if_scx.c revision 1.32 1 /* $NetBSD: if_scx.c,v 1.32 2021/12/21 12:12:52 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32
33 /*
34 * Socionext SC2A11 SynQuacer NetSec GbE driver
35 *
36 * Multiple Tx and Rx queues exist inside and dedicated descriptor
37 * fields specifies which queue is to use. Three internal micro-processors
38 * to handle incoming frames, outgoing frames and packet data crypto
39 * processing. uP programs are stored in an external flash memory and
40 * have to be loaded by device driver.
41 * NetSec uses Synopsys DesignWare Core EMAC. DWC implementation
42 * register (0x20) is known to have 0x10.36 and feature register (0x1058)
43 * to report XX.XX.
44 */
45
46 #define NOT_MP_SAFE 0
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.32 2021/12/21 12:12:52 nisimura Exp $");
50
51 #include <sys/param.h>
52 #include <sys/bus.h>
53 #include <sys/intr.h>
54 #include <sys/device.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/malloc.h>
58 #include <sys/errno.h>
59 #include <sys/rndsource.h>
60 #include <sys/kernel.h>
61 #include <sys/systm.h>
62
63 #include <net/if.h>
64 #include <net/if_media.h>
65 #include <net/if_dl.h>
66 #include <net/if_ether.h>
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 #include <net/bpf.h>
70
71 #include <dev/fdt/fdtvar.h>
72 #include <dev/acpi/acpireg.h>
73 #include <dev/acpi/acpivar.h>
74 #include <dev/acpi/acpi_intr.h>
75
76 /* SC2A11 GbE 64-bit paddr descriptor */
77 struct tdes {
78 uint32_t t0, t1, t2, t3;
79 };
80
81 struct rdes {
82 uint32_t r0, r1, r2, r3;
83 };
84
85 #define T0_OWN (1U<<31) /* desc is ready to Tx */
86 #define T0_EOD (1U<<30) /* end of descriptor array */
87 #define T0_DRID (24) /* 29:24 desc ring id */
88 #define T0_PT (1U<<21) /* 23:21 "pass-through" */
89 #define T0_TDRID (16) /* 20:16 target desc ring id: GMAC=15 */
90 #define T0_FS (1U<<9) /* first segment of frame */
91 #define T0_LS (1U<<8) /* last segment of frame */
92 #define T0_CSUM (1U<<7) /* enable check sum offload */
93 #define T0_TSO (1U<<6) /* enable TCP segment offload */
94 #define T0_TRS (1U<<4) /* 5:4 "TRS" */
95 /* T1 frame segment address 63:32 */
96 /* T2 frame segment address 31:0 */
97 /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
98
99 #define R0_OWN (1U<<31) /* desc is empty */
100 #define R0_EOD (1U<<30) /* end of descriptor array */
101 #define R0_SDRID (24) /* 29:24 source desc ring id */
102 #define R0_FR (1U<<23) /* found fragmented */
103 #define R0_ER (1U<<21) /* Rx error indication */
104 #define R0_ERR (3U<<16) /* 18:16 receive error code */
105 #define R0_TDRID (12) /* 15:12 target desc ring id */
106 #define R0_FS (1U<<9) /* first segment of frame */
107 #define R0_LS (1U<<8) /* last segment of frame */
108 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
109 #define R0_CERR (2U<<6) /* 0: undone, 1: found ok, 2: bad */
110 /* R1 frame address 63:32 */
111 /* R2 frame address 31:0 */
112 /* R3 31:16 received frame length, 15:0 buffer length to receive */
113
114 /*
115 * SC2A11 registers. 0x100 - 1204
116 */
117 #define SWRESET 0x104
118 #define SRST_RUN (1U<<31) /* instruct start, 0 to stop */
119 #define COMINIT 0x120
120 #define INIT_DB (1U<<2) /* ???; self clear when done */
121 #define INIT_CLS (1U<<1) /* ???; self clear when done */
122 #define PKTCTRL 0x140 /* pkt engine control */
123 #define MODENRM (1U<<28) /* change mode to normal */
124 #define ENJUMBO (1U<<27) /* allow jumbo frame */
125 #define RPTCSUMERR (1U<<3) /* log Rx checksum error */
126 #define RPTHDCOMP (1U<<2) /* log HD imcomplete condition */
127 #define RPTHDERR (1U<<1) /* log HD error */
128 #define DROPNOMATCH (1U<<0) /* drop no match frames */
129 #define xINTSR 0x200 /* aggregated interrupt status */
130 #define IRQ_RX (1U<<1) /* top level Rx interrupt */
131 #define IRQ_TX (1U<<0) /* top level Rx interrupt */
132 #define IRQ_UCODE (1U<<20) /* ucode load completed; W1C */
133 #define xINTAEN 0x204 /* INT_A enable */
134 #define xINTAE_SET 0x234 /* bit to set */
135 #define xINTAE_CLR 0x238 /* bit to clr */
136 #define xINTBEN 0x23c /* INT_B enable */
137 #define xINTBE_SET 0x240 /* bit to set */
138 #define xINTBE_CLR 0x244 /* bit to clr */
139 #define TXISR 0x400 /* transmit status; W1C */
140 #define TXIEN 0x404 /* tx interrupt enable */
141 #define TXIE_SET 0x428 /* bit to set */
142 #define TXIE_CLR 0x42c /* bit to clr */
143 #define TXI_NTOWNR (1U<<17) /* ??? desc array got empty */
144 #define TXI_TR_ERR (1U<<16) /* tx error */
145 #define TXI_TXDONE (1U<<15) /* tx completed */
146 #define TXI_TMREXP (1U<<14) /* coalesce timer expired */
147 #define RXISR 0x440 /* receive status; W1C */
148 #define RXIEN 0x444 /* rx interrupt enable */
149 #define RXIE_SET 0x468 /* bit to set */
150 #define RXIE_CLR 0x46c /* bit to clr */
151 #define RXI_RC_ERR (1U<<16) /* rx error */
152 #define RXI_PKTCNT (1U<<15) /* rx counter has new value */
153 #define RXI_TMREXP (1U<<14) /* coalesce timer expired */
154 /* 13 sets of special purpose desc interrupt handling register exist */
155 #define TDBA_LO 0x408 /* tdes array base addr 31:0 */
156 #define TDBA_HI 0x434 /* tdes array base addr 63:32 */
157 #define RDBA_LO 0x448 /* rdes array base addr 31:0 */
158 #define RDBA_HI 0x474 /* rdes array base addr 63:32 */
159 /* 13 pairs of special purpose desc array base address register exist */
160 #define TXCONF 0x430
161 #define RXCONF 0x470
162 #define DESCNF_UP (1U<<31) /* up-and-running */
163 #define DESCNF_CHRST (1U<<30) /* channel reset */
164 #define DESCNF_TMR (1U<<4) /* coalesce timer mode select */
165 #define DESCNF_LE (1) /* little endian desc format */
166 #define TXSUBMIT 0x410 /* submit loaded tx frame */
167 #define TXCLSCMAX 0x418 /* tx intr coalesce upper bound */
168 #define RXCLSCMAX 0x458 /* rx intr coalesce upper bound */
169 #define TXITIMER 0x420 /* coalesce timer usec, MSB to use */
170 #define RXITIMER 0x460 /* coalesce timer usec, MSB to use */
171 #define TXDONECNT 0x414 /* tx completed count, auto-zero */
172 #define RXDONECNT 0x454 /* rx available count, auto-zero */
173 #define UCODE_H2M 0x210 /* host2media engine ucode port */
174 #define UCODE_M2H 0x21c /* media2host engine ucode port */
175 #define CORESTAT 0x218 /* engine run state */
176 #define PKTSTOP (1U<<2)
177 #define M2HSTOP (1U<<1)
178 #define H2MSTOP (1U<<0)
179 #define DMACTL_H2M 0x214 /* host2media engine control */
180 #define DMACTL_M2H 0x220 /* media2host engine control */
181 #define DMACTL_STOP (1U<<0) /* instruct stop; self-clear */
182 #define UCODE_PKT 0x0d0 /* packet engine ucode port */
183 #define CLKEN 0x100 /* clock distribution enable */
184 #define CLK_G (1U<<5) /* feed clk domain E */
185 #define CLK_C (1U<<1) /* feed clk domain C */
186 #define CLK_D (1U<<0) /* feed clk domain D */
187 #define CLK_ALL 0x23 /* all above; 0x24 ??? 0x3f ??? */
188
189 /* GMAC register indirect access. thru MACCMD/MACDATA operation */
190 #define MACDATA 0x11c0 /* gmac register rd/wr data */
191 #define MACCMD 0x11c4 /* gmac register operation */
192 #define CMD_IOWR (1U<<28) /* write op */
193 #define CMD_BUSY (1U<<31) /* busy bit */
194 #define MACSTAT 0x1024 /* gmac status; ??? */
195 #define MACINTE 0x1028 /* interrupt enable; ??? */
196
197 #define FLOWTHR 0x11cc /* flow control threshold */
198 /* 31:16 pause threshold, 15:0 resume threshold */
199 #define INTF_SEL 0x11d4 /* ??? */
200
201 #define DESC_INIT 0x11fc /* write 1 for desc init, SC */
202 #define DESC_SRST 0x1204 /* write 1 for desc sw reset, SC */
203 #define MODE_TRANS 0x500 /* mode change completion status */
204 #define N2T_DONE (1U<<20) /* normal->taiki change completed */
205 #define T2N_DONE (1U<<19) /* taiki->normal change completed */
206 #define MACADRH 0x10c /* ??? */
207 #define MACADRL 0x110 /* ??? */
208 #define MCVER 0x22c /* micro controller version */
209 #define HWVER 0x230 /* hardware version */
210
211 /*
212 * GMAC registers are mostly identical to Synopsys DesignWare Core
213 * Ethernet. These must be handled by indirect access.
214 */
215 #define GMACMCR 0x0000 /* MAC configuration */
216 #define MCR_IBN (1U<<30) /* ??? */
217 #define MCR_CST (1U<<25) /* strip CRC */
218 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
219 #define MCR_WD (1U<<23) /* allow long >2048 tx frame */
220 #define MCR_JE (1U<<20) /* allow ~9018 tx jumbo frame */
221 #define MCR_IFG (7U<<17) /* 19:17 IFG value 0~7 */
222 #define MCR_DRCS (1U<<16) /* ignore (G)MII HDX Tx error */
223 #define MCR_USEMII (1U<<15) /* 1: RMII/MII, 0: RGMII (_PS) */
224 #define MCR_SPD100 (1U<<14) /* force speed 100 (_FES) */
225 #define MCR_DO (1U<<13) /* don't receive my own HDX Tx frames */
226 #define MCR_LOOP (1U<<12) /* run loop back */
227 #define MCR_USEFDX (1U<<11) /* force full duplex */
228 #define MCR_IPCEN (1U<<10) /* handle checksum */
229 #define MCR_DR (1U<<9) /* attempt no tx retry, send once */
230 #define MCR_LUD (1U<<8) /* link condition report when RGMII */
231 #define MCR_ACS (1U<<7) /* auto pad strip CRC */
232 #define MCR_TE (1U<<3) /* run Tx MAC engine, 0 to stop */
233 #define MCR_RE (1U<<2) /* run Rx MAC engine, 0 to stop */
234 #define MCR_PREA (3U) /* 1:0 preamble len. 0~2 */
235 #define _MCR_FDX 0x0000280c /* XXX TBD */
236 #define _MCR_HDX 0x0001a00c /* XXX TBD */
237 #define GMACAFR 0x0004 /* frame DA/SA address filter */
238 #define AFR_RA (1U<<31) /* accept all irrespective of filt. */
239 #define AFR_HPF (1U<<10) /* hash+perfect filter, or hash only */
240 #define AFR_SAF (1U<<9) /* source address filter */
241 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
242 #define AFR_PCF (2U<<6) /* ??? */
243 #define AFR_DBF (1U<<5) /* reject broadcast frame */
244 #define AFR_PM (1U<<4) /* accept all multicast frame */
245 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
246 #define AFR_MHTE (1U<<2) /* use multicast hash table */
247 #define AFR_UHTE (1U<<1) /* use hash table for unicast */
248 #define AFR_PR (1U<<0) /* run promisc mode */
249 #define GMACGAR 0x0010 /* MDIO operation */
250 #define GAR_PHY (11) /* 15:11 mii phy */
251 #define GAR_REG (6) /* 10:6 mii reg */
252 #define GAR_CLK (2) /* 5:2 mdio clock tick ratio */
253 #define GAR_IOWR (1U<<1) /* MDIO write op */
254 #define GAR_BUSY (1U<<0) /* busy bit */
255 #define GAR_MDIO_25_35MHZ 2
256 #define GAR_MDIO_35_60MHZ 3
257 #define GAR_MDIO_60_100MHZ 0
258 #define GAR_MDIO_100_150MHZ 1
259 #define GAR_MDIO_150_250MHZ 4
260 #define GAR_MDIO_250_300MHZ 5
261 #define GMACGDR 0x0014 /* MDIO rd/wr data */
262 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
263 /* 31:16 pause timer value, 5:4 pause timer threshold */
264 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
265 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
266 #define GMACIMPL 0x0020 /* implementation id XX.YY (no use) */
267 #define GMACISR 0x0038 /* interrupt status indication */
268 #define GMACIMR 0x003c /* interrupt mask to inhibit */
269 #define ISR_TS (1U<<9) /* time stamp operation detected */
270 #define ISR_CO (1U<<7) /* Rx checksum offload completed */
271 #define ISR_TX (1U<<6) /* Tx completed */
272 #define ISR_RX (1U<<5) /* Rx completed */
273 #define ISR_ANY (1U<<4) /* any of above 5-7 report */
274 #define ISR_LC (1U<<0) /* link status change detected */
275 #define GMACMAH0 0x0040 /* my own MAC address 47:32 */
276 #define GMACMAL0 0x0044 /* my own MAC address 31:0 */
277 #define GMACMAH(i) ((i)*8+0x40) /* supplemental MAC addr 1-15 */
278 #define GMACMAL(i) ((i)*8+0x44) /* 31:0 MAC address low part */
279 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
280 #define GMACAMAH(i) ((i)*8+0x800) /* supplemental MAC addr 16-31 */
281 #define GMACAMAL(i) ((i)*8+0x804) /* 31: MAC address low part */
282 /* supplimental MAH bit-31: slot in use, no other bit is effective */
283 #define GMACMHTH 0x0008 /* 64bit multicast hash table 63:32 */
284 #define GMACMHTL 0x000c /* 64bit multicast hash table 31:0 */
285 #define GMACMHT(i) ((i)*4+0x500) /* 256-bit alternative mcast hash 0-7 */
286 #define EMACVTAG 0x001c /* VLAN tag control */
287 #define VTAG_HASH (1U<<19) /* use VLAN tag hash table */
288 #define VTAG_SVLAN (1U<<18) /* handle type 0x88A8 SVLAN frame */
289 #define VTAG_INV (1U<<17) /* run inverse match logic */
290 #define VTAG_ETV (1U<<16) /* use only 12bit VID field to match */
291 /* 15:0 concat of PRIO+CFI+VID */
292 #define GMACVHT 0x0588 /* 16-bit VLAN tag hash */
293 #define GMACMIISR 0x00d8 /* resolved xMII link status */
294 #define MIISR_LUP (1U<<3) /* link up(1)/down(0) report */
295 #define MIISR_SPD (3U<<1) /* 2:1 speed 10(0)/100(1)/1000(2) */
296 #define MIISR_FDX (1U<<0) /* fdx detected */
297
298 #define GMACLPIS 0x0030 /* LPI control & status */
299 #define LPIS_TXA (1U<<19) /* complete Tx in progress and LPI */
300 #define LPIS_PLS (1U<<17)
301 #define LPIS_EN (1U<<16) /* 1: enter LPI mode, 0: exit */
302 #define LPIS_TEN (1U<<0) /* Tx LPI report */
303 #define GMACLPIC 0x0034 /* LPI timer control */
304 #define LPIC_LST (5) /* 16:5 ??? */
305 #define LPIC_TWT (0) /* 15:0 ??? */
306 #define GMACTSC 0x0700 /* timestamp control */
307 #define GMACSTM 0x071c /* start time */
308 #define GMACTGT 0x0720 /* target time */
309 #define GMACTSS 0x0728 /* timestamp status */
310 #define GMACPPS 0x072c /* PPS control */
311 #define GMACPPS0 0x0764 /* PPS0 width */
312
313 #define GMACBMR 0x1000 /* DMA bus mode control */
314 /* 24 multiply by x8 for RPBL & PBL values
315 * 23 use RPBL for Rx DMA
316 * 22:17 RPBL
317 * 16 fixed burst
318 * 15:14 priority between Rx and Tx
319 * 3 rxtx ratio 41
320 * 2 rxtx ratio 31
321 * 1 rxtx ratio 21
322 * 0 rxtx ratio 11
323 * 13:8 PBL possible DMA burst length
324 * 7 select alternative 32-byte descriptor format for new features
325 * 6:2 descriptor spacing. 0 for adjuscent
326 * 0 GMAC reset op. self-clear
327 */
328 #define _BMR 0x00412080 /* XXX TBD */
329 #define _BMR0 0x00020181 /* XXX TBD */
330 #define BMR_RST (1) /* reset op. self clear when done */
331 #define GMACTPD 0x1004 /* write any to resume tdes */
332 #define GMACRPD 0x1008 /* write any to resume rdes */
333 #define GMACRDLA 0x100c /* rdes base address 32bit paddr */
334 #define GMACTDLA 0x1010 /* tdes base address 32bit paddr */
335 #define _RDLA 0x18000 /* system RAM for GMAC rdes */
336 #define _TDLA 0x1c000 /* system RAM for GMAC tdes */
337 #define GMACDSR 0x1014 /* DMA status detail report; W1C */
338 #define GMACDIE 0x101c /* DMA interrupt enable */
339 #define DMAI_LPI (1U<<30) /* LPI interrupt */
340 #define DMAI_TTI (1U<<29) /* timestamp trigger interrupt */
341 #define DMAI_GMI (1U<<27) /* management counter interrupt */
342 #define DMAI_GLI (1U<<26) /* xMII link change detected */
343 #define DMAI_EB (23) /* 25:23 DMA bus error detected */
344 #define DMAI_TS (20) /* 22:20 Tx DMA state report */
345 #define DMAI_RS (17) /* 29:17 Rx DMA state report */
346 #define DMAI_NIS (1U<<16) /* normal interrupt summary; W1C */
347 #define DMAI_AIS (1U<<15) /* abnormal interrupt summary; W1C */
348 #define DMAI_ERI (1U<<14) /* the first Rx buffer is filled */
349 #define DMAI_FBI (1U<<13) /* DMA bus error detected */
350 #define DMAI_ETI (1U<<10) /* single frame Tx completed */
351 #define DMAI_RWT (1U<<9) /* longer than 2048 frame received */
352 #define DMAI_RPS (1U<<8) /* Rx process is now stopped */
353 #define DMAI_RU (1U<<7) /* Rx descriptor not available */
354 #define DMAI_RI (1U<<6) /* frame Rx completed by !R1_DIC */
355 #define DMAI_UNF (1U<<5) /* Tx underflow detected */
356 #define DMAI_OVF (1U<<4) /* receive buffer overflow detected */
357 #define DMAI_TJT (1U<<3) /* longer than 2048 frame sent */
358 #define DMAI_TU (1U<<2) /* Tx discriptor not available */
359 #define DMAI_TPS (1U<<1) /* transmission is stopped */
360 #define DMAI_TI (1U<<0) /* frame Tx completed by T0_IC */
361 #define GMACOMR 0x1018 /* DMA operation mode */
362 #define OMR_RSF (1U<<25) /* 1: Rx store&forword, 0: immed. */
363 #define OMR_TSF (1U<<21) /* 1: Tx store&forward, 0: immed. */
364 #define OMR_TTC (14) /* 16:14 Tx threshold */
365 #define OMR_ST (1U<<13) /* run Tx DMA engine, 0 to stop */
366 #define OMR_RFD (11) /* 12:11 Rx FIFO fill level */
367 #define OMR_EFC (1U<<8) /* transmit PAUSE to throttle Rx lvl. */
368 #define OMR_FEF (1U<<7) /* allow to receive error frames */
369 #define OMR_SR (1U<<1) /* run Rx DMA engine, 0 to stop */
370 #define GMACEVCS 0x1020 /* missed frame or ovf detected */
371 #define GMACRWDT 0x1024 /* enable rx watchdog timer interrupt */
372 #define GMACAXIB 0x1028 /* AXI bus mode control */
373 #define GMACAXIS 0x102c /* AXI status report */
374 /* 0x1048 current tx desc address */
375 /* 0x104c current rx desc address */
376 /* 0x1050 current tx buffer address */
377 /* 0x1054 current rx buffer address */
378 #define HWFEA 0x1058 /* DWC feature report */
379 #define FEA_EXDESC (1U<<24) /* new desc layout */
380 #define FEA_2COE (1U<<18) /* Rx type 2 IP checksum offload */
381 #define FEA_1COE (1U<<17) /* Rx type 1 IP checksum offload */
382 #define FEA_TXOE (1U<<16) /* Tx checksum offload */
383 #define FEA_MMC (1U<<11) /* RMON management block */
384
385 #define GMACEVCTL 0x0100 /* event counter control */
386 #define EVC_FHP (1U<<5) /* full-half preset */
387 #define EVC_CP (1U<<4) /* counters preset */
388 #define EVC_MCF (1U<<3) /* MMC counter freeze */
389 #define EVC_ROR (1U<<2) /* auto-zero on counter read */
390 #define EVC_CSR (1U<<1) /* counter stop rollover */
391 #define EVC_CR (1U<<0) /* reset counters */
392 #define GMACEVCNT(i) ((i)*4+0x114) /* 80 event counters 0x114 - 0x284 */
393
394 /*
395 * flash memory layout
396 * 0x00 - 07 48-bit MAC station address. 4 byte wise in BE order.
397 * 0x08 - 0b H->MAC xfer engine program start addr 63:32.
398 * 0x0c - 0f H2M program addr 31:0 (these are absolute addr, not offset)
399 * 0x10 - 13 H2M program length in 4 byte count.
400 * 0x14 - 0b M->HOST xfer engine program start addr 63:32.
401 * 0x18 - 0f M2H program addr 31:0 (absolute addr, not relative)
402 * 0x1c - 13 M2H program length in 4 byte count.
403 * 0x20 - 23 packet engine program addr 31:0, (absolute addr, not offset)
404 * 0x24 - 27 packet program length in 4 byte count.
405 *
406 * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
407 */
408
409 /*
410 * all below are software constraction.
411 */
412 #define MD_NTXSEGS 16 /* fixed */
413 #define MD_TXQUEUELEN 8 /* tunable */
414 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1)
415 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4)
416 #define MD_NTXDESC 128
417 #define MD_NTXDESC_MASK (MD_NTXDESC - 1)
418 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK)
419 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK)
420
421 #define MD_NRXDESC 64 /* tunable */
422 #define MD_NRXDESC_MASK (MD_NRXDESC - 1)
423 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK)
424
425 struct control_data {
426 struct tdes cd_txdescs[MD_NTXDESC];
427 struct rdes cd_rxdescs[MD_NRXDESC];
428 };
429 #define SCX_CDOFF(x) offsetof(struct control_data, x)
430 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
431 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
432
433 struct scx_txsoft {
434 struct mbuf *txs_mbuf; /* head of our mbuf chain */
435 bus_dmamap_t txs_dmamap; /* our DMA map */
436 int txs_firstdesc; /* first descriptor in packet */
437 int txs_lastdesc; /* last descriptor in packet */
438 int txs_ndesc; /* # of descriptors used */
439 };
440
441 struct scx_rxsoft {
442 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
443 bus_dmamap_t rxs_dmamap; /* our DMA map */
444 };
445
446 struct scx_softc {
447 device_t sc_dev; /* generic device information */
448 bus_space_tag_t sc_st; /* bus space tag */
449 bus_space_handle_t sc_sh; /* bus space handle */
450 bus_size_t sc_sz; /* csr map size */
451 bus_space_handle_t sc_eesh; /* eeprom section handle */
452 bus_size_t sc_eesz; /* eeprom map size */
453 bus_dma_tag_t sc_dmat; /* bus DMA tag */
454 struct ethercom sc_ethercom; /* Ethernet common data */
455 struct mii_data sc_mii; /* MII */
456 callout_t sc_callout; /* PHY monitor callout */
457 bus_dma_segment_t sc_seg; /* descriptor store seg */
458 int sc_nseg; /* descriptor store nseg */
459 void *sc_ih; /* interrupt cookie */
460 int sc_phy_id; /* PHY address */
461 int sc_flowflags; /* 802.3x PAUSE flow control */
462 uint32_t sc_mdclk; /* GAR 5:2 clock selection */
463 uint32_t sc_t0cotso; /* T0_CSUM | T0_TSO to run */
464 int sc_100mii; /* 1 for RMII/MII, 0 for RGMII */
465 int sc_phandle; /* fdt phandle */
466 uint64_t sc_freq;
467
468 bus_dmamap_t sc_cddmamap; /* control data DMA map */
469 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
470
471 struct control_data *sc_control_data;
472 #define sc_txdescs sc_control_data->cd_txdescs
473 #define sc_rxdescs sc_control_data->cd_rxdescs
474
475 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
476 struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
477 int sc_txfree; /* number of free Tx descriptors */
478 int sc_txnext; /* next ready Tx descriptor */
479 int sc_txsfree; /* number of free Tx jobs */
480 int sc_txsnext; /* next ready Tx job */
481 int sc_txsdirty; /* dirty Tx jobs */
482 int sc_rxptr; /* next ready Rx descriptor/descsoft */
483
484 krndsource_t rnd_source; /* random source */
485 #ifdef GMAC_EVENT_COUNTERS
486 /* 80 event counters exist */
487 #endif
488 };
489
490 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
491 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
492
493 #define SCX_CDTXSYNC(sc, x, n, ops) \
494 do { \
495 int __x, __n; \
496 \
497 __x = (x); \
498 __n = (n); \
499 \
500 /* If it will wrap around, sync to the end of the ring. */ \
501 if ((__x + __n) > MD_NTXDESC) { \
502 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
503 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
504 (MD_NTXDESC - __x), (ops)); \
505 __n -= (MD_NTXDESC - __x); \
506 __x = 0; \
507 } \
508 \
509 /* Now sync whatever is left. */ \
510 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
511 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
512 } while (/*CONSTCOND*/0)
513
514 #define SCX_CDRXSYNC(sc, x, ops) \
515 do { \
516 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
517 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
518 } while (/*CONSTCOND*/0)
519
520 #define SCX_INIT_RXDESC(sc, x) \
521 do { \
522 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
523 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
524 struct mbuf *__m = __rxs->rxs_mbuf; \
525 bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr; \
526 __m->m_data = __m->m_ext.ext_buf; \
527 __rxd->r3 = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_len); \
528 __rxd->r2 = htole32(BUS_ADDR_LO32(__paddr)); \
529 __rxd->r1 = htole32(BUS_ADDR_HI32(__paddr)); \
530 __rxd->r0 = htole32(R0_OWN | R0_FS | R0_LS); \
531 if ((x) == MD_NRXDESC - 1) __rxd->r0 |= htole32(R0_EOD); \
532 } while (/*CONSTCOND*/0)
533
534 /* memory mapped CSR register access */
535 #define CSR_READ(sc,off) \
536 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
537 #define CSR_WRITE(sc,off,val) \
538 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
539
540 /* flash memory access */
541 #define EE_READ(sc,off) \
542 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
543
544 static int scx_fdt_match(device_t, cfdata_t, void *);
545 static void scx_fdt_attach(device_t, device_t, void *);
546 static int scx_acpi_match(device_t, cfdata_t, void *);
547 static void scx_acpi_attach(device_t, device_t, void *);
548
549 const CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
550 scx_fdt_match, scx_fdt_attach, NULL, NULL);
551
552 const CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
553 scx_acpi_match, scx_acpi_attach, NULL, NULL);
554
555 static void scx_attach_i(struct scx_softc *);
556 static void scx_reset(struct scx_softc *);
557 static int scx_init(struct ifnet *);
558 static void scx_stop(struct ifnet *, int);
559 static int scx_ioctl(struct ifnet *, u_long, void *);
560 static void scx_set_rcvfilt(struct scx_softc *);
561 static void scx_start(struct ifnet *);
562 static void scx_watchdog(struct ifnet *);
563 static int scx_intr(void *);
564 static void txreap(struct scx_softc *);
565 static void rxintr(struct scx_softc *);
566 static int add_rxbuf(struct scx_softc *, int);
567 static void rxdrain(struct scx_softc *sc);
568 static void mii_statchg(struct ifnet *);
569 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
570 static int mii_readreg(device_t, int, int, uint16_t *);
571 static int mii_writereg(device_t, int, int, uint16_t);
572 static void phy_tick(void *);
573
574 static void loaducode(struct scx_softc *);
575 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
576
577 static int get_mdioclk(uint32_t);
578
579 #define WAIT_FOR_SET(sc, reg, set, fail) \
580 wait_for_bits(sc, reg, set, ~0, fail)
581 #define WAIT_FOR_CLR(sc, reg, clr, fail) \
582 wait_for_bits(sc, reg, 0, clr, fail)
583
584 static int
585 wait_for_bits(struct scx_softc *sc, int reg,
586 uint32_t set, uint32_t clr, uint32_t fail)
587 {
588 uint32_t val;
589 int ntries;
590
591 for (ntries = 0; ntries < 1000; ntries++) {
592 val = CSR_READ(sc, reg);
593 if ((val & set) || !(val & clr))
594 return 0;
595 if (val & fail)
596 return 1;
597 DELAY(1);
598 }
599 return 1;
600 }
601
602 /* GMAC register indirect access */
603 static int
604 mac_read(struct scx_softc *sc, int reg)
605 {
606
607 CSR_WRITE(sc, MACCMD, reg | CMD_BUSY);
608 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
609 return CSR_READ(sc, MACDATA);
610 }
611
612 static void
613 mac_write(struct scx_softc *sc, int reg, int val)
614 {
615
616 CSR_WRITE(sc, MACDATA, val);
617 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY);
618 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
619 }
620
621 /* dig and decode "clock-frequency" value for a given clkname */
622 static int
623 get_clk_freq(int phandle, const char *clkname)
624 {
625 u_int index, n, cells;
626 const u_int *p;
627 int err, len, resid;
628 unsigned int freq = 0;
629
630 err = fdtbus_get_index(phandle, "clock-names", clkname, &index);
631 if (err == -1)
632 return -1;
633 p = fdtbus_get_prop(phandle, "clocks", &len);
634 if (p == NULL)
635 return -1;
636 for (n = 0, resid = len; resid > 0; n++) {
637 const int cc_phandle =
638 fdtbus_get_phandle_from_native(be32toh(p[0]));
639 if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells))
640 return -1;
641 if (n == index) {
642 if (of_getprop_uint32(cc_phandle,
643 "clock-frequency", &freq))
644 return -1;
645 return freq;
646 }
647 resid -= (cells + 1) * 4;
648 p += (cells + 1) * 4;
649 }
650 return -1;
651 }
652
653 static const struct device_compatible_entry compat_data[] = {
654 { .compat = "socionext,synquacer-netsec" },
655 DEVICE_COMPAT_EOL
656 };
657 static const struct device_compatible_entry compatible[] = {
658 { .compat = "SCX0001" },
659 DEVICE_COMPAT_EOL
660 };
661
662 static int
663 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
664 {
665 struct fdt_attach_args * const faa = aux;
666
667 return of_compatible_match(faa->faa_phandle, compat_data);
668 }
669
670 static void
671 scx_fdt_attach(device_t parent, device_t self, void *aux)
672 {
673 struct scx_softc * const sc = device_private(self);
674 struct fdt_attach_args * const faa = aux;
675 const int phandle = faa->faa_phandle;
676 bus_space_handle_t bsh;
677 bus_space_handle_t eebsh;
678 bus_addr_t addr[2];
679 bus_size_t size[2];
680 char intrstr[128];
681 int phy_phandle;
682 bus_addr_t phy_id;
683 const char *phy_type;
684 long ref_clk;
685
686 aprint_naive("\n");
687 aprint_normal(": Socionext Gigabit Ethernet controller\n");
688
689 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
690 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
691 aprint_error_dev(self, "unable to map device csr\n");
692 return;
693 }
694 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
695 aprint_error_dev(self, "failed to decode interrupt\n");
696 goto fail;
697 }
698 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
699 NOT_MP_SAFE, scx_intr, sc);
700 if (sc->sc_ih == NULL) {
701 aprint_error_dev(self, "couldn't establish interrupt\n");
702 goto fail;
703 }
704 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
705 || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
706 aprint_error_dev(self, "unable to map device eeprom\n");
707 goto fail;
708 }
709
710 sc->sc_dev = self;
711 sc->sc_st = faa->faa_bst;
712 sc->sc_sh = bsh;
713 sc->sc_sz = size[0];
714 sc->sc_eesh = eebsh;
715 sc->sc_eesz = size[1];
716 sc->sc_dmat = faa->faa_dmat;
717 sc->sc_phandle = phandle;
718
719 phy_type = fdtbus_get_string(phandle, "phy-mode");
720 if (phy_type == NULL)
721 aprint_error_dev(self, "missing 'phy-mode' property\n");
722 phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
723 if (phy_phandle == -1
724 || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0)
725 phy_id = MII_PHY_ANY;
726 ref_clk = get_clk_freq(phandle, "phy_ref_clk");
727 if (ref_clk == -1)
728 ref_clk = 250 * 1000 * 1000;
729
730 sc->sc_100mii = (phy_type && strncmp(phy_type, "rgmii", 5) != 0);
731 sc->sc_phy_id = phy_id;
732 sc->sc_freq = ref_clk;
733
734 scx_attach_i(sc);
735 return;
736 fail:
737 if (sc->sc_eesz)
738 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
739 if (sc->sc_sz)
740 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
741 return;
742 }
743
744 static int
745 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
746 {
747 struct acpi_attach_args *aa = aux;
748
749 return acpi_compatible_match(aa, compatible);
750 }
751
752 static void
753 scx_acpi_attach(device_t parent, device_t self, void *aux)
754 {
755 struct scx_softc * const sc = device_private(self);
756 struct acpi_attach_args * const aa = aux;
757 ACPI_HANDLE handle = aa->aa_node->ad_handle;
758 bus_space_handle_t bsh, eebsh;
759 struct acpi_resources res;
760 struct acpi_mem *mem;
761 struct acpi_irq *irq;
762 ACPI_INTEGER phy_type, phy_id, ref_freq;
763 ACPI_STATUS rv;
764
765 aprint_naive("\n");
766 aprint_normal(": Socionext Gigabit Ethernet controller\n");
767
768 rv = acpi_resource_parse(self, handle, "_CRS",
769 &res, &acpi_resource_parse_ops_default);
770 if (ACPI_FAILURE(rv)) {
771 aprint_error_dev(self, "missing crs resources\n");
772 return;
773 }
774 mem = acpi_res_mem(&res, 0);
775 irq = acpi_res_irq(&res, 0);
776 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
777 aprint_error_dev(self, "incomplete crs resources\n");
778 return;
779 }
780 if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
781 &bsh) != 0) {
782 aprint_error_dev(self, "couldn't map registers\n");
783 return;
784 }
785 sc->sc_sz = mem->ar_length;
786 sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
787 NOT_MP_SAFE, scx_intr, sc, device_xname(self));
788 if (sc->sc_ih == NULL) {
789 aprint_error_dev(self, "couldn't establish interrupt\n");
790 goto fail;
791 }
792 mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
793 if (mem == NULL || mem->ar_length == 0) {
794 aprint_error_dev(self, "incomplete eeprom resources\n");
795 goto fail;
796 }
797 if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
798 &eebsh)) {
799 aprint_error_dev(self, "couldn't map registers\n");
800 goto fail;
801 }
802 sc->sc_eesz = mem->ar_length;
803
804 rv = acpi_dsd_integer(handle, "max-speed", &phy_type);
805 if (ACPI_FAILURE(rv)) {
806 aprint_error_dev(self, "missing 'max-speed' property\n");
807 phy_type = 1000;
808 }
809 rv = acpi_dsd_integer(handle, "phy-channel", &phy_id);
810 if (ACPI_FAILURE(rv))
811 phy_id = 7;
812 rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
813 &ref_freq);
814 if (ACPI_FAILURE(rv))
815 ref_freq = 250 * 1000 * 1000;
816
817 sc->sc_dev = self;
818 sc->sc_st = aa->aa_memt;
819 sc->sc_sh = bsh;
820 sc->sc_eesh = eebsh;
821 sc->sc_dmat = aa->aa_dmat64;
822
823 aprint_normal_dev(self,
824 "phy type %d, phy id %d, freq %ld\n", (int)phy_type, (int)phy_id, ref_freq);
825 sc->sc_100mii = (phy_type != 1000);
826 sc->sc_phy_id = (int)phy_id;
827 sc->sc_freq = ref_freq;
828 aprint_normal_dev(self,
829 "GMACGAR %08x\n", mac_read(sc, GMACGAR));
830
831 scx_attach_i(sc);
832
833 acpi_resource_cleanup(&res);
834 return;
835 fail:
836 if (sc->sc_eesz > 0)
837 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
838 if (sc->sc_sz > 0)
839 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
840 acpi_resource_cleanup(&res);
841 return;
842 }
843
844 static void
845 scx_attach_i(struct scx_softc *sc)
846 {
847 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
848 struct mii_data * const mii = &sc->sc_mii;
849 struct ifmedia * const ifm = &mii->mii_media;
850 uint32_t which, dwimp, dwfea;
851 uint8_t enaddr[ETHER_ADDR_LEN];
852 bus_dma_segment_t seg;
853 uint32_t csr;
854 int i, nseg, error = 0;
855
856 which = CSR_READ(sc, HWVER); /* Socionext version 5.00xx */
857 dwimp = mac_read(sc, GMACIMPL); /* DWC EMAC XX.YY */
858 dwfea = mac_read(sc, HWFEA); /* DWC feature */
859 aprint_normal_dev(sc->sc_dev,
860 "Socionext NetSec GbE %x.%x"
861 " (impl 0x%x, feature 0x%x)\n",
862 which >> 16, which & 0xffff,
863 dwimp, dwfea);
864
865 /* fetch MAC address in flash. stored in big endian order */
866 csr = EE_READ(sc, 0x00);
867 enaddr[0] = csr >> 24;
868 enaddr[1] = csr >> 16;
869 enaddr[2] = csr >> 8;
870 enaddr[3] = csr;
871 csr = EE_READ(sc, 0x04);
872 enaddr[4] = csr >> 24;
873 enaddr[5] = csr >> 16;
874 aprint_normal_dev(sc->sc_dev,
875 "Ethernet address %s\n", ether_sprintf(enaddr));
876
877 sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */
878
879 loaducode(sc);
880
881 mii->mii_ifp = ifp;
882 mii->mii_readreg = mii_readreg;
883 mii->mii_writereg = mii_writereg;
884 mii->mii_statchg = mii_statchg;
885
886 sc->sc_ethercom.ec_mii = mii;
887 ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
888 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
889 MII_OFFSET_ANY, MIIF_DOPAUSE);
890 if (LIST_FIRST(&mii->mii_phys) == NULL) {
891 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
892 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
893 } else
894 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
895 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
896
897 /*
898 * Allocate the control data structures, and create and load the
899 * DMA map for it.
900 */
901 error = bus_dmamem_alloc(sc->sc_dmat,
902 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
903 if (error != 0) {
904 aprint_error_dev(sc->sc_dev,
905 "unable to allocate control data, error = %d\n", error);
906 goto fail_0;
907 }
908 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
909 sizeof(struct control_data), (void **)&sc->sc_control_data,
910 BUS_DMA_COHERENT);
911 if (error != 0) {
912 aprint_error_dev(sc->sc_dev,
913 "unable to map control data, error = %d\n", error);
914 goto fail_1;
915 }
916 error = bus_dmamap_create(sc->sc_dmat,
917 sizeof(struct control_data), 1,
918 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
919 if (error != 0) {
920 aprint_error_dev(sc->sc_dev,
921 "unable to create control data DMA map, "
922 "error = %d\n", error);
923 goto fail_2;
924 }
925 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
926 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
927 if (error != 0) {
928 aprint_error_dev(sc->sc_dev,
929 "unable to load control data DMA map, error = %d\n",
930 error);
931 goto fail_3;
932 }
933 for (i = 0; i < MD_TXQUEUELEN; i++) {
934 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
935 MD_NTXSEGS, MCLBYTES, 0, 0,
936 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
937 aprint_error_dev(sc->sc_dev,
938 "unable to create tx DMA map %d, error = %d\n",
939 i, error);
940 goto fail_4;
941 }
942 }
943 for (i = 0; i < MD_NRXDESC; i++) {
944 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
945 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
946 aprint_error_dev(sc->sc_dev,
947 "unable to create rx DMA map %d, error = %d\n",
948 i, error);
949 goto fail_5;
950 }
951 sc->sc_rxsoft[i].rxs_mbuf = NULL;
952 }
953 sc->sc_seg = seg;
954 sc->sc_nseg = nseg;
955 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
956
957 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
958 ifp->if_softc = sc;
959 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
960 ifp->if_ioctl = scx_ioctl;
961 ifp->if_start = scx_start;
962 ifp->if_watchdog = scx_watchdog;
963 ifp->if_init = scx_init;
964 ifp->if_stop = scx_stop;
965 IFQ_SET_READY(&ifp->if_snd);
966
967 sc->sc_flowflags = 0;
968
969 if_attach(ifp);
970 if_deferred_start_init(ifp, NULL);
971 ether_ifattach(ifp, enaddr);
972
973 callout_init(&sc->sc_callout, 0);
974 callout_setfunc(&sc->sc_callout, phy_tick, sc);
975
976 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
977 RND_TYPE_NET, RND_FLAG_DEFAULT);
978
979 return;
980
981 fail_5:
982 for (i = 0; i < MD_NRXDESC; i++) {
983 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
984 bus_dmamap_destroy(sc->sc_dmat,
985 sc->sc_rxsoft[i].rxs_dmamap);
986 }
987 fail_4:
988 for (i = 0; i < MD_TXQUEUELEN; i++) {
989 if (sc->sc_txsoft[i].txs_dmamap != NULL)
990 bus_dmamap_destroy(sc->sc_dmat,
991 sc->sc_txsoft[i].txs_dmamap);
992 }
993 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
994 fail_3:
995 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
996 fail_2:
997 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
998 sizeof(struct control_data));
999 fail_1:
1000 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
1001 fail_0:
1002 if (sc->sc_phandle)
1003 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
1004 else
1005 acpi_intr_disestablish(sc->sc_ih);
1006 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1007 return;
1008 }
1009
1010 static void
1011 scx_reset(struct scx_softc *sc)
1012 {
1013 int loop = 0, busy;
1014
1015 mac_write(sc, GMACOMR, 0);
1016 mac_write(sc, GMACBMR, BMR_RST);
1017 do {
1018 DELAY(1);
1019 busy = mac_read(sc, GMACBMR) & BMR_RST;
1020 } while (++loop < 3000 && busy);
1021 mac_write(sc, GMACBMR, _BMR);
1022 mac_write(sc, GMACAFR, 0);
1023
1024 CSR_WRITE(sc, CLKEN, CLK_ALL); /* distribute clock sources */
1025 CSR_WRITE(sc, SWRESET, 0); /* reset operation */
1026 CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */
1027 CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1028 WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
1029
1030 CSR_WRITE(sc, TXISR, ~0);
1031 CSR_WRITE(sc, xINTAE_CLR, ~0);
1032
1033 mac_write(sc, GMACEVCTL, 1);
1034 }
1035
1036 static int
1037 scx_init(struct ifnet *ifp)
1038 {
1039 struct scx_softc *sc = ifp->if_softc;
1040 const uint8_t *ea = CLLADDR(ifp->if_sadl);
1041 paddr_t paddr;
1042 uint32_t csr;
1043 int i, error;
1044
1045 /* Cancel pending I/O. */
1046 scx_stop(ifp, 0);
1047
1048 /* Reset the chip to a known state. */
1049 scx_reset(sc);
1050
1051 /* build sane Tx */
1052 memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
1053 sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
1054 SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
1055 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1056 sc->sc_txfree = MD_NTXDESC;
1057 sc->sc_txnext = 0;
1058 for (i = 0; i < MD_TXQUEUELEN; i++)
1059 sc->sc_txsoft[i].txs_mbuf = NULL;
1060 sc->sc_txsfree = MD_TXQUEUELEN;
1061 sc->sc_txsnext = 0;
1062 sc->sc_txsdirty = 0;
1063
1064 /* load Rx descriptors with fresh mbuf */
1065 for (i = 0; i < MD_NRXDESC; i++) {
1066 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
1067 if ((error = add_rxbuf(sc, i)) != 0) {
1068 aprint_error_dev(sc->sc_dev,
1069 "unable to allocate or map rx "
1070 "buffer %d, error = %d\n",
1071 i, error);
1072 rxdrain(sc);
1073 goto out;
1074 }
1075 }
1076 else
1077 SCX_INIT_RXDESC(sc, i);
1078 }
1079 sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_EOD;
1080 sc->sc_rxptr = 0;
1081 sc->sc_rxptr = 0;
1082
1083 paddr = SCX_CDTXADDR(sc, 0); /* tdes array (ring#0) */
1084 mac_write(sc, TDBA_HI, BUS_ADDR_HI32(paddr));
1085 mac_write(sc, TDBA_LO, BUS_ADDR_LO32(paddr));
1086 paddr = SCX_CDRXADDR(sc, 0); /* rdes array (ring#1) */
1087 mac_write(sc, RDBA_HI, BUS_ADDR_HI32(paddr));
1088 mac_write(sc, RDBA_LO, BUS_ADDR_LO32(paddr));
1089
1090 CSR_WRITE(sc, TXCONF, DESCNF_LE); /* little endian */
1091 CSR_WRITE(sc, RXCONF, DESCNF_LE); /* little endian */
1092
1093 /* set my address in perfect match slot 0. little endian order */
1094 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
1095 mac_write(sc, GMACMAL0, csr);
1096 csr = (ea[5] << 8) | ea[4];
1097 mac_write(sc, GMACMAH0, csr);
1098
1099 /* accept multicast frame or run promisc mode */
1100 scx_set_rcvfilt(sc);
1101
1102 /* set current media */
1103 if ((error = ether_mediachange(ifp)) != 0)
1104 goto out;
1105
1106 CSR_WRITE(sc, DESC_SRST, 01);
1107 WAIT_FOR_CLR(sc, DESC_SRST, 01, 0);
1108
1109 CSR_WRITE(sc, DESC_INIT, 01);
1110 WAIT_FOR_CLR(sc, DESC_INIT, 01, 0);
1111
1112 CSR_WRITE(sc, GMACRDLA, _RDLA); /* GMAC rdes store */
1113 CSR_WRITE(sc, GMACTDLA, _TDLA); /* GMAC tdes store */
1114
1115 CSR_WRITE(sc, FLOWTHR, (48<<16) | 36); /* pause|resume threshold */
1116 mac_write(sc, GMACFCR, 256 << 16); /* 31:16 pause value */
1117
1118 CSR_WRITE(sc, RXIE_CLR, ~0); /* clear Rx interrupt enable */
1119 CSR_WRITE(sc, TXIE_CLR, ~0); /* clear Tx interrupt enable */
1120
1121 CSR_WRITE(sc, RXCLSCMAX, 8); /* Rx coalesce upper bound */
1122 CSR_WRITE(sc, TXCLSCMAX, 8); /* Tx coalesce upper bound */
1123 CSR_WRITE(sc, RXITIMER, 500); /* Rx co. timer usec */
1124 CSR_WRITE(sc, TXITIMER, 500); /* Tx co. timer usec */
1125
1126 CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP);
1127 CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP);
1128
1129 CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX);
1130
1131 /* kick to start GMAC engine */
1132 csr = mac_read(sc, GMACOMR);
1133 mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);
1134
1135 ifp->if_flags |= IFF_RUNNING;
1136 ifp->if_flags &= ~IFF_OACTIVE;
1137
1138 /* start one second timer */
1139 callout_schedule(&sc->sc_callout, hz);
1140 out:
1141 return error;
1142 }
1143
1144 static void
1145 scx_stop(struct ifnet *ifp, int disable)
1146 {
1147 struct scx_softc *sc = ifp->if_softc;
1148
1149 /* Stop the one second clock. */
1150 callout_stop(&sc->sc_callout);
1151
1152 /* Down the MII. */
1153 mii_down(&sc->sc_mii);
1154
1155 /* Mark the interface down and cancel the watchdog timer. */
1156 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1157 ifp->if_timer = 0;
1158
1159 CSR_WRITE(sc, xINTAE_CLR, ~0);
1160 CSR_WRITE(sc, TXISR, ~0);
1161 CSR_WRITE(sc, RXISR, ~0);
1162
1163 if (CSR_READ(sc, CORESTAT) != 0) {
1164 CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
1165 CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
1166
1167 WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP, 0);
1168 WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP, 0);
1169 }
1170 }
1171
1172 static int
1173 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1174 {
1175 struct scx_softc *sc = ifp->if_softc;
1176 struct ifreq *ifr = (struct ifreq *)data;
1177 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1178 int s, error;
1179
1180 s = splnet();
1181
1182 switch (cmd) {
1183 case SIOCSIFMEDIA:
1184 /* Flow control requires full-duplex mode. */
1185 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1186 (ifr->ifr_media & IFM_FDX) == 0)
1187 ifr->ifr_media &= ~IFM_ETH_FMASK;
1188 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1189 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1190 /* We can do both TXPAUSE and RXPAUSE. */
1191 ifr->ifr_media |=
1192 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1193 }
1194 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1195 }
1196 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
1197 break;
1198 default:
1199 error = ether_ioctl(ifp, cmd, data);
1200 if (error != ENETRESET)
1201 break;
1202 error = 0;
1203 if (cmd == SIOCSIFCAP)
1204 error = (*ifp->if_init)(ifp);
1205 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1206 ;
1207 else if (ifp->if_flags & IFF_RUNNING) {
1208 /*
1209 * Multicast list has changed; set the hardware filter
1210 * accordingly.
1211 */
1212 scx_set_rcvfilt(sc);
1213 }
1214 break;
1215 }
1216
1217 splx(s);
1218 return error;
1219 }
1220
1221 static uint32_t
1222 bit_reverse_32(uint32_t x)
1223 {
1224 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
1225 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
1226 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
1227 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
1228 return (x >> 16) | (x << 16);
1229 }
1230
1231 static void
1232 scx_set_rcvfilt(struct scx_softc *sc)
1233 {
1234 struct ethercom * const ec = &sc->sc_ethercom;
1235 struct ifnet * const ifp = &ec->ec_if;
1236 struct ether_multistep step;
1237 struct ether_multi *enm;
1238 uint32_t mchash[2]; /* 2x 32 = 64 bit */
1239 uint32_t csr, crc;
1240 int i;
1241
1242 csr = mac_read(sc, GMACAFR);
1243 csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1244 mac_write(sc, GMACAFR, csr);
1245
1246 /* clear 15 entry supplemental perfect match filter */
1247 for (i = 1; i < 16; i++)
1248 mac_write(sc, GMACMAH(i), 0);
1249 /* build 64 bit multicast hash filter */
1250 crc = mchash[1] = mchash[0] = 0;
1251
1252 ETHER_LOCK(ec);
1253 if (ifp->if_flags & IFF_PROMISC) {
1254 ec->ec_flags |= ETHER_F_ALLMULTI;
1255 ETHER_UNLOCK(ec);
1256 /* run promisc. mode */
1257 csr |= AFR_PR;
1258 goto update;
1259 }
1260 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1261 ETHER_FIRST_MULTI(step, ec, enm);
1262 i = 1; /* slot 0 is occupied */
1263 while (enm != NULL) {
1264 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1265 /*
1266 * We must listen to a range of multicast addresses.
1267 * For now, just accept all multicasts, rather than
1268 * trying to set only those filter bits needed to match
1269 * the range. (At this time, the only use of address
1270 * ranges is for IP multicast routing, for which the
1271 * range is big enough to require all bits set.)
1272 */
1273 ec->ec_flags |= ETHER_F_ALLMULTI;
1274 ETHER_UNLOCK(ec);
1275 /* accept all multi */
1276 csr |= AFR_PM;
1277 goto update;
1278 }
1279 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1280 if (i < 16) {
1281 /* use 15 entry perfect match filter */
1282 uint32_t addr;
1283 uint8_t *ep = enm->enm_addrlo;
1284 addr = (ep[3] << 24) | (ep[2] << 16)
1285 | (ep[1] << 8) | ep[0];
1286 mac_write(sc, GMACMAL(i), addr);
1287 addr = (ep[5] << 8) | ep[4];
1288 mac_write(sc, GMACMAH(i), addr | 1U<<31);
1289 } else {
1290 /* use hash table when too many */
1291 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1292 crc = bit_reverse_32(~crc);
1293 /* 1(31) 5(30:26) bit sampling */
1294 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1295 }
1296 ETHER_NEXT_MULTI(step, enm);
1297 i++;
1298 }
1299 ETHER_UNLOCK(ec);
1300 if (crc)
1301 csr |= AFR_MHTE;
1302 csr |= AFR_HPF; /* use hash+perfect */
1303 mac_write(sc, GMACMHTH, mchash[1]);
1304 mac_write(sc, GMACMHTL, mchash[0]);
1305 update:
1306 /* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */
1307 mac_write(sc, GMACAFR, csr);
1308 return;
1309 }
1310
1311 static void
1312 scx_start(struct ifnet *ifp)
1313 {
1314 struct scx_softc *sc = ifp->if_softc;
1315 struct mbuf *m0;
1316 struct scx_txsoft *txs;
1317 bus_dmamap_t dmamap;
1318 int error, nexttx, lasttx, ofree, seg;
1319 uint32_t tdes0;
1320
1321 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1322 return;
1323
1324 /* Remember the previous number of free descriptors. */
1325 ofree = sc->sc_txfree;
1326
1327 /*
1328 * Loop through the send queue, setting up transmit descriptors
1329 * until we drain the queue, or use up all available transmit
1330 * descriptors.
1331 */
1332 for (;;) {
1333 IFQ_POLL(&ifp->if_snd, m0);
1334 if (m0 == NULL)
1335 break;
1336
1337 if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1338 txreap(sc);
1339 if (sc->sc_txsfree == 0)
1340 break;
1341 }
1342 txs = &sc->sc_txsoft[sc->sc_txsnext];
1343 dmamap = txs->txs_dmamap;
1344
1345 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1346 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1347 if (error) {
1348 if (error == EFBIG) {
1349 aprint_error_dev(sc->sc_dev,
1350 "Tx packet consumes too many "
1351 "DMA segments, dropping...\n");
1352 IFQ_DEQUEUE(&ifp->if_snd, m0);
1353 m_freem(m0);
1354 continue;
1355 }
1356 /* Short on resources, just stop for now. */
1357 break;
1358 }
1359
1360 if (dmamap->dm_nsegs > sc->sc_txfree) {
1361 /*
1362 * Not enough free descriptors to transmit this
1363 * packet. We haven't committed anything yet,
1364 * so just unload the DMA map, put the packet
1365 * back on the queue, and punt. Notify the upper
1366 * layer that there are not more slots left.
1367 */
1368 ifp->if_flags |= IFF_OACTIVE;
1369 bus_dmamap_unload(sc->sc_dmat, dmamap);
1370 break;
1371 }
1372
1373 IFQ_DEQUEUE(&ifp->if_snd, m0);
1374
1375 /*
1376 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1377 */
1378
1379 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1380 BUS_DMASYNC_PREWRITE);
1381
1382 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1383 lasttx = -1;
1384 for (nexttx = sc->sc_txnext, seg = 0;
1385 seg < dmamap->dm_nsegs;
1386 seg++, nexttx = MD_NEXTTX(nexttx)) {
1387 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1388 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1389 /*
1390 * If this is the first descriptor we're
1391 * enqueueing, don't set the OWN bit just
1392 * yet. That could cause a race condition.
1393 * We'll do it below.
1394 */
1395 tdes->t3 = htole32(dmamap->dm_segs[seg].ds_len);
1396 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1397 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1398 tdes->t0 = htole32(tdes0 | (tdes->t0 & T0_EOD) |
1399 (15 << T0_TDRID) | T0_PT |
1400 sc->sc_t0cotso | T0_TRS);
1401 tdes0 = T0_OWN; /* 2nd and other segments */
1402 /* NB; t0 DRID field contains zero */
1403 lasttx = nexttx;
1404 }
1405
1406 /* Write deferred 1st segment T0_OWN at the final stage */
1407 sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS);
1408 sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN);
1409 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1410 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1411
1412 /* submit one frame to xmit */
1413 CSR_WRITE(sc, TXSUBMIT, 1);
1414
1415 txs->txs_mbuf = m0;
1416 txs->txs_firstdesc = sc->sc_txnext;
1417 txs->txs_lastdesc = lasttx;
1418 txs->txs_ndesc = dmamap->dm_nsegs;
1419
1420 sc->sc_txfree -= txs->txs_ndesc;
1421 sc->sc_txnext = nexttx;
1422 sc->sc_txsfree--;
1423 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1424 /*
1425 * Pass the packet to any BPF listeners.
1426 */
1427 bpf_mtap(ifp, m0, BPF_D_OUT);
1428 }
1429
1430 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1431 /* No more slots left; notify upper layer. */
1432 ifp->if_flags |= IFF_OACTIVE;
1433 }
1434 if (sc->sc_txfree != ofree) {
1435 /* Set a watchdog timer in case the chip flakes out. */
1436 ifp->if_timer = 5;
1437 }
1438 }
1439
1440 static void
1441 scx_watchdog(struct ifnet *ifp)
1442 {
1443 struct scx_softc *sc = ifp->if_softc;
1444
1445 /*
1446 * Since we're not interrupting every packet, sweep
1447 * up before we report an error.
1448 */
1449 txreap(sc);
1450
1451 if (sc->sc_txfree != MD_NTXDESC) {
1452 aprint_error_dev(sc->sc_dev,
1453 "device timeout (txfree %d txsfree %d txnext %d)\n",
1454 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1455 if_statinc(ifp, if_oerrors);
1456
1457 /* Reset the interface. */
1458 scx_init(ifp);
1459 }
1460
1461 scx_start(ifp);
1462 }
1463
1464 static int
1465 scx_intr(void *arg)
1466 {
1467 struct scx_softc *sc = arg;
1468 uint32_t enable, status;
1469
1470 status = CSR_READ(sc, xINTSR); /* not W1C */
1471 enable = CSR_READ(sc, xINTAEN);
1472 if ((status & enable) == 0)
1473 return 0;
1474 if (status & (IRQ_TX | IRQ_RX)) {
1475 CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX));
1476
1477 status = CSR_READ(sc, RXISR);
1478 CSR_WRITE(sc, RXISR, status);
1479 if (status & RXI_RC_ERR)
1480 aprint_error_dev(sc->sc_dev, "Rx error\n");
1481 if (status & (RXI_PKTCNT | RXI_TMREXP)) {
1482 rxintr(sc);
1483 (void)CSR_READ(sc, RXDONECNT); /* clear RXI_RXDONE */
1484 }
1485
1486 status = CSR_READ(sc, TXISR);
1487 CSR_WRITE(sc, TXISR, status);
1488 if (status & TXI_TR_ERR)
1489 aprint_error_dev(sc->sc_dev, "Tx error\n");
1490 if (status & (TXI_TXDONE | TXI_TMREXP)) {
1491 txreap(sc);
1492 (void)CSR_READ(sc, TXDONECNT); /* clear TXI_TXDONE */
1493 }
1494
1495 CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX));
1496 }
1497 return 1;
1498 }
1499
1500 static void
1501 txreap(struct scx_softc *sc)
1502 {
1503 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1504 struct scx_txsoft *txs;
1505 uint32_t txstat;
1506 int i;
1507
1508 ifp->if_flags &= ~IFF_OACTIVE;
1509
1510 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1511 i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1512 txs = &sc->sc_txsoft[i];
1513
1514 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1515 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1516
1517 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0);
1518 if (txstat & T0_OWN) /* desc is still in use */
1519 break;
1520
1521 /* There is no way to tell transmission status per frame */
1522
1523 if_statinc(ifp, if_opackets);
1524
1525 sc->sc_txfree += txs->txs_ndesc;
1526 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1527 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1528 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1529 m_freem(txs->txs_mbuf);
1530 txs->txs_mbuf = NULL;
1531 }
1532 sc->sc_txsdirty = i;
1533 if (sc->sc_txsfree == MD_TXQUEUELEN)
1534 ifp->if_timer = 0;
1535 }
1536
1537 static void
1538 rxintr(struct scx_softc *sc)
1539 {
1540 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1541 struct scx_rxsoft *rxs;
1542 struct mbuf *m;
1543 uint32_t rxstat;
1544 int i, len;
1545
1546 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1547 rxs = &sc->sc_rxsoft[i];
1548
1549 SCX_CDRXSYNC(sc, i,
1550 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1551
1552 rxstat = le32toh(sc->sc_rxdescs[i].r0);
1553 if (rxstat & R0_OWN) /* desc is left empty */
1554 break;
1555
1556 /* R0_FS | R0_LS must have been marked for this desc */
1557
1558 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1559 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1560
1561 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1562 len -= ETHER_CRC_LEN; /* Trim CRC off */
1563 m = rxs->rxs_mbuf;
1564
1565 if (add_rxbuf(sc, i) != 0) {
1566 if_statinc(ifp, if_ierrors);
1567 SCX_INIT_RXDESC(sc, i);
1568 bus_dmamap_sync(sc->sc_dmat,
1569 rxs->rxs_dmamap, 0,
1570 rxs->rxs_dmamap->dm_mapsize,
1571 BUS_DMASYNC_PREREAD);
1572 continue;
1573 }
1574
1575 m_set_rcvif(m, ifp);
1576 m->m_pkthdr.len = m->m_len = len;
1577
1578 if (rxstat & R0_CSUM) {
1579 uint32_t csum = M_CSUM_IPv4;
1580 if (rxstat & R0_CERR)
1581 csum |= M_CSUM_IPv4_BAD;
1582 m->m_pkthdr.csum_flags |= csum;
1583 }
1584 if_percpuq_enqueue(ifp->if_percpuq, m);
1585 }
1586 sc->sc_rxptr = i;
1587 }
1588
1589 static int
1590 add_rxbuf(struct scx_softc *sc, int i)
1591 {
1592 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1593 struct mbuf *m;
1594 int error;
1595
1596 MGETHDR(m, M_DONTWAIT, MT_DATA);
1597 if (m == NULL)
1598 return ENOBUFS;
1599
1600 MCLGET(m, M_DONTWAIT);
1601 if ((m->m_flags & M_EXT) == 0) {
1602 m_freem(m);
1603 return ENOBUFS;
1604 }
1605
1606 if (rxs->rxs_mbuf != NULL)
1607 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1608
1609 rxs->rxs_mbuf = m;
1610
1611 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1612 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1613 if (error) {
1614 aprint_error_dev(sc->sc_dev,
1615 "can't load rx DMA map %d, error = %d\n", i, error);
1616 panic("add_rxbuf");
1617 }
1618
1619 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1620 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1621 SCX_INIT_RXDESC(sc, i);
1622
1623 return 0;
1624 }
1625
1626 static void
1627 rxdrain(struct scx_softc *sc)
1628 {
1629 struct scx_rxsoft *rxs;
1630 int i;
1631
1632 for (i = 0; i < MD_NRXDESC; i++) {
1633 rxs = &sc->sc_rxsoft[i];
1634 if (rxs->rxs_mbuf != NULL) {
1635 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1636 m_freem(rxs->rxs_mbuf);
1637 rxs->rxs_mbuf = NULL;
1638 }
1639 }
1640 }
1641
1642 void
1643 mii_statchg(struct ifnet *ifp)
1644 {
1645 struct scx_softc *sc = ifp->if_softc;
1646 struct mii_data *mii = &sc->sc_mii;
1647 const int Mbps[4] = { 10, 100, 1000, 0 };
1648 uint32_t miisr, mcr, fcr;
1649 int spd;
1650
1651 /* decode MIISR register value */
1652 miisr = mac_read(sc, GMACMIISR);
1653 spd = Mbps[(miisr & MIISR_SPD) >> 1];
1654 #if 1
1655 static uint32_t oldmiisr = 0;
1656 if (miisr != oldmiisr) {
1657 printf("MII link status (0x%x) %s",
1658 miisr, (miisr & MIISR_LUP) ? "up" : "down");
1659 if (miisr & MIISR_LUP) {
1660 printf(" spd%d", spd);
1661 if (miisr & MIISR_FDX)
1662 printf(",full-duplex");
1663 }
1664 printf("\n");
1665 }
1666 #endif
1667 /* Get flow control negotiation result. */
1668 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1669 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1670 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1671
1672 /* Adjust speed 1000/100/10. */
1673 mcr = mac_read(sc, GMACMCR);
1674 if (spd == 1000)
1675 mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
1676 else {
1677 if (spd == 100 && sc->sc_100mii)
1678 mcr |= MCR_SPD100;
1679 mcr |= MCR_USEMII;
1680 }
1681 mcr |= MCR_CST | MCR_JE;
1682 if (sc->sc_100mii == 0)
1683 mcr |= MCR_IBN;
1684
1685 /* Adjust duplexity and PAUSE flow control. */
1686 mcr &= ~MCR_USEFDX;
1687 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1688 if (miisr & MIISR_FDX) {
1689 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1690 fcr |= FCR_TFE;
1691 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1692 fcr |= FCR_RFE;
1693 mcr |= MCR_USEFDX;
1694 }
1695 mac_write(sc, GMACMCR, mcr);
1696 mac_write(sc, GMACFCR, fcr);
1697
1698 #if 1
1699 if (miisr != oldmiisr) {
1700 printf("%ctxfe, %crxfe\n",
1701 (fcr & FCR_TFE) ? '+' : '-',
1702 (fcr & FCR_RFE) ? '+' : '-');
1703 }
1704 oldmiisr = miisr;
1705 #endif
1706 }
1707
1708 static void
1709 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1710 {
1711 struct scx_softc *sc = ifp->if_softc;
1712 struct mii_data *mii = &sc->sc_mii;
1713
1714 mii_pollstat(mii);
1715 ifmr->ifm_status = mii->mii_media_status;
1716 ifmr->ifm_active = sc->sc_flowflags |
1717 (mii->mii_media_active & ~IFM_ETH_FMASK);
1718 }
1719
1720 static int
1721 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1722 {
1723 struct scx_softc *sc = device_private(self);
1724 uint32_t miia;
1725 int ntries;
1726
1727 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1728 mac_write(sc, GMACGAR, miia | GAR_BUSY);
1729 for (ntries = 0; ntries < 1000; ntries++) {
1730 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1731 goto unbusy;
1732 DELAY(1);
1733 }
1734 return ETIMEDOUT;
1735 unbusy:
1736 *val = mac_read(sc, GMACGDR);
1737 return 0;
1738 }
1739
1740 static int
1741 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1742 {
1743 struct scx_softc *sc = device_private(self);
1744 uint32_t miia;
1745 uint16_t dummy;
1746 int ntries;
1747
1748 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1749 mac_write(sc, GMACGDR, val);
1750 mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1751 for (ntries = 0; ntries < 1000; ntries++) {
1752 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1753 goto unbusy;
1754 DELAY(1);
1755 }
1756 return ETIMEDOUT;
1757 unbusy:
1758 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1759 return 0;
1760 }
1761
1762 static void
1763 phy_tick(void *arg)
1764 {
1765 struct scx_softc *sc = arg;
1766 struct mii_data *mii = &sc->sc_mii;
1767 int s;
1768
1769 s = splnet();
1770 mii_tick(mii);
1771 splx(s);
1772 #ifdef GMAC_EVENT_COUNTERS
1773 /* 80 event counters exist */
1774 #endif
1775 callout_schedule(&sc->sc_callout, hz);
1776 }
1777
1778 static void
1779 reset_hardware(struct scx_softc *sc)
1780 {
1781
1782 if (CSR_READ(sc, CORESTAT) != 0) {
1783 CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
1784 CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
1785
1786 WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP, 0);
1787 WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP, 0);
1788 }
1789 CSR_WRITE(sc, SWRESET, 0); /* reset operation */
1790 CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */
1791 CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1792 WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
1793 }
1794
1795 /*
1796 * 3 independent uengines exist to process host2media, media2host and
1797 * packet data flows.
1798 */
1799 static void
1800 loaducode(struct scx_softc *sc)
1801 {
1802 uint32_t up, lo, sz;
1803 uint64_t addr;
1804
1805 reset_hardware(sc);
1806 CSR_WRITE(sc, xINTSR, IRQ_UCODE);
1807
1808 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1809 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1810 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1811 sz *= 4;
1812 addr = ((uint64_t)up << 32) | lo;
1813 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1814 injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
1815
1816 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1817 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1818 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1819 sz *= 4;
1820 addr = ((uint64_t)up << 32) | lo;
1821 injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
1822 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1823
1824 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1825 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1826 sz *= 4;
1827 injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
1828 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1829
1830 WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE, 0);
1831 /* XXX may take long time to end ?! XXX */
1832 CSR_WRITE(sc, xINTSR, IRQ_UCODE);
1833 }
1834
1835 static void
1836 injectucode(struct scx_softc *sc, int port,
1837 bus_addr_t addr, bus_size_t size)
1838 {
1839 bus_space_handle_t bsh;
1840 bus_size_t off;
1841 uint32_t ucode;
1842
1843 if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1844 aprint_error_dev(sc->sc_dev,
1845 "eeprom map failure for ucode port 0x%x\n", port);
1846 return;
1847 }
1848 for (off = 0; off < size; off += 4) {
1849 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1850 CSR_WRITE(sc, port, ucode);
1851 }
1852 bus_space_unmap(sc->sc_st, bsh, size);
1853 }
1854
1855 /* GAR 5:2 MDIO frequency selection */
1856 static int
1857 get_mdioclk(uint32_t freq)
1858 {
1859
1860 freq /= 1000 * 1000;
1861 if (freq < 35)
1862 return GAR_MDIO_25_35MHZ;
1863 if (freq < 60)
1864 return GAR_MDIO_35_60MHZ;
1865 if (freq < 100)
1866 return GAR_MDIO_60_100MHZ;
1867 if (freq < 150)
1868 return GAR_MDIO_100_150MHZ;
1869 if (freq < 250)
1870 return GAR_MDIO_150_250MHZ;
1871 return GAR_MDIO_250_300MHZ;
1872 }
1873