i++) {
   1066 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
   1067 			if ((error = add_rxbuf(sc, i)) != 0) {
   1068 				aprint_error_dev(sc->sc_dev,
   1069 				    "unable to allocate or map rx "
   1070 				    "buffer %d, error = %d\n",
   1071 				    i, error);
   1072 				rxdrain(sc);
   1073 				goto out;
   1074 			}
   1075 		}
   1076 		else
   1077 			SCX_INIT_RXDESC(sc, i);
   1078 	}
   1079 	sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_EOD;
   1080 	sc->sc_rxptr = 0;
   1081 	sc->sc_rxptr = 0;
   1082 
   1083 	paddr = SCX_CDTXADDR(sc, 0);		/* tdes array (ring#0) */
   1084 	mac_write(sc, TDBA_HI, BUS_ADDR_HI32(paddr));
   1085 	mac_write(sc, TDBA_LO, BUS_ADDR_LO32(paddr));
   1086 	paddr = SCX_CDRXADDR(sc, 0);		/* rdes array (ring#1) */
   1087 	mac_write(sc, RDBA_HI, BUS_ADDR_HI32(paddr));
   1088 	mac_write(sc, RDBA_LO, BUS_ADDR_LO32(paddr));
   1089 
   1090 	CSR_WRITE(sc, TXCONF, DESCNF_LE);	/* little endian */
   1091 	CSR_WRITE(sc, RXCONF, DESCNF_LE);	/* little endian */
   1092 
   1093 	/* set my address in perfect match slot 0. little endian order */
   1094 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
   1095 	mac_write(sc, GMACMAL0, csr);
   1096 	csr = (ea[5] << 8) | ea[4];
   1097 	mac_write(sc, GMACMAH0, csr);
   1098 
   1099 	/* accept multicast frame or run promisc mode */
   1100 	scx_set_rcvfilt(sc);
   1101 
   1102 	/* set current media */
   1103 	if ((error = ether_mediachange(ifp)) != 0)
   1104 		goto out;
   1105 
   1106 	CSR_WRITE(sc, DESC_SRST, 01);
   1107 	WAIT_FOR_CLR(sc, DESC_SRST, 01, 0);
   1108 
   1109 	CSR_WRITE(sc, DESC_INIT, 01);
   1110 	WAIT_FOR_CLR(sc, DESC_INIT, 01, 0);
   1111 
   1112 	CSR_WRITE(sc, GMACRDLA, _RDLA);		/* GMAC rdes store */
   1113 	CSR_WRITE(sc, GMACTDLA, _TDLA);		/* GMAC tdes store */
   1114 
   1115 	CSR_WRITE(sc, FLOWTHR, (48<<16) | 36);	/* pause|resume threshold */
   1116 	mac_write(sc, GMACFCR, 256 << 16);	/* 31:16 pause value */
   1117 
   1118 	CSR_WRITE(sc, RXIE_CLR, ~0);	/* clear Rx interrupt enable */
   1119 	CSR_WRITE(sc, TXIE_CLR, ~0);	/* clear Tx interrupt enable */
   1120 
   1121 	CSR_WRITE(sc, RXCLSCMAX, 8);	/* Rx coalesce upper bound */
   1122 	CSR_WRITE(sc, TXCLSCMAX, 8);	/* Tx coalesce upper bound */
   1123 	CSR_WRITE(sc, RXITIMER, 500);	/* Rx co. timer usec */
   1124 	CSR_WRITE(sc, TXITIMER, 500);	/* Tx co. timer usec */
   1125 
   1126 	CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP);
   1127 	CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP);
   1128 
   1129 	CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX);
   1130 
   1131 	/* kick to start GMAC engine */
   1132 	csr = mac_read(sc, GMACOMR);
   1133 	mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);
   1134 
   1135 	ifp->if_flags |= IFF_RUNNING;
   1136 	ifp->if_flags &= ~IFF_OACTIVE;
   1137 
   1138 	/* start one second timer */
   1139 	callout_schedule(&sc->sc_callout, hz);
   1140  out:
   1141 	return error;
   1142 }
   1143 
   1144 static void
   1145 scx_stop(struct ifnet *ifp, int disable)
   1146 {
   1147 	struct scx_softc *sc = ifp->if_softc;
   1148 
   1149 	/* Stop the one second clock. */
   1150 	callout_stop(&sc->sc_callout);
   1151 
   1152 	/* Down the MII. */
   1153 	mii_down(&sc->sc_mii);
   1154 
   1155 	/* Mark the interface down and cancel the watchdog timer. */
   1156 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1157 	ifp->if_timer = 0;
   1158 
   1159 	CSR_WRITE(sc, xINTAE_CLR, ~0);
   1160 	CSR_WRITE(sc, TXISR, ~0);
   1161 	CSR_WRITE(sc, RXISR, ~0);
   1162 
   1163 	if (CSR_READ(sc, CORESTAT) != 0) {
   1164 		CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
   1165 		CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
   1166 
   1167 		WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP, 0);
   1168 		WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP, 0);
   1169 	}
   1170 }
   1171 
   1172 static int
   1173 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1174 {
   1175 	struct scx_softc *sc = ifp->if_softc;
   1176 	struct ifreq *ifr = (struct ifreq *)data;
   1177 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
   1178 	int s, error;
   1179 
   1180 	s = splnet();
   1181 
   1182 	switch (cmd) {
   1183 	case SIOCSIFMEDIA:
   1184 		/* Flow control requires full-duplex mode. */
   1185 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1186 		    (ifr->ifr_media & IFM_FDX) == 0)
   1187 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1188 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1189 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1190 				/* We can do both TXPAUSE and RXPAUSE. */
   1191 				ifr->ifr_media |=
   1192 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1193 			}
   1194 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1195 		}
   1196 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
   1197 		break;
   1198 	default:
   1199 		error = ether_ioctl(ifp, cmd, data);
   1200 		if (error != ENETRESET)
   1201 			break;
   1202 		error = 0;
   1203 		if (cmd == SIOCSIFCAP)
   1204 			error = (*ifp->if_init)(ifp);
   1205 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1206 			;
   1207 		else if (ifp->if_flags & IFF_RUNNING) {
   1208 			/*
   1209 			 * Multicast list has changed; set the hardware filter
   1210 			 * accordingly.
   1211 			 */
   1212 			scx_set_rcvfilt(sc);
   1213 		}
   1214 		break;
   1215 	}
   1216 
   1217 	splx(s);
   1218 	return error;
   1219 }
   1220 
   1221 static uint32_t
   1222 bit_reverse_32(uint32_t x)
   1223 {
   1224 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
   1225 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
   1226 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
   1227 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
   1228 	return (x >> 16) | (x << 16);
   1229 }
   1230 
   1231 static void
   1232 scx_set_rcvfilt(struct scx_softc *sc)
   1233 {
   1234 	struct ethercom * const ec = &sc->sc_ethercom;
   1235 	struct ifnet * const ifp = &ec->ec_if;
   1236 	struct ether_multistep step;
   1237 	struct ether_multi *enm;
   1238 	uint32_t mchash[2]; 	/* 2x 32 = 64 bit */
   1239 	uint32_t csr, crc;
   1240 	int i;
   1241 
   1242 	csr = mac_read(sc, GMACAFR);
   1243 	csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
   1244 	mac_write(sc, GMACAFR, csr);
   1245 
   1246 	/* clear 15 entry supplemental perfect match filter */
   1247 	for (i = 1; i < 16; i++)
   1248 		 mac_write(sc, GMACMAH(i), 0);
   1249 	/* build 64 bit multicast hash filter */
   1250 	crc = mchash[1] = mchash[0] = 0;
   1251 
   1252 	ETHER_LOCK(ec);
   1253 	if (ifp->if_flags & IFF_PROMISC) {
   1254 		ec->ec_flags |= ETHER_F_ALLMULTI;
   1255 		ETHER_UNLOCK(ec);
   1256 		/* run promisc. mode */
   1257 		csr |= AFR_PR;
   1258 		goto update;
   1259 	}
   1260 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   1261 	ETHER_FIRST_MULTI(step, ec, enm);
   1262 	i = 1; /* slot 0 is occupied */
   1263 	while (enm != NULL) {
   1264 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1265 			/*
   1266 			 * We must listen to a range of multicast addresses.
   1267 			 * For now, just accept all multicasts, rather than
   1268 			 * trying to set only those filter bits needed to match
   1269 			 * the range.  (At this time, the only use of address
   1270 			 * ranges is for IP multicast routing, for which the
   1271 			 * range is big enough to require all bits set.)
   1272 			 */
   1273 			ec->ec_flags |= ETHER_F_ALLMULTI;
   1274 			ETHER_UNLOCK(ec);
   1275 			/* accept all multi */
   1276 			csr |= AFR_PM;
   1277 			goto update;
   1278 		}
   1279 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
   1280 		if (i < 16) {
   1281 			/* use 15 entry perfect match filter */
   1282 			uint32_t addr;
   1283 			uint8_t *ep = enm->enm_addrlo;
   1284 			addr = (ep[3] << 24) | (ep[2] << 16)
   1285 			     | (ep[1] <<  8) |  ep[0];
   1286 			mac_write(sc, GMACMAL(i), addr);
   1287 			addr = (ep[5] << 8) | ep[4];
   1288 			mac_write(sc, GMACMAH(i), addr | 1U<<31);
   1289 		} else {
   1290 			/* use hash table when too many */
   1291 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1292 			crc = bit_reverse_32(~crc);
   1293 			/* 1(31) 5(30:26) bit sampling */
   1294 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   1295 		}
   1296 		ETHER_NEXT_MULTI(step, enm);
   1297 		i++;
   1298 	}
   1299 	ETHER_UNLOCK(ec);
   1300 	if (crc)
   1301 		csr |= AFR_MHTE;
   1302 	csr |= AFR_HPF; /* use hash+perfect */
   1303 	mac_write(sc, GMACMHTH, mchash[1]);
   1304 	mac_write(sc, GMACMHTL, mchash[0]);
   1305  update:
   1306 	/* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */
   1307 	mac_write(sc, GMACAFR, csr);
   1308 	return;
   1309 }
   1310 
   1311 static void
   1312 scx_start(struct ifnet *ifp)
   1313 {
   1314 	struct scx_softc *sc = ifp->if_softc;
   1315 	struct mbuf *m0;
   1316 	struct scx_txsoft *txs;
   1317 	bus_dmamap_t dmamap;
   1318 	int error, nexttx, lasttx, ofree, seg;
   1319 	uint32_t tdes0;
   1320 
   1321 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1322 		return;
   1323 
   1324 	/* Remember the previous number of free descriptors. */
   1325 	ofree = sc->sc_txfree;
   1326 
   1327 	/*
   1328 	 * Loop through the send queue, setting up transmit descriptors
   1329 	 * until we drain the queue, or use up all available transmit
   1330 	 * descriptors.
   1331 	 */
   1332 	for (;;) {
   1333 		IFQ_POLL(&ifp->if_snd, m0);
   1334 		if (m0 == NULL)
   1335 			break;
   1336 
   1337 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
   1338 			txreap(sc);
   1339 			if (sc->sc_txsfree == 0)
   1340 				break;
   1341 		}
   1342 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1343 		dmamap = txs->txs_dmamap;
   1344 
   1345 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1346 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1347 		if (error) {
   1348 			if (error == EFBIG) {
   1349 				aprint_error_dev(sc->sc_dev,
   1350 				    "Tx packet consumes too many "
   1351 				    "DMA segments, dropping...\n");
   1352 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
   1353 				    m_freem(m0);
   1354 				    continue;
   1355 			}
   1356 			/* Short on resources, just stop for now. */
   1357 			break;
   1358 		}
   1359 
   1360 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   1361 			/*
   1362 			 * Not enough free descriptors to transmit this
   1363 			 * packet.  We haven't committed anything yet,
   1364 			 * so just unload the DMA map, put the packet
   1365 			 * back on the queue, and punt.	 Notify the upper
   1366 			 * layer that there are not more slots left.
   1367 			 */
   1368 			ifp->if_flags |= IFF_OACTIVE;
   1369 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1370 			break;
   1371 		}
   1372 
   1373 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1374 
   1375 		/*
   1376 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1377 		 */
   1378 
   1379 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1380 		    BUS_DMASYNC_PREWRITE);
   1381 
   1382 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
   1383 		lasttx = -1;
   1384 		for (nexttx = sc->sc_txnext, seg = 0;
   1385 		     seg < dmamap->dm_nsegs;
   1386 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
   1387 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
   1388 			bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
   1389 			/*
   1390 			 * If this is the first descriptor we're
   1391 			 * enqueueing, don't set the OWN bit just
   1392 			 * yet.	 That could cause a race condition.
   1393 			 * We'll do it below.
   1394 			 */
   1395 			tdes->t3 = htole32(dmamap->dm_segs[seg].ds_len);
   1396 			tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
   1397 			tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
   1398 			tdes->t0 = htole32(tdes0 | (tdes->t0 & T0_EOD) |
   1399 					(15 << T0_TDRID) | T0_PT |
   1400 					sc->sc_t0cotso | T0_TRS);
   1401 			tdes0 = T0_OWN; /* 2nd and other segments */
   1402 			/* NB; t0 DRID field contains zero */
   1403 			lasttx = nexttx;
   1404 		}
   1405 
   1406 		/* Write deferred 1st segment T0_OWN at the final stage */
   1407 		sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS);
   1408 		sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN);
   1409 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1410 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1411 
   1412 		/* submit one frame to xmit */
   1413 		CSR_WRITE(sc, TXSUBMIT, 1);
   1414 
   1415 		txs->txs_mbuf = m0;
   1416 		txs->txs_firstdesc = sc->sc_txnext;
   1417 		txs->txs_lastdesc = lasttx;
   1418 		txs->txs_ndesc = dmamap->dm_nsegs;
   1419 
   1420 		sc->sc_txfree -= txs->txs_ndesc;
   1421 		sc->sc_txnext = nexttx;
   1422 		sc->sc_txsfree--;
   1423 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
   1424 		/*
   1425 		 * Pass the packet to any BPF listeners.
   1426 		 */
   1427 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1428 	}
   1429 
   1430 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1431 		/* No more slots left; notify upper layer. */
   1432 		ifp->if_flags |= IFF_OACTIVE;
   1433 	}
   1434 	if (sc->sc_txfree != ofree) {
   1435 		/* Set a watchdog timer in case the chip flakes out. */
   1436 		ifp->if_timer = 5;
   1437 	}
   1438 }
   1439 
   1440 static void
   1441 scx_watchdog(struct ifnet *ifp)
   1442 {
   1443 	struct scx_softc *sc = ifp->if_softc;
   1444 
   1445 	/*
   1446 	 * Since we're not interrupting every packet, sweep
   1447 	 * up before we report an error.
   1448 	 */
   1449 	txreap(sc);
   1450 
   1451 	if (sc->sc_txfree != MD_NTXDESC) {
   1452 		aprint_error_dev(sc->sc_dev,
   1453 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
   1454 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
   1455 		if_statinc(ifp, if_oerrors);
   1456 
   1457 		/* Reset the interface. */
   1458 		scx_init(ifp);
   1459 	}
   1460 
   1461 	scx_start(ifp);
   1462 }
   1463 
   1464 static int
   1465 scx_intr(void *arg)
   1466 {
   1467 	struct scx_softc *sc = arg;
   1468 	uint32_t enable, status;
   1469 
   1470 	status = CSR_READ(sc, xINTSR); /* not W1C */
   1471 	enable = CSR_READ(sc, xINTAEN);
   1472 	if ((status & enable) == 0)
   1473 		return 0;
   1474 	if (status & (IRQ_TX | IRQ_RX)) {
   1475 		CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX));
   1476 
   1477 		status = CSR_READ(sc, RXISR);
   1478 		CSR_WRITE(sc, RXISR, status);
   1479 		if (status & RXI_RC_ERR)
   1480 			aprint_error_dev(sc->sc_dev, "Rx error\n");
   1481 		if (status & (RXI_PKTCNT | RXI_TMREXP)) {
   1482 			rxintr(sc);
   1483 			(void)CSR_READ(sc, RXDONECNT); /* clear RXI_RXDONE */
   1484 		}
   1485 
   1486 		status = CSR_READ(sc, TXISR);
   1487 		CSR_WRITE(sc, TXISR, status);
   1488 		if (status & TXI_TR_ERR)
   1489 			aprint_error_dev(sc->sc_dev, "Tx error\n");
   1490 		if (status & (TXI_TXDONE | TXI_TMREXP)) {
   1491 			txreap(sc);
   1492 			(void)CSR_READ(sc, TXDONECNT); /* clear TXI_TXDONE */
   1493 		}
   1494 
   1495 		CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX));
   1496 	}
   1497 	return 1;
   1498 }
   1499 
   1500 static void
   1501 txreap(struct scx_softc *sc)
   1502 {
   1503 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1504 	struct scx_txsoft *txs;
   1505 	uint32_t txstat;
   1506 	int i;
   1507 
   1508 	ifp->if_flags &= ~IFF_OACTIVE;
   1509 
   1510 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
   1511 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
   1512 		txs = &sc->sc_txsoft[i];
   1513 
   1514 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1515 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1516 
   1517 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0);
   1518 		if (txstat & T0_OWN) /* desc is still in use */
   1519 			break;
   1520 
   1521 		/* There is no way to tell transmission status per frame */
   1522 
   1523 		if_statinc(ifp, if_opackets);
   1524 
   1525 		sc->sc_txfree += txs->txs_ndesc;
   1526 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1527 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1528 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1529 		m_freem(txs->txs_mbuf);
   1530 		txs->txs_mbuf = NULL;
   1531 	}
   1532 	sc->sc_txsdirty = i;
   1533 	if (sc->sc_txsfree == MD_TXQUEUELEN)
   1534 		ifp->if_timer = 0;
   1535 }
   1536 
   1537 static void
   1538 rxintr(struct scx_softc *sc)
   1539 {
   1540 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1541 	struct scx_rxsoft *rxs;
   1542 	struct mbuf *m;
   1543 	uint32_t rxstat;
   1544 	int i, len;
   1545 
   1546 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
   1547 		rxs = &sc->sc_rxsoft[i];
   1548 
   1549 		SCX_CDRXSYNC(sc, i,
   1550 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1551 
   1552 		rxstat = le32toh(sc->sc_rxdescs[i].r0);
   1553 		if (rxstat & R0_OWN) /* desc is left empty */
   1554 			break;
   1555 
   1556 		/* R0_FS | R0_LS must have been marked for this desc */
   1557 
   1558 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1559 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1560 
   1561 		len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
   1562 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
   1563 		m = rxs->rxs_mbuf;
   1564 
   1565 		if (add_rxbuf(sc, i) != 0) {
   1566 			if_statinc(ifp, if_ierrors);
   1567 			SCX_INIT_RXDESC(sc, i);
   1568 			bus_dmamap_sync(sc->sc_dmat,
   1569 			    rxs->rxs_dmamap, 0,
   1570 			    rxs->rxs_dmamap->dm_mapsize,
   1571 			    BUS_DMASYNC_PREREAD);
   1572 			continue;
   1573 		}
   1574 
   1575 		m_set_rcvif(m, ifp);
   1576 		m->m_pkthdr.len = m->m_len = len;
   1577 
   1578 		if (rxstat & R0_CSUM) {
   1579 			uint32_t csum = M_CSUM_IPv4;
   1580 			if (rxstat & R0_CERR)
   1581 				csum |= M_CSUM_IPv4_BAD;
   1582 			m->m_pkthdr.csum_flags |= csum;
   1583 		}
   1584 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1585 	}
   1586 	sc->sc_rxptr = i;
   1587 }
   1588 
   1589 static int
   1590 add_rxbuf(struct scx_softc *sc, int i)
   1591 {
   1592 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
   1593 	struct mbuf *m;
   1594 	int error;
   1595 
   1596 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1597 	if (m == NULL)
   1598 		return ENOBUFS;
   1599 
   1600 	MCLGET(m, M_DONTWAIT);
   1601 	if ((m->m_flags & M_EXT) == 0) {
   1602 		m_freem(m);
   1603 		return ENOBUFS;
   1604 	}
   1605 
   1606 	if (rxs->rxs_mbuf != NULL)
   1607 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1608 
   1609 	rxs->rxs_mbuf = m;
   1610 
   1611 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1612 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1613 	if (error) {
   1614 		aprint_error_dev(sc->sc_dev,
   1615 		    "can't load rx DMA map %d, error = %d\n", i, error);
   1616 		panic("add_rxbuf");
   1617 	}
   1618 
   1619 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1620 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1621 	SCX_INIT_RXDESC(sc, i);
   1622 
   1623 	return 0;
   1624 }
   1625 
   1626 static void
   1627 rxdrain(struct scx_softc *sc)
   1628 {
   1629 	struct scx_rxsoft *rxs;
   1630 	int i;
   1631 
   1632 	for (i = 0; i < MD_NRXDESC; i++) {
   1633 		rxs = &sc->sc_rxsoft[i];
   1634 		if (rxs->rxs_mbuf != NULL) {
   1635 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1636 			m_freem(rxs->rxs_mbuf);
   1637 			rxs->rxs_mbuf = NULL;
   1638 		}
   1639 	}
   1640 }
   1641 
   1642 void
   1643 mii_statchg(struct ifnet *ifp)
   1644 {
   1645 	struct scx_softc *sc = ifp->if_softc;
   1646 	struct mii_data *mii = &sc->sc_mii;
   1647 	const int Mbps[4] = { 10, 100, 1000, 0 };
   1648 	uint32_t miisr, mcr, fcr;
   1649 	int spd;
   1650 
   1651 	/* decode MIISR register value */
   1652 	miisr = mac_read(sc, GMACMIISR);
   1653 	spd = Mbps[(miisr & MIISR_SPD) >> 1];
   1654 #if 1
   1655 	static uint32_t oldmiisr = 0;
   1656 	if (miisr != oldmiisr) {
   1657 		printf("MII link status (0x%x) %s",
   1658 		    miisr, (miisr & MIISR_LUP) ? "up" : "down");
   1659 		if (miisr & MIISR_LUP) {
   1660 			printf(" spd%d", spd);
   1661 			if (miisr & MIISR_FDX)
   1662 				printf(",full-duplex");
   1663 		}
   1664 		printf("\n");
   1665 	}
   1666 #endif
   1667 	/* Get flow control negotiation result. */
   1668 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1669 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
   1670 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1671 
   1672 	/* Adjust speed 1000/100/10. */
   1673 	mcr = mac_read(sc, GMACMCR);
   1674 	if (spd == 1000)
   1675 		mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
   1676 	else {
   1677 		if (spd == 100 && sc->sc_100mii)
   1678 			mcr |= MCR_SPD100;
   1679 		mcr |= MCR_USEMII;
   1680 	}
   1681 	mcr |= MCR_CST | MCR_JE;
   1682 	if (sc->sc_100mii == 0)
   1683 		mcr |= MCR_IBN;
   1684 
   1685 	/* Adjust duplexity and PAUSE flow control. */
   1686 	mcr &= ~MCR_USEFDX;
   1687 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
   1688 	if (miisr & MIISR_FDX) {
   1689 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   1690 			fcr |= FCR_TFE;
   1691 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   1692 			fcr |= FCR_RFE;
   1693 		mcr |= MCR_USEFDX;
   1694 	}
   1695 	mac_write(sc, GMACMCR, mcr);
   1696 	mac_write(sc, GMACFCR, fcr);
   1697 
   1698 #if 1
   1699 	if (miisr != oldmiisr) {
   1700 		printf("%ctxfe, %crxfe\n",
   1701 		    (fcr & FCR_TFE) ? '+' : '-',
   1702 		    (fcr & FCR_RFE) ? '+' : '-');
   1703 	}
   1704 	oldmiisr = miisr;
   1705 #endif
   1706 }
   1707 
   1708 static void
   1709 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1710 {
   1711 	struct scx_softc *sc = ifp->if_softc;
   1712 	struct mii_data *mii = &sc->sc_mii;
   1713 
   1714 	mii_pollstat(mii);
   1715 	ifmr->ifm_status = mii->mii_media_status;
   1716 	ifmr->ifm_active = sc->sc_flowflags |
   1717 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
   1718 }
   1719 
   1720 static int
   1721 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1722 {
   1723 	struct scx_softc *sc = device_private(self);
   1724 	uint32_t miia;
   1725 	int ntries;
   1726 
   1727 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1728 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
   1729 	for (ntries = 0; ntries < 1000; ntries++) {
   1730 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
   1731 			goto unbusy;
   1732 		DELAY(1);
   1733 	}
   1734 	return ETIMEDOUT;
   1735  unbusy:
   1736 	*val = mac_read(sc, GMACGDR);
   1737 	return 0;
   1738 }
   1739 
   1740 static int
   1741 mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1742 {
   1743 	struct scx_softc *sc = device_private(self);
   1744 	uint32_t miia;
   1745 	uint16_t dummy;
   1746 	int ntries;
   1747 
   1748 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1749 	mac_write(sc, GMACGDR, val);
   1750 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
   1751 	for (ntries = 0; ntries < 1000; ntries++) {
   1752 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
   1753 			goto unbusy;
   1754 		DELAY(1);
   1755 	}
   1756 	return ETIMEDOUT;
   1757   unbusy:
   1758 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
   1759 	return 0;
   1760 }
   1761 
   1762 static void
   1763 phy_tick(void *arg)
   1764 {
   1765 	struct scx_softc *sc = arg;
   1766 	struct mii_data *mii = &sc->sc_mii;
   1767 	int s;
   1768 
   1769 	s = splnet();
   1770 	mii_tick(mii);
   1771 	splx(s);
   1772 #ifdef GMAC_EVENT_COUNTERS
   1773 	/* 80 event counters exist */
   1774 #endif
   1775 	callout_schedule(&sc->sc_callout, hz);
   1776 }
   1777 
   1778 static void
   1779 reset_hardware(struct scx_softc *sc)
   1780 {
   1781 
   1782 	if (CSR_READ(sc, CORESTAT) != 0) {
   1783 		CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
   1784 		CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
   1785 
   1786 		WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP, 0);
   1787 		WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP, 0);
   1788 	}
   1789 	CSR_WRITE(sc, SWRESET, 0);		/* reset operation */
   1790 	CSR_WRITE(sc, SWRESET, SRST_RUN);	/* manifest run */
   1791 	CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
   1792 	WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
   1793 }
   1794 
   1795 /*
   1796  * 3 independent uengines exist to process host2media, media2host and
   1797  * packet data flows.
   1798  */
   1799 static void
   1800 loaducode(struct scx_softc *sc)
   1801 {
   1802 	uint32_t up, lo, sz;
   1803 	uint64_t addr;
   1804 
   1805 	reset_hardware(sc);
   1806 	CSR_WRITE(sc, xINTSR, IRQ_UCODE);
   1807 
   1808 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
   1809 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
   1810 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
   1811 	sz *= 4;
   1812 	addr = ((uint64_t)up << 32) | lo;
   1813 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
   1814 	injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
   1815 
   1816 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
   1817 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
   1818 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
   1819 	sz *= 4;
   1820 	addr = ((uint64_t)up << 32) | lo;
   1821 	injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
   1822 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
   1823 
   1824 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
   1825 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
   1826 	sz *= 4;
   1827 	injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
   1828 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
   1829 
   1830 	WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE, 0);
   1831 	/* XXX may take long time to end ?! XXX */
   1832 	CSR_WRITE(sc, xINTSR, IRQ_UCODE);
   1833 }
   1834 
   1835 static void
   1836 injectucode(struct scx_softc *sc, int port,
   1837 	bus_addr_t addr, bus_size_t size)
   1838 {
   1839 	bus_space_handle_t bsh;
   1840 	bus_size_t off;
   1841 	uint32_t ucode;
   1842 
   1843 	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
   1844 		aprint_error_dev(sc->sc_dev,
   1845 		    "eeprom map failure for ucode port 0x%x\n", port);
   1846 		return;
   1847 	}
   1848 	for (off = 0; off < size; off += 4) {
   1849 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
   1850 		CSR_WRITE(sc, port, ucode);
   1851 	}
   1852 	bus_space_unmap(sc->sc_st, bsh, size);
   1853 }
   1854 
   1855 /* GAR 5:2 MDIO frequency selection */
   1856 static int
   1857 get_mdioclk(uint32_t freq)
   1858 {
   1859 
   1860 	freq /= 1000 * 1000;
   1861 	if (freq < 35)
   1862 		return GAR_MDIO_25_35MHZ;
   1863 	if (freq < 60)
   1864 		return GAR_MDIO_35_60MHZ;
   1865 	if (freq < 100)
   1866 		return GAR_MDIO_60_100MHZ;
   1867 	if (freq < 150)
   1868 		return GAR_MDIO_100_150MHZ;
   1869 	if (freq < 250)
   1870 		return GAR_MDIO_150_250MHZ;
   1871 	return GAR_MDIO_250_300MHZ;
   1872 }
   1873