if_scx.c revision 1.39 1 /* $NetBSD: if_scx.c,v 1.39 2022/09/27 06:36:43 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32
33 /*
34 * Socionext SC2A11 SynQuacer NetSec GbE driver
35 *
36 * Multiple Tx and Rx queues exist inside and dedicated descriptor
37 * fields specifies which queue is to use. Three internal micro-processors
38 * to handle incoming frames, outgoing frames and packet data crypto
39 * processing. uP programs are stored in an external flash memory and
40 * have to be loaded by device driver.
41 * NetSec uses Synopsys DesignWare Core EMAC. DWC implementation
42 * register (0x20) is known to have 0x10.36 and feature register (0x1058)
43 * reports 0x11056f37.
44 * <24> exdesc
45 * <18> receive IP type 2 checksum offload
46 * <17> (no) receive IP type 1 checksum offload
47 * <16> transmit checksum offload
48 * <11> event counter (mac management counter, MMC)
49 */
50
51 #define NOT_MP_SAFE 0
52
53 #include <sys/cdefs.h>
54 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.39 2022/09/27 06:36:43 skrll Exp $");
55
56 #include <sys/param.h>
57 #include <sys/bus.h>
58 #include <sys/intr.h>
59 #include <sys/device.h>
60 #include <sys/callout.h>
61 #include <sys/mbuf.h>
62 #include <sys/errno.h>
63 #include <sys/rndsource.h>
64 #include <sys/kernel.h>
65 #include <sys/systm.h>
66
67 #include <net/if.h>
68 #include <net/if_media.h>
69 #include <net/if_dl.h>
70 #include <net/if_ether.h>
71 #include <dev/mii/mii.h>
72 #include <dev/mii/miivar.h>
73 #include <net/bpf.h>
74
75 #include <dev/fdt/fdtvar.h>
76 #include <dev/acpi/acpireg.h>
77 #include <dev/acpi/acpivar.h>
78 #include <dev/acpi/acpi_intr.h>
79
80 /* SC2A11 GbE 64-bit paddr descriptor */
81 struct tdes {
82 uint32_t t0, t1, t2, t3;
83 };
84
85 struct rdes {
86 uint32_t r0, r1, r2, r3;
87 };
88
89 #define T0_OWN (1U<<31) /* desc is ready to Tx */
90 #define T0_EOD (1U<<30) /* end of descriptor array */
91 #define T0_DRID (24) /* 29:24 desc ring id */
92 #define T0_PT (1U<<21) /* 23:21 "pass-through" */
93 #define T0_TDRID (16) /* 20:16 target desc ring id: GMAC=15 */
94 #define T0_FS (1U<<9) /* first segment of frame */
95 #define T0_LS (1U<<8) /* last segment of frame */
96 #define T0_CSUM (1U<<7) /* enable check sum offload */
97 #define T0_TSO (1U<<6) /* enable TCP segment offload */
98 #define T0_TRS (1U<<4) /* 5:4 "TRS" */
99 /* T1 frame segment address 63:32 */
100 /* T2 frame segment address 31:0 */
101 /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
102
103 #define R0_OWN (1U<<31) /* desc is empty */
104 #define R0_EOD (1U<<30) /* end of descriptor array */
105 #define R0_SDRID (24) /* 29:24 source desc ring id */
106 #define R0_FR (1U<<23) /* found fragmented */
107 #define R0_ER (1U<<21) /* Rx error indication */
108 #define R0_ERR (3U<<16) /* 18:16 receive error code */
109 #define R0_TDRID (12) /* 15:12 target desc ring id */
110 #define R0_FS (1U<<9) /* first segment of frame */
111 #define R0_LS (1U<<8) /* last segment of frame */
112 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
113 #define R0_CERR (2U<<6) /* 0: undone, 1: found ok, 2: bad */
114 /* R1 frame address 63:32 */
115 /* R2 frame address 31:0 */
116 /* R3 31:16 received frame length, 15:0 buffer length to receive */
117
118 /*
119 * SC2A11 registers. 0x100 - 1204
120 */
121 #define SWRESET 0x104
122 #define SRST_RUN (1U<<31) /* instruct start, 0 to stop */
123 #define COMINIT 0x120
124 #define INIT_DB (1U<<2) /* ???; self clear when done */
125 #define INIT_CLS (1U<<1) /* ???; self clear when done */
126 #define PKTCTRL 0x140 /* pkt engine control */
127 #define MODENRM (1U<<28) /* change mode to normal */
128 #define ENJUMBO (1U<<27) /* allow jumbo frame */
129 #define RPTCSUMERR (1U<<3) /* log Rx checksum error */
130 #define RPTHDCOMP (1U<<2) /* log HD incomplete condition */
131 #define RPTHDERR (1U<<1) /* log HD error */
132 #define DROPNOMATCH (1U<<0) /* drop no match frames */
133 #define xINTSR 0x200 /* aggregated interrupt status */
134 #define IRQ_RX (1U<<1) /* top level Rx interrupt */
135 #define IRQ_TX (1U<<0) /* top level Rx interrupt */
136 #define IRQ_UCODE (1U<<20) /* ucode load completed; W1C */
137 #define xINTAEN 0x204 /* INT_A enable */
138 #define xINTAE_SET 0x234 /* bit to set */
139 #define xINTAE_CLR 0x238 /* bit to clr */
140 #define xINTBEN 0x23c /* INT_B enable */
141 #define xINTBE_SET 0x240 /* bit to set */
142 #define xINTBE_CLR 0x244 /* bit to clr */
143 #define TXISR 0x400 /* transmit status; W1C */
144 #define TXIEN 0x404 /* tx interrupt enable */
145 #define TXIE_SET 0x428 /* bit to set */
146 #define TXIE_CLR 0x42c /* bit to clr */
147 #define TXI_NTOWNR (1U<<17) /* ??? desc array got empty */
148 #define TXI_TR_ERR (1U<<16) /* tx error */
149 #define TXI_TXDONE (1U<<15) /* tx completed */
150 #define TXI_TMREXP (1U<<14) /* coalesce timer expired */
151 #define RXISR 0x440 /* receive status; W1C */
152 #define RXIEN 0x444 /* rx interrupt enable */
153 #define RXIE_SET 0x468 /* bit to set */
154 #define RXIE_CLR 0x46c /* bit to clr */
155 #define RXI_RC_ERR (1U<<16) /* rx error */
156 #define RXI_PKTCNT (1U<<15) /* rx counter has new value */
157 #define RXI_TMREXP (1U<<14) /* coalesce timer expired */
158 /* 13 sets of special purpose desc interrupt handling register exist */
159 #define TDBA_LO 0x408 /* tdes array base addr 31:0 */
160 #define TDBA_HI 0x434 /* tdes array base addr 63:32 */
161 #define RDBA_LO 0x448 /* rdes array base addr 31:0 */
162 #define RDBA_HI 0x474 /* rdes array base addr 63:32 */
163 /* 13 pairs of special purpose desc array base address register exist */
164 #define TXCONF 0x430
165 #define RXCONF 0x470
166 #define DESCNF_UP (1U<<31) /* up-and-running */
167 #define DESCNF_CHRST (1U<<30) /* channel reset */
168 #define DESCNF_TMR (1U<<4) /* coalesce timer mode select */
169 #define DESCNF_LE (1) /* little endian desc format */
170 #define TXSUBMIT 0x410 /* submit frame(s) to transmit */
171 #define TXCLSCMAX 0x418 /* tx intr coalesce upper bound */
172 #define RXCLSCMAX 0x458 /* rx intr coalesce upper bound */
173 #define TXITIMER 0x420 /* coalesce timer usec, MSB to use */
174 #define RXITIMER 0x460 /* coalesce timer usec, MSB to use */
175 #define TXDONECNT 0x414 /* tx completed count, auto-zero */
176 #define RXDONECNT 0x454 /* rx available count, auto-zero */
177 #define UCODE_H2M 0x210 /* host2media engine ucode port */
178 #define UCODE_M2H 0x21c /* media2host engine ucode port */
179 #define CORESTAT 0x218 /* engine run state */
180 #define PKTSTOP (1U<<2)
181 #define M2HSTOP (1U<<1)
182 #define H2MSTOP (1U<<0)
183 #define DMACTL_H2M 0x214 /* host2media engine control */
184 #define DMACTL_M2H 0x220 /* media2host engine control */
185 #define DMACTL_STOP (1U<<0) /* instruct stop; self-clear */
186 #define UCODE_PKT 0x0d0 /* packet engine ucode port */
187 #define CLKEN 0x100 /* clock distribution enable */
188 #define CLK_G (1U<<5) /* feed clk domain E */
189 #define CLK_C (1U<<1) /* feed clk domain C */
190 #define CLK_D (1U<<0) /* feed clk domain D */
191 #define CLK_ALL 0x23 /* all above; 0x24 ??? 0x3f ??? */
192
193 /* GMAC register indirect access. thru MACCMD/MACDATA operation */
194 #define MACDATA 0x11c0 /* gmac register rd/wr data */
195 #define MACCMD 0x11c4 /* gmac register operation */
196 #define CMD_IOWR (1U<<28) /* write op */
197 #define CMD_BUSY (1U<<31) /* busy bit */
198 #define MACSTAT 0x1024 /* gmac status; ??? */
199 #define MACINTE 0x1028 /* interrupt enable; ??? */
200
201 #define FLOWTHR 0x11cc /* flow control threshold */
202 /* 31:16 pause threshold, 15:0 resume threshold */
203 #define INTF_SEL 0x11d4 /* ??? */
204
205 #define DESC_INIT 0x11fc /* write 1 for desc init, SC */
206 #define DESC_SRST 0x1204 /* write 1 for desc sw reset, SC */
207 #define MODE_TRANS 0x500 /* mode change completion status */
208 #define N2T_DONE (1U<<20) /* normal->taiki change completed */
209 #define T2N_DONE (1U<<19) /* taiki->normal change completed */
210 #define MACADRH 0x10c /* ??? */
211 #define MACADRL 0x110 /* ??? */
212 #define MCVER 0x22c /* micro controller version */
213 #define HWVER 0x230 /* hardware version */
214
215 /*
216 * GMAC registers are mostly identical to Synopsys DesignWare Core
217 * Ethernet. These must be handled by indirect access.
218 */
219 #define GMACMCR 0x0000 /* MAC configuration */
220 #define MCR_IBN (1U<<30) /* ??? */
221 #define MCR_CST (1U<<25) /* strip CRC */
222 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
223 #define MCR_WD (1U<<23) /* allow long >2048 tx frame */
224 #define MCR_JE (1U<<20) /* allow ~9018 tx jumbo frame */
225 #define MCR_IFG (7U<<17) /* 19:17 IFG value 0~7 */
226 #define MCR_DRCS (1U<<16) /* ignore (G)MII HDX Tx error */
227 #define MCR_USEMII (1U<<15) /* 1: RMII/MII, 0: RGMII (_PS) */
228 #define MCR_SPD100 (1U<<14) /* force speed 100 (_FES) */
229 #define MCR_DO (1U<<13) /* don't receive my own HDX Tx frames */
230 #define MCR_LOOP (1U<<12) /* run loop back */
231 #define MCR_USEFDX (1U<<11) /* force full duplex */
232 #define MCR_IPCEN (1U<<10) /* handle checksum */
233 #define MCR_DR (1U<<9) /* attempt no tx retry, send once */
234 #define MCR_LUD (1U<<8) /* link condition report when RGMII */
235 #define MCR_ACS (1U<<7) /* auto pad strip CRC */
236 #define MCR_TE (1U<<3) /* run Tx MAC engine, 0 to stop */
237 #define MCR_RE (1U<<2) /* run Rx MAC engine, 0 to stop */
238 #define MCR_PREA (3U) /* 1:0 preamble len. 0~2 */
239 #define _MCR_FDX 0x0000280c /* XXX TBD */
240 #define _MCR_HDX 0x0001a00c /* XXX TBD */
241 #define GMACAFR 0x0004 /* frame DA/SA address filter */
242 #define AFR_RA (1U<<31) /* accept all irrespective of filt. */
243 #define AFR_HPF (1U<<10) /* hash+perfect filter, or hash only */
244 #define AFR_SAF (1U<<9) /* source address filter */
245 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
246 #define AFR_PCF (2U<<6) /* ??? */
247 #define AFR_DBF (1U<<5) /* reject broadcast frame */
248 #define AFR_PM (1U<<4) /* accept all multicast frame */
249 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
250 #define AFR_MHTE (1U<<2) /* use multicast hash table */
251 #define AFR_UHTE (1U<<1) /* use hash table for unicast */
252 #define AFR_PR (1U<<0) /* run promisc mode */
253 #define GMACGAR 0x0010 /* MDIO operation */
254 #define GAR_PHY (11) /* 15:11 mii phy */
255 #define GAR_REG (6) /* 10:6 mii reg */
256 #define GAR_CLK (2) /* 5:2 mdio clock tick ratio */
257 #define GAR_IOWR (1U<<1) /* MDIO write op */
258 #define GAR_BUSY (1U<<0) /* busy bit */
259 #define GAR_MDIO_25_35MHZ 2
260 #define GAR_MDIO_35_60MHZ 3
261 #define GAR_MDIO_60_100MHZ 0
262 #define GAR_MDIO_100_150MHZ 1
263 #define GAR_MDIO_150_250MHZ 4
264 #define GAR_MDIO_250_300MHZ 5
265 #define GMACGDR 0x0014 /* MDIO rd/wr data */
266 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
267 /* 31:16 pause timer value, 5:4 pause timer threshold */
268 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
269 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
270 #define GMACIMPL 0x0020 /* implementation id XX.YY (no use) */
271 #define GMACISR 0x0038 /* interrupt status indication */
272 #define GMACIMR 0x003c /* interrupt mask to inhibit */
273 #define ISR_TS (1U<<9) /* time stamp operation detected */
274 #define ISR_CO (1U<<7) /* Rx checksum offload completed */
275 #define ISR_TX (1U<<6) /* Tx completed */
276 #define ISR_RX (1U<<5) /* Rx completed */
277 #define ISR_ANY (1U<<4) /* any of above 5-7 report */
278 #define ISR_LC (1U<<0) /* link status change detected */
279 #define GMACMAH0 0x0040 /* my own MAC address 47:32 */
280 #define GMACMAL0 0x0044 /* my own MAC address 31:0 */
281 #define GMACMAH(i) ((i)*8+0x40) /* supplemental MAC addr 1-15 */
282 #define GMACMAL(i) ((i)*8+0x44) /* 31:0 MAC address low part */
283 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
284 #define GMACAMAH(i) ((i)*8+0x800) /* supplemental MAC addr 16-31 */
285 #define GMACAMAL(i) ((i)*8+0x804) /* 31: MAC address low part */
286 /* supplimental MAH bit-31: slot in use, no other bit is effective */
287 #define GMACMHTH 0x0008 /* 64bit multicast hash table 63:32 */
288 #define GMACMHTL 0x000c /* 64bit multicast hash table 31:0 */
289 #define GMACMHT(i) ((i)*4+0x500) /* 256-bit alternative mcast hash 0-7 */
290 #define EMACVTAG 0x001c /* VLAN tag control */
291 #define VTAG_HASH (1U<<19) /* use VLAN tag hash table */
292 #define VTAG_SVLAN (1U<<18) /* handle type 0x88A8 SVLAN frame */
293 #define VTAG_INV (1U<<17) /* run inverse match logic */
294 #define VTAG_ETV (1U<<16) /* use only 12bit VID field to match */
295 /* 15:0 concat of PRIO+CFI+VID */
296 #define GMACVHT 0x0588 /* 16-bit VLAN tag hash */
297 #define GMACMIISR 0x00d8 /* resolved xMII link status */
298 #define MIISR_LUP (1U<<3) /* link up(1)/down(0) report */
299 #define MIISR_SPD (3U<<1) /* 2:1 speed 10(0)/100(1)/1000(2) */
300 #define MIISR_FDX (1U<<0) /* fdx detected */
301
302 #define GMACLPIS 0x0030 /* LPI control & status */
303 #define LPIS_TXA (1U<<19) /* complete Tx in progress and LPI */
304 #define LPIS_PLS (1U<<17)
305 #define LPIS_EN (1U<<16) /* 1: enter LPI mode, 0: exit */
306 #define LPIS_TEN (1U<<0) /* Tx LPI report */
307 #define GMACLPIC 0x0034 /* LPI timer control */
308 #define LPIC_LST (5) /* 16:5 ??? */
309 #define LPIC_TWT (0) /* 15:0 ??? */
310 #define GMACTSC 0x0700 /* timestamp control */
311 #define GMACSTM 0x071c /* start time */
312 #define GMACTGT 0x0720 /* target time */
313 #define GMACTSS 0x0728 /* timestamp status */
314 #define GMACPPS 0x072c /* PPS control */
315 #define GMACPPS0 0x0764 /* PPS0 width */
316
317 #define GMACBMR 0x1000 /* DMA bus mode control */
318 /* 24 multiply by x8 for RPBL & PBL values
319 * 23 use RPBL for Rx DMA
320 * 22:17 RPBL
321 * 16 fixed burst
322 * 15:14 priority between Rx and Tx
323 * 3 rxtx ratio 41
324 * 2 rxtx ratio 31
325 * 1 rxtx ratio 21
326 * 0 rxtx ratio 11
327 * 13:8 PBL possible DMA burst length
328 * 7 select alternative 32-byte descriptor format for new features
329 * 6:2 descriptor spacing. 0 for adjuscent
330 * 0 GMAC reset op. self-clear
331 */
332 #define _BMR 0x00412080 /* XXX TBD */
333 #define _BMR0 0x00020181 /* XXX TBD */
334 #define BMR_RST (1) /* reset op. self clear when done */
335 #define GMACTPD 0x1004 /* write any to resume tdes */
336 #define GMACRPD 0x1008 /* write any to resume rdes */
337 #define GMACRDLA 0x100c /* rdes base address 32bit paddr */
338 #define GMACTDLA 0x1010 /* tdes base address 32bit paddr */
339 #define _RDLA 0x18000 /* system RAM for GMAC rdes */
340 #define _TDLA 0x1c000 /* system RAM for GMAC tdes */
341 #define GMACDSR 0x1014 /* DMA status detail report; W1C */
342 #define GMACDIE 0x101c /* DMA interrupt enable */
343 #define DMAI_LPI (1U<<30) /* LPI interrupt */
344 #define DMAI_TTI (1U<<29) /* timestamp trigger interrupt */
345 #define DMAI_GMI (1U<<27) /* management counter interrupt */
346 #define DMAI_GLI (1U<<26) /* xMII link change detected */
347 #define DMAI_EB (23) /* 25:23 DMA bus error detected */
348 #define DMAI_TS (20) /* 22:20 Tx DMA state report */
349 #define DMAI_RS (17) /* 29:17 Rx DMA state report */
350 #define DMAI_NIS (1U<<16) /* normal interrupt summary; W1C */
351 #define DMAI_AIS (1U<<15) /* abnormal interrupt summary; W1C */
352 #define DMAI_ERI (1U<<14) /* the first Rx buffer is filled */
353 #define DMAI_FBI (1U<<13) /* DMA bus error detected */
354 #define DMAI_ETI (1U<<10) /* single frame Tx completed */
355 #define DMAI_RWT (1U<<9) /* longer than 2048 frame received */
356 #define DMAI_RPS (1U<<8) /* Rx process is now stopped */
357 #define DMAI_RU (1U<<7) /* Rx descriptor not available */
358 #define DMAI_RI (1U<<6) /* frame Rx completed by !R1_DIC */
359 #define DMAI_UNF (1U<<5) /* Tx underflow detected */
360 #define DMAI_OVF (1U<<4) /* receive buffer overflow detected */
361 #define DMAI_TJT (1U<<3) /* longer than 2048 frame sent */
362 #define DMAI_TU (1U<<2) /* Tx descriptor not available */
363 #define DMAI_TPS (1U<<1) /* transmission is stopped */
364 #define DMAI_TI (1U<<0) /* frame Tx completed by T0_IC */
365 #define GMACOMR 0x1018 /* DMA operation mode */
366 #define OMR_RSF (1U<<25) /* 1: Rx store&forward, 0: immed. */
367 #define OMR_TSF (1U<<21) /* 1: Tx store&forward, 0: immed. */
368 #define OMR_TTC (14) /* 16:14 Tx threshold */
369 #define OMR_ST (1U<<13) /* run Tx DMA engine, 0 to stop */
370 #define OMR_RFD (11) /* 12:11 Rx FIFO fill level */
371 #define OMR_EFC (1U<<8) /* transmit PAUSE to throttle Rx lvl. */
372 #define OMR_FEF (1U<<7) /* allow to receive error frames */
373 #define OMR_SR (1U<<1) /* run Rx DMA engine, 0 to stop */
374 #define GMACEVCS 0x1020 /* missed frame or ovf detected */
375 #define GMACRWDT 0x1024 /* enable rx watchdog timer interrupt */
376 #define GMACAXIB 0x1028 /* AXI bus mode control */
377 #define GMACAXIS 0x102c /* AXI status report */
378 /* 0x1048 current tx desc address */
379 /* 0x104c current rx desc address */
380 /* 0x1050 current tx buffer address */
381 /* 0x1054 current rx buffer address */
382 #define HWFEA 0x1058 /* DWC feature report */
383 #define FEA_EXDESC (1U<<24) /* new desc layout */
384 #define FEA_2COE (1U<<18) /* Rx type 2 IP checksum offload */
385 #define FEA_1COE (1U<<17) /* Rx type 1 IP checksum offload */
386 #define FEA_TXOE (1U<<16) /* Tx checksum offload */
387 #define FEA_MMC (1U<<11) /* RMON event counter */
388
389 #define GMACEVCTL 0x0100 /* event counter control */
390 #define EVC_FHP (1U<<5) /* full-half preset */
391 #define EVC_CP (1U<<4) /* counter preset */
392 #define EVC_MCF (1U<<3) /* counter freeze */
393 #define EVC_ROR (1U<<2) /* auto-zero on counter read */
394 #define EVC_CSR (1U<<1) /* counter stop rollover */
395 #define EVC_CR (1U<<0) /* reset counters */
396 #define GMACEVCNT(i) ((i)*4+0x114) /* 80 event counters 0x114 - 0x284 */
397
398 /*
399 * flash memory layout
400 * 0x00 - 07 48-bit MAC station address. 4 byte wise in BE order.
401 * 0x08 - 0b H->MAC xfer engine program start addr 63:32.
402 * 0x0c - 0f H2M program addr 31:0 (these are absolute addr, not offset)
403 * 0x10 - 13 H2M program length in 4 byte count.
404 * 0x14 - 0b M->HOST xfer engine program start addr 63:32.
405 * 0x18 - 0f M2H program addr 31:0 (absolute addr, not relative)
406 * 0x1c - 13 M2H program length in 4 byte count.
407 * 0x20 - 23 packet engine program addr 31:0, (absolute addr, not offset)
408 * 0x24 - 27 packet program length in 4 byte count.
409 *
410 * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
411 */
412
413 /*
414 * all below are software constraction.
415 */
416 #define MD_NTXSEGS 16 /* fixed */
417 #define MD_TXQUEUELEN 8 /* tunable */
418 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1)
419 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4)
420 #define MD_NTXDESC 128
421 #define MD_NTXDESC_MASK (MD_NTXDESC - 1)
422 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK)
423 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK)
424
425 #define MD_NRXDESC 64 /* tunable */
426 #define MD_NRXDESC_MASK (MD_NRXDESC - 1)
427 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK)
428
429 struct control_data {
430 struct tdes cd_txdescs[MD_NTXDESC];
431 struct rdes cd_rxdescs[MD_NRXDESC];
432 };
433 #define SCX_CDOFF(x) offsetof(struct control_data, x)
434 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
435 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
436
437 struct scx_txsoft {
438 struct mbuf *txs_mbuf; /* head of our mbuf chain */
439 bus_dmamap_t txs_dmamap; /* our DMA map */
440 int txs_firstdesc; /* first descriptor in packet */
441 int txs_lastdesc; /* last descriptor in packet */
442 int txs_ndesc; /* # of descriptors used */
443 };
444
445 struct scx_rxsoft {
446 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
447 bus_dmamap_t rxs_dmamap; /* our DMA map */
448 };
449
450 struct scx_softc {
451 device_t sc_dev; /* generic device information */
452 bus_space_tag_t sc_st; /* bus space tag */
453 bus_space_handle_t sc_sh; /* bus space handle */
454 bus_size_t sc_sz; /* csr map size */
455 bus_space_handle_t sc_eesh; /* eeprom section handle */
456 bus_size_t sc_eesz; /* eeprom map size */
457 bus_dma_tag_t sc_dmat; /* bus DMA tag */
458 struct ethercom sc_ethercom; /* Ethernet common data */
459 struct mii_data sc_mii; /* MII */
460 callout_t sc_callout; /* PHY monitor callout */
461 bus_dma_segment_t sc_seg; /* descriptor store seg */
462 int sc_nseg; /* descriptor store nseg */
463 void *sc_ih; /* interrupt cookie */
464 int sc_phy_id; /* PHY address */
465 int sc_flowflags; /* 802.3x PAUSE flow control */
466 uint32_t sc_mdclk; /* GAR 5:2 clock selection */
467 uint32_t sc_t0cotso; /* T0_CSUM | T0_TSO to run */
468 int sc_100mii; /* 1 for RMII/MII, 0 for RGMII */
469 int sc_phandle; /* fdt phandle */
470 uint64_t sc_freq;
471
472 bus_dmamap_t sc_cddmamap; /* control data DMA map */
473 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
474
475 struct control_data *sc_control_data;
476 #define sc_txdescs sc_control_data->cd_txdescs
477 #define sc_rxdescs sc_control_data->cd_rxdescs
478
479 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
480 struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
481 int sc_txfree; /* number of free Tx descriptors */
482 int sc_txnext; /* next ready Tx descriptor */
483 int sc_txsfree; /* number of free Tx jobs */
484 int sc_txsnext; /* next ready Tx job */
485 int sc_txsdirty; /* dirty Tx jobs */
486 int sc_rxptr; /* next ready Rx descriptor/descsoft */
487
488 krndsource_t rnd_source; /* random source */
489 #ifdef GMAC_EVENT_COUNTERS
490 /* 80 event counters exist */
491 #endif
492 };
493
494 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
495 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
496
497 #define SCX_CDTXSYNC(sc, x, n, ops) \
498 do { \
499 int __x, __n; \
500 \
501 __x = (x); \
502 __n = (n); \
503 \
504 /* If it will wrap around, sync to the end of the ring. */ \
505 if ((__x + __n) > MD_NTXDESC) { \
506 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
507 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
508 (MD_NTXDESC - __x), (ops)); \
509 __n -= (MD_NTXDESC - __x); \
510 __x = 0; \
511 } \
512 \
513 /* Now sync whatever is left. */ \
514 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
515 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
516 } while (/*CONSTCOND*/0)
517
518 #define SCX_CDRXSYNC(sc, x, ops) \
519 do { \
520 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
521 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
522 } while (/*CONSTCOND*/0)
523
524 #define SCX_INIT_RXDESC(sc, x) \
525 do { \
526 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
527 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
528 struct mbuf *__m = __rxs->rxs_mbuf; \
529 bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr; \
530 __m->m_data = __m->m_ext.ext_buf; \
531 __rxd->r3 = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_len); \
532 __rxd->r2 = htole32(BUS_ADDR_LO32(__paddr)); \
533 __rxd->r1 = htole32(BUS_ADDR_HI32(__paddr)); \
534 __rxd->r0 = htole32(R0_OWN | R0_FS | R0_LS); \
535 if ((x) == MD_NRXDESC - 1) __rxd->r0 |= htole32(R0_EOD); \
536 } while (/*CONSTCOND*/0)
537
538 /* memory mapped CSR register access */
539 #define CSR_READ(sc,off) \
540 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
541 #define CSR_WRITE(sc,off,val) \
542 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
543
544 /* flash memory access */
545 #define EE_READ(sc,off) \
546 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
547
548 static int scx_fdt_match(device_t, cfdata_t, void *);
549 static void scx_fdt_attach(device_t, device_t, void *);
550 static int scx_acpi_match(device_t, cfdata_t, void *);
551 static void scx_acpi_attach(device_t, device_t, void *);
552
553 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
554 scx_fdt_match, scx_fdt_attach, NULL, NULL);
555
556 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
557 scx_acpi_match, scx_acpi_attach, NULL, NULL);
558
559 static void scx_attach_i(struct scx_softc *);
560 static void scx_reset(struct scx_softc *);
561 static int scx_init(struct ifnet *);
562 static void scx_stop(struct ifnet *, int);
563 static int scx_ioctl(struct ifnet *, u_long, void *);
564 static void scx_set_rcvfilt(struct scx_softc *);
565 static void scx_start(struct ifnet *);
566 static void scx_watchdog(struct ifnet *);
567 static int scx_intr(void *);
568 static void txreap(struct scx_softc *);
569 static void rxintr(struct scx_softc *);
570 static int add_rxbuf(struct scx_softc *, int);
571 static void rxdrain(struct scx_softc *sc);
572 static void mii_statchg(struct ifnet *);
573 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
574 static int mii_readreg(device_t, int, int, uint16_t *);
575 static int mii_writereg(device_t, int, int, uint16_t);
576 static void phy_tick(void *);
577
578 static void loaducode(struct scx_softc *);
579 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
580
581 static int get_mdioclk(uint32_t);
582
583 #define WAIT_FOR_SET(sc, reg, set, fail) \
584 wait_for_bits(sc, reg, set, ~0, fail)
585 #define WAIT_FOR_CLR(sc, reg, clr, fail) \
586 wait_for_bits(sc, reg, 0, clr, fail)
587
588 static int
589 wait_for_bits(struct scx_softc *sc, int reg,
590 uint32_t set, uint32_t clr, uint32_t fail)
591 {
592 uint32_t val;
593 int ntries;
594
595 for (ntries = 0; ntries < 1000; ntries++) {
596 val = CSR_READ(sc, reg);
597 if ((val & set) || !(val & clr))
598 return 0;
599 if (val & fail)
600 return 1;
601 DELAY(1);
602 }
603 return 1;
604 }
605
606 /* GMAC register indirect access */
607 static int
608 mac_read(struct scx_softc *sc, int reg)
609 {
610
611 CSR_WRITE(sc, MACCMD, reg | CMD_BUSY);
612 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
613 return CSR_READ(sc, MACDATA);
614 }
615
616 static void
617 mac_write(struct scx_softc *sc, int reg, int val)
618 {
619
620 CSR_WRITE(sc, MACDATA, val);
621 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY);
622 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
623 }
624
625 /* dig and decode "clock-frequency" value for a given clkname */
626 static int
627 get_clk_freq(int phandle, const char *clkname)
628 {
629 u_int index, n, cells;
630 const u_int *p;
631 int err, len, resid;
632 unsigned int freq = 0;
633
634 err = fdtbus_get_index(phandle, "clock-names", clkname, &index);
635 if (err == -1)
636 return -1;
637 p = fdtbus_get_prop(phandle, "clocks", &len);
638 if (p == NULL)
639 return -1;
640 for (n = 0, resid = len; resid > 0; n++) {
641 const int cc_phandle =
642 fdtbus_get_phandle_from_native(be32toh(p[0]));
643 if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells))
644 return -1;
645 if (n == index) {
646 if (of_getprop_uint32(cc_phandle,
647 "clock-frequency", &freq))
648 return -1;
649 return freq;
650 }
651 resid -= (cells + 1) * 4;
652 p += (cells + 1) * 4;
653 }
654 return -1;
655 }
656
657 static const struct device_compatible_entry compat_data[] = {
658 { .compat = "socionext,synquacer-netsec" },
659 DEVICE_COMPAT_EOL
660 };
661 static const struct device_compatible_entry compatible[] = {
662 { .compat = "SCX0001" },
663 DEVICE_COMPAT_EOL
664 };
665
666 static int
667 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
668 {
669 struct fdt_attach_args * const faa = aux;
670
671 return of_compatible_match(faa->faa_phandle, compat_data);
672 }
673
674 static void
675 scx_fdt_attach(device_t parent, device_t self, void *aux)
676 {
677 struct scx_softc * const sc = device_private(self);
678 struct fdt_attach_args * const faa = aux;
679 const int phandle = faa->faa_phandle;
680 bus_space_handle_t bsh;
681 bus_space_handle_t eebsh;
682 bus_addr_t addr[2];
683 bus_size_t size[2];
684 char intrstr[128];
685 int phy_phandle;
686 bus_addr_t phy_id;
687 const char *phy_type;
688 long ref_clk;
689
690 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
691 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
692 aprint_error_dev(self, "unable to map device csr\n");
693 return;
694 }
695 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
696 aprint_error_dev(self, "failed to decode interrupt\n");
697 goto fail;
698 }
699 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
700 NOT_MP_SAFE, scx_intr, sc);
701 if (sc->sc_ih == NULL) {
702 aprint_error_dev(self, "couldn't establish interrupt\n");
703 goto fail;
704 }
705 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
706 || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
707 aprint_error_dev(self, "unable to map device eeprom\n");
708 goto fail;
709 }
710
711 sc->sc_dev = self;
712 sc->sc_st = faa->faa_bst;
713 sc->sc_sh = bsh;
714 sc->sc_sz = size[0];
715 sc->sc_eesh = eebsh;
716 sc->sc_eesz = size[1];
717 sc->sc_dmat = faa->faa_dmat;
718 sc->sc_phandle = phandle;
719
720 phy_type = fdtbus_get_string(phandle, "phy-mode");
721 if (phy_type == NULL)
722 aprint_error_dev(self, "missing 'phy-mode' property\n");
723 phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
724 if (phy_phandle == -1
725 || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0)
726 phy_id = MII_PHY_ANY;
727 ref_clk = get_clk_freq(phandle, "phy_ref_clk");
728 if (ref_clk == -1)
729 ref_clk = 250 * 1000 * 1000;
730
731 sc->sc_100mii = (phy_type && strncmp(phy_type, "rgmii", 5) != 0);
732 sc->sc_phy_id = phy_id;
733 sc->sc_freq = ref_clk;
734
735 aprint_normal("%s", device_xname(self));
736 scx_attach_i(sc);
737 return;
738 fail:
739 if (sc->sc_eesz)
740 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
741 if (sc->sc_sz)
742 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
743 return;
744 }
745
746 static int
747 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
748 {
749 struct acpi_attach_args *aa = aux;
750
751 return acpi_compatible_match(aa, compatible);
752 }
753
754 static void
755 scx_acpi_attach(device_t parent, device_t self, void *aux)
756 {
757 struct scx_softc * const sc = device_private(self);
758 struct acpi_attach_args * const aa = aux;
759 ACPI_HANDLE handle = aa->aa_node->ad_handle;
760 bus_space_handle_t bsh, eebsh;
761 struct acpi_resources res;
762 struct acpi_mem *mem;
763 struct acpi_irq *irq;
764 ACPI_INTEGER phy_type, phy_id, ref_freq;
765 ACPI_STATUS rv;
766
767 rv = acpi_resource_parse(self, handle, "_CRS",
768 &res, &acpi_resource_parse_ops_default);
769 if (ACPI_FAILURE(rv))
770 return;
771
772 mem = acpi_res_mem(&res, 0);
773 irq = acpi_res_irq(&res, 0);
774 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
775 aprint_error_dev(self, "incomplete crs resources\n");
776 return;
777 }
778 if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
779 &bsh) != 0) {
780 aprint_error_dev(self, "couldn't map registers\n");
781 return;
782 }
783 sc->sc_sz = mem->ar_length;
784 sc->sc_ih = acpi_intr_establish(self, (uint64_t)(uintptr_t)handle,
785 IPL_NET, NOT_MP_SAFE, scx_intr, sc, device_xname(self));
786 if (sc->sc_ih == NULL) {
787 aprint_error_dev(self, "couldn't establish interrupt\n");
788 goto fail;
789 }
790 mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
791 if (mem == NULL || mem->ar_length == 0) {
792 aprint_error_dev(self, "incomplete eeprom resources\n");
793 goto fail;
794 }
795 if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
796 &eebsh)) {
797 aprint_error_dev(self, "couldn't map registers\n");
798 goto fail;
799 }
800 sc->sc_eesz = mem->ar_length;
801
802 rv = acpi_dsd_integer(handle, "max-speed", &phy_type);
803 if (ACPI_FAILURE(rv)) {
804 aprint_error_dev(self, "missing 'max-speed' property\n");
805 phy_type = 1000;
806 }
807 rv = acpi_dsd_integer(handle, "phy-channel", &phy_id);
808 if (ACPI_FAILURE(rv))
809 phy_id = MII_PHY_ANY;
810 rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
811 &ref_freq);
812 if (ACPI_FAILURE(rv))
813 ref_freq = 250 * 1000 * 1000;
814
815 sc->sc_dev = self;
816 sc->sc_st = aa->aa_memt;
817 sc->sc_sh = bsh;
818 sc->sc_eesh = eebsh;
819 sc->sc_dmat = aa->aa_dmat64;
820 sc->sc_100mii = (phy_type != 1000);
821 sc->sc_phy_id = (int)phy_id;
822 sc->sc_freq = ref_freq;
823
824 aprint_normal_dev(self,
825 "phy type %d, phy id %d, freq %ld\n", (int)phy_type, (int)phy_id, ref_freq);
826
827 aprint_normal("%s", device_xname(self));
828 scx_attach_i(sc);
829
830 acpi_resource_cleanup(&res);
831 return;
832 fail:
833 if (sc->sc_eesz > 0)
834 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
835 if (sc->sc_sz > 0)
836 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
837 acpi_resource_cleanup(&res);
838 return;
839 }
840
841 static void
842 scx_attach_i(struct scx_softc *sc)
843 {
844 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
845 struct mii_data * const mii = &sc->sc_mii;
846 struct ifmedia * const ifm = &mii->mii_media;
847 uint32_t which, dwfea, dwimp;
848 uint8_t enaddr[ETHER_ADDR_LEN];
849 bus_dma_segment_t seg;
850 uint32_t csr;
851 int i, nseg, error = 0;
852
853 aprint_naive("\n");
854 aprint_normal(": Socionext Gigabit Ethernet controller\n");
855
856 which = CSR_READ(sc, HWVER); /* Socionext version 5.00xx */
857 dwfea = mac_read(sc, HWFEA); /* DWC feature bits */
858 dwimp = mac_read(sc, GMACIMPL); /* DWC implementation XX.YY */
859 aprint_normal_dev(sc->sc_dev,
860 "NetSec %x.%x (feature 0x%x imp 0x%0x)\n",
861 which >> 16, which & 0xffff, dwfea, dwimp);
862
863 /* fetch MAC address in flash 0:7, stored in big endian order */
864 csr = EE_READ(sc, 0x00);
865 enaddr[0] = csr >> 24;
866 enaddr[1] = csr >> 16;
867 enaddr[2] = csr >> 8;
868 enaddr[3] = csr;
869 csr = EE_READ(sc, 0x04);
870 enaddr[4] = csr >> 24;
871 enaddr[5] = csr >> 16;
872 aprint_normal_dev(sc->sc_dev,
873 "Ethernet address %s\n", ether_sprintf(enaddr));
874
875 sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */
876
877 loaducode(sc);
878
879 mii->mii_ifp = ifp;
880 mii->mii_readreg = mii_readreg;
881 mii->mii_writereg = mii_writereg;
882 mii->mii_statchg = mii_statchg;
883
884 sc->sc_ethercom.ec_mii = mii;
885 ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
886 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
887 MII_OFFSET_ANY, MIIF_DOPAUSE);
888 if (LIST_FIRST(&mii->mii_phys) == NULL) {
889 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
890 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
891 } else
892 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
893 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
894
895 /*
896 * Allocate the control data structures, and create and load the
897 * DMA map for it.
898 */
899 error = bus_dmamem_alloc(sc->sc_dmat,
900 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
901 if (error != 0) {
902 aprint_error_dev(sc->sc_dev,
903 "unable to allocate control data, error = %d\n", error);
904 goto fail_0;
905 }
906 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
907 sizeof(struct control_data), (void **)&sc->sc_control_data,
908 BUS_DMA_COHERENT);
909 if (error != 0) {
910 aprint_error_dev(sc->sc_dev,
911 "unable to map control data, error = %d\n", error);
912 goto fail_1;
913 }
914 error = bus_dmamap_create(sc->sc_dmat,
915 sizeof(struct control_data), 1,
916 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
917 if (error != 0) {
918 aprint_error_dev(sc->sc_dev,
919 "unable to create control data DMA map, "
920 "error = %d\n", error);
921 goto fail_2;
922 }
923 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
924 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
925 if (error != 0) {
926 aprint_error_dev(sc->sc_dev,
927 "unable to load control data DMA map, error = %d\n",
928 error);
929 goto fail_3;
930 }
931 for (i = 0; i < MD_TXQUEUELEN; i++) {
932 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
933 MD_NTXSEGS, MCLBYTES, 0, 0,
934 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
935 aprint_error_dev(sc->sc_dev,
936 "unable to create tx DMA map %d, error = %d\n",
937 i, error);
938 goto fail_4;
939 }
940 }
941 for (i = 0; i < MD_NRXDESC; i++) {
942 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
943 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
944 aprint_error_dev(sc->sc_dev,
945 "unable to create rx DMA map %d, error = %d\n",
946 i, error);
947 goto fail_5;
948 }
949 sc->sc_rxsoft[i].rxs_mbuf = NULL;
950 }
951 sc->sc_seg = seg;
952 sc->sc_nseg = nseg;
953 #if 0
954 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
955 #endif
956 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
957 ifp->if_softc = sc;
958 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
959 ifp->if_ioctl = scx_ioctl;
960 ifp->if_start = scx_start;
961 ifp->if_watchdog = scx_watchdog;
962 ifp->if_init = scx_init;
963 ifp->if_stop = scx_stop;
964 IFQ_SET_READY(&ifp->if_snd);
965
966 sc->sc_flowflags = 0;
967
968 if_attach(ifp);
969 if_deferred_start_init(ifp, NULL);
970 ether_ifattach(ifp, enaddr);
971
972 callout_init(&sc->sc_callout, 0);
973 callout_setfunc(&sc->sc_callout, phy_tick, sc);
974
975 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
976 RND_TYPE_NET, RND_FLAG_DEFAULT);
977
978 return;
979
980 fail_5:
981 for (i = 0; i < MD_NRXDESC; i++) {
982 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
983 bus_dmamap_destroy(sc->sc_dmat,
984 sc->sc_rxsoft[i].rxs_dmamap);
985 }
986 fail_4:
987 for (i = 0; i < MD_TXQUEUELEN; i++) {
988 if (sc->sc_txsoft[i].txs_dmamap != NULL)
989 bus_dmamap_destroy(sc->sc_dmat,
990 sc->sc_txsoft[i].txs_dmamap);
991 }
992 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
993 fail_3:
994 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
995 fail_2:
996 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
997 sizeof(struct control_data));
998 fail_1:
999 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
1000 fail_0:
1001 if (sc->sc_phandle)
1002 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
1003 else
1004 acpi_intr_disestablish(sc->sc_ih);
1005 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1006 return;
1007 }
1008
1009 static void
1010 scx_reset(struct scx_softc *sc)
1011 {
1012 int loop = 0, busy;
1013
1014 mac_write(sc, GMACOMR, 0);
1015 mac_write(sc, GMACBMR, BMR_RST);
1016 do {
1017 DELAY(1);
1018 busy = mac_read(sc, GMACBMR) & BMR_RST;
1019 } while (++loop < 3000 && busy);
1020 mac_write(sc, GMACBMR, _BMR);
1021 mac_write(sc, GMACAFR, 0);
1022
1023 CSR_WRITE(sc, CLKEN, CLK_ALL); /* distribute clock sources */
1024 CSR_WRITE(sc, SWRESET, 0); /* reset operation */
1025 CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */
1026 CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1027 WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
1028
1029 CSR_WRITE(sc, TXISR, ~0);
1030 CSR_WRITE(sc, xINTAE_CLR, ~0);
1031
1032 /* clear event counters, auto-zero after every read */
1033 mac_write(sc, GMACEVCTL, EVC_CR | EVC_ROR);
1034 }
1035
1036 static int
1037 scx_init(struct ifnet *ifp)
1038 {
1039 struct scx_softc *sc = ifp->if_softc;
1040 const uint8_t *ea = CLLADDR(ifp->if_sadl);
1041 paddr_t paddr;
1042 uint32_t csr;
1043 int i, error;
1044
1045 /* Cancel pending I/O. */
1046 scx_stop(ifp, 0);
1047
1048 /* Reset the chip to a known state. */
1049 scx_reset(sc);
1050
1051 /* build sane Tx */
1052 memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
1053 sc->sc_txdescs[MD_NTXDESC - 1].t0 = T0_EOD; /* tie off the ring */
1054 SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
1055 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1056 sc->sc_txfree = MD_NTXDESC;
1057 sc->sc_txnext = 0;
1058 for (i = 0; i < MD_TXQUEUELEN; i++)
1059 sc->sc_txsoft[i].txs_mbuf = NULL;
1060 sc->sc_txsfree = MD_TXQUEUELEN;
1061 sc->sc_txsnext = 0;
1062 sc->sc_txsdirty = 0;
1063
1064 /* load Rx descriptors with fresh mbuf */
1065 for (i = 0; i < MD_NRXDESC; i++) {
1066 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
1067 if ((error = add_rxbuf(sc, i)) != 0) {
1068 aprint_error_dev(sc->sc_dev,
1069 "unable to allocate or map rx "
1070 "buffer %d, error = %d\n",
1071 i, error);
1072 rxdrain(sc);
1073 goto out;
1074 }
1075 }
1076 else
1077 SCX_INIT_RXDESC(sc, i);
1078 }
1079 sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_EOD; /* tie off the ring */
1080 sc->sc_rxptr = 0;
1081
1082 paddr = SCX_CDTXADDR(sc, 0); /* tdes array (ring#0) */
1083 mac_write(sc, TDBA_HI, BUS_ADDR_HI32(paddr));
1084 mac_write(sc, TDBA_LO, BUS_ADDR_LO32(paddr));
1085 paddr = SCX_CDRXADDR(sc, 0); /* rdes array (ring#1) */
1086 mac_write(sc, RDBA_HI, BUS_ADDR_HI32(paddr));
1087 mac_write(sc, RDBA_LO, BUS_ADDR_LO32(paddr));
1088
1089 CSR_WRITE(sc, TXCONF, DESCNF_LE); /* little endian */
1090 CSR_WRITE(sc, RXCONF, DESCNF_LE); /* little endian */
1091
1092 /* set my address in perfect match slot 0. little endian order */
1093 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
1094 mac_write(sc, GMACMAL0, csr);
1095 csr = (ea[5] << 8) | ea[4];
1096 mac_write(sc, GMACMAH0, csr);
1097
1098 /* accept multicast frame or run promisc mode */
1099 scx_set_rcvfilt(sc);
1100
1101 /* set current media */
1102 if ((error = ether_mediachange(ifp)) != 0)
1103 goto out;
1104
1105 CSR_WRITE(sc, DESC_SRST, 01);
1106 WAIT_FOR_CLR(sc, DESC_SRST, 01, 0);
1107
1108 CSR_WRITE(sc, DESC_INIT, 01);
1109 WAIT_FOR_CLR(sc, DESC_INIT, 01, 0);
1110
1111 mac_write(sc, GMACRDLA, _RDLA); /* GMAC rdes store */
1112 mac_write(sc, GMACTDLA, _TDLA); /* GMAC tdes store */
1113
1114 CSR_WRITE(sc, FLOWTHR, (48<<16) | 36); /* pause|resume threshold */
1115 mac_write(sc, GMACFCR, 256 << 16); /* 31:16 pause value */
1116
1117 CSR_WRITE(sc, RXIE_CLR, ~0); /* clear Rx interrupt enable */
1118 CSR_WRITE(sc, TXIE_CLR, ~0); /* clear Tx interrupt enable */
1119
1120 CSR_WRITE(sc, RXCLSCMAX, 8); /* Rx coalesce upper bound */
1121 CSR_WRITE(sc, TXCLSCMAX, 8); /* Tx coalesce upper bound */
1122 CSR_WRITE(sc, RXITIMER, 500); /* Rx co. timer usec */
1123 CSR_WRITE(sc, TXITIMER, 500); /* Tx co. timer usec */
1124
1125 CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP);
1126 CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP);
1127
1128 CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX);
1129
1130 /* kick to start GMAC engine */
1131 csr = mac_read(sc, GMACOMR);
1132 mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);
1133
1134 ifp->if_flags |= IFF_RUNNING;
1135
1136 /* start one second timer */
1137 callout_schedule(&sc->sc_callout, hz);
1138 out:
1139 return error;
1140 }
1141
1142 static void
1143 scx_stop(struct ifnet *ifp, int disable)
1144 {
1145 struct scx_softc *sc = ifp->if_softc;
1146
1147 /* Stop the one second clock. */
1148 callout_stop(&sc->sc_callout);
1149
1150 /* Down the MII. */
1151 mii_down(&sc->sc_mii);
1152
1153 /* Mark the interface down and cancel the watchdog timer. */
1154 ifp->if_flags &= ~IFF_RUNNING;
1155 ifp->if_timer = 0;
1156
1157 CSR_WRITE(sc, xINTAE_CLR, ~0);
1158 CSR_WRITE(sc, TXISR, ~0);
1159 CSR_WRITE(sc, RXISR, ~0);
1160
1161 if (CSR_READ(sc, CORESTAT) != 0) {
1162 CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
1163 CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
1164
1165 WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP, 0);
1166 WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP, 0);
1167 }
1168 }
1169
1170 static int
1171 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1172 {
1173 struct scx_softc *sc = ifp->if_softc;
1174 struct ifreq *ifr = (struct ifreq *)data;
1175 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1176 int s, error;
1177
1178 s = splnet();
1179
1180 switch (cmd) {
1181 case SIOCSIFMEDIA:
1182 /* Flow control requires full-duplex mode. */
1183 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1184 (ifr->ifr_media & IFM_FDX) == 0)
1185 ifr->ifr_media &= ~IFM_ETH_FMASK;
1186 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1187 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1188 /* We can do both TXPAUSE and RXPAUSE. */
1189 ifr->ifr_media |=
1190 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1191 }
1192 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1193 }
1194 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
1195 break;
1196 default:
1197 error = ether_ioctl(ifp, cmd, data);
1198 if (error != ENETRESET)
1199 break;
1200 error = 0;
1201 if (cmd == SIOCSIFCAP)
1202 error = if_init(ifp);
1203 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1204 ;
1205 else if (ifp->if_flags & IFF_RUNNING) {
1206 /*
1207 * Multicast list has changed; set the hardware filter
1208 * accordingly.
1209 */
1210 scx_set_rcvfilt(sc);
1211 }
1212 break;
1213 }
1214
1215 splx(s);
1216 return error;
1217 }
1218
1219 static uint32_t
1220 bit_reverse_32(uint32_t x)
1221 {
1222 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
1223 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
1224 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
1225 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
1226 return (x >> 16) | (x << 16);
1227 }
1228
1229 static void
1230 scx_set_rcvfilt(struct scx_softc *sc)
1231 {
1232 struct ethercom * const ec = &sc->sc_ethercom;
1233 struct ifnet * const ifp = &ec->ec_if;
1234 struct ether_multistep step;
1235 struct ether_multi *enm;
1236 uint32_t mchash[2]; /* 2x 32 = 64 bit */
1237 uint32_t csr, crc;
1238 int i;
1239
1240 csr = mac_read(sc, GMACAFR);
1241 csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1242 mac_write(sc, GMACAFR, csr);
1243
1244 /* clear 15 entry supplemental perfect match filter */
1245 for (i = 1; i < 16; i++)
1246 mac_write(sc, GMACMAH(i), 0);
1247 /* build 64 bit multicast hash filter */
1248 crc = mchash[1] = mchash[0] = 0;
1249
1250 ETHER_LOCK(ec);
1251 if (ifp->if_flags & IFF_PROMISC) {
1252 ec->ec_flags |= ETHER_F_ALLMULTI;
1253 ETHER_UNLOCK(ec);
1254 /* run promisc. mode */
1255 csr |= AFR_PR;
1256 goto update;
1257 }
1258 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1259 ETHER_FIRST_MULTI(step, ec, enm);
1260 i = 1; /* slot 0 is occupied */
1261 while (enm != NULL) {
1262 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1263 /*
1264 * We must listen to a range of multicast addresses.
1265 * For now, just accept all multicasts, rather than
1266 * trying to set only those filter bits needed to match
1267 * the range. (At this time, the only use of address
1268 * ranges is for IP multicast routing, for which the
1269 * range is big enough to require all bits set.)
1270 */
1271 ec->ec_flags |= ETHER_F_ALLMULTI;
1272 ETHER_UNLOCK(ec);
1273 /* accept all multi */
1274 csr |= AFR_PM;
1275 goto update;
1276 }
1277 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1278 if (i < 16) {
1279 /* use 15 entry perfect match filter */
1280 uint32_t addr;
1281 uint8_t *ep = enm->enm_addrlo;
1282 addr = (ep[3] << 24) | (ep[2] << 16)
1283 | (ep[1] << 8) | ep[0];
1284 mac_write(sc, GMACMAL(i), addr);
1285 addr = (ep[5] << 8) | ep[4];
1286 mac_write(sc, GMACMAH(i), addr | 1U<<31);
1287 } else {
1288 /* use hash table when too many */
1289 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1290 crc = bit_reverse_32(~crc);
1291 /* 1(31) 5(30:26) bit sampling */
1292 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1293 }
1294 ETHER_NEXT_MULTI(step, enm);
1295 i++;
1296 }
1297 ETHER_UNLOCK(ec);
1298 if (crc)
1299 csr |= AFR_MHTE;
1300 csr |= AFR_HPF; /* use hash+perfect */
1301 mac_write(sc, GMACMHTH, mchash[1]);
1302 mac_write(sc, GMACMHTL, mchash[0]);
1303 update:
1304 /* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */
1305 mac_write(sc, GMACAFR, csr);
1306 return;
1307 }
1308
1309 static void
1310 scx_start(struct ifnet *ifp)
1311 {
1312 struct scx_softc *sc = ifp->if_softc;
1313 struct mbuf *m0;
1314 struct scx_txsoft *txs;
1315 bus_dmamap_t dmamap;
1316 int error, nexttx, lasttx, ofree, seg;
1317 uint32_t tdes0;
1318
1319 if ((ifp->if_flags & IFF_RUNNING) == 0)
1320 return;
1321
1322 /* Remember the previous number of free descriptors. */
1323 ofree = sc->sc_txfree;
1324
1325 /*
1326 * Loop through the send queue, setting up transmit descriptors
1327 * until we drain the queue, or use up all available transmit
1328 * descriptors.
1329 */
1330 for (;;) {
1331 IFQ_POLL(&ifp->if_snd, m0);
1332 if (m0 == NULL)
1333 break;
1334
1335 if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1336 txreap(sc);
1337 if (sc->sc_txsfree == 0)
1338 break;
1339 }
1340 txs = &sc->sc_txsoft[sc->sc_txsnext];
1341 dmamap = txs->txs_dmamap;
1342
1343 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1344 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1345 if (error) {
1346 if (error == EFBIG) {
1347 aprint_error_dev(sc->sc_dev,
1348 "Tx packet consumes too many "
1349 "DMA segments, dropping...\n");
1350 IFQ_DEQUEUE(&ifp->if_snd, m0);
1351 m_freem(m0);
1352 continue;
1353 }
1354 /* Short on resources, just stop for now. */
1355 break;
1356 }
1357
1358 if (dmamap->dm_nsegs > sc->sc_txfree) {
1359 /*
1360 * Not enough free descriptors to transmit this
1361 * packet. We haven't committed anything yet,
1362 * so just unload the DMA map, put the packet
1363 * back on the queue, and punt.
1364 */
1365 bus_dmamap_unload(sc->sc_dmat, dmamap);
1366 break;
1367 }
1368
1369 IFQ_DEQUEUE(&ifp->if_snd, m0);
1370
1371 /*
1372 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1373 */
1374
1375 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1376 BUS_DMASYNC_PREWRITE);
1377
1378 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1379 lasttx = -1;
1380 for (nexttx = sc->sc_txnext, seg = 0;
1381 seg < dmamap->dm_nsegs;
1382 seg++, nexttx = MD_NEXTTX(nexttx)) {
1383 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1384 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1385 /*
1386 * If this is the first descriptor we're
1387 * enqueueing, don't set the OWN bit just
1388 * yet. That could cause a race condition.
1389 * We'll do it below.
1390 */
1391 tdes->t3 = htole32(dmamap->dm_segs[seg].ds_len);
1392 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1393 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1394 tdes->t0 = htole32(tdes0 | (tdes->t0 & T0_EOD) |
1395 (15 << T0_TDRID) | T0_PT |
1396 sc->sc_t0cotso | T0_TRS);
1397 tdes0 = T0_OWN; /* 2nd and other segments */
1398 /* NB; t0 DRID field contains zero */
1399 lasttx = nexttx;
1400 }
1401
1402 /* Write deferred 1st segment T0_OWN at the final stage */
1403 sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS);
1404 sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN);
1405 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1406 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1407
1408 /* submit one frame to xmit */
1409 CSR_WRITE(sc, TXSUBMIT, 1);
1410
1411 txs->txs_mbuf = m0;
1412 txs->txs_firstdesc = sc->sc_txnext;
1413 txs->txs_lastdesc = lasttx;
1414 txs->txs_ndesc = dmamap->dm_nsegs;
1415
1416 sc->sc_txfree -= txs->txs_ndesc;
1417 sc->sc_txnext = nexttx;
1418 sc->sc_txsfree--;
1419 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1420 /*
1421 * Pass the packet to any BPF listeners.
1422 */
1423 bpf_mtap(ifp, m0, BPF_D_OUT);
1424 }
1425
1426 if (sc->sc_txfree != ofree) {
1427 /* Set a watchdog timer in case the chip flakes out. */
1428 ifp->if_timer = 5;
1429 }
1430 }
1431
1432 static void
1433 scx_watchdog(struct ifnet *ifp)
1434 {
1435 struct scx_softc *sc = ifp->if_softc;
1436
1437 /*
1438 * Since we're not interrupting every packet, sweep
1439 * up before we report an error.
1440 */
1441 txreap(sc);
1442
1443 if (sc->sc_txfree != MD_NTXDESC) {
1444 aprint_error_dev(sc->sc_dev,
1445 "device timeout (txfree %d txsfree %d txnext %d)\n",
1446 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1447 if_statinc(ifp, if_oerrors);
1448
1449 /* Reset the interface. */
1450 scx_init(ifp);
1451 }
1452
1453 scx_start(ifp);
1454 }
1455
1456 static int
1457 scx_intr(void *arg)
1458 {
1459 struct scx_softc *sc = arg;
1460 uint32_t enable, status;
1461
1462 status = CSR_READ(sc, xINTSR); /* not W1C */
1463 enable = CSR_READ(sc, xINTAEN);
1464 if ((status & enable) == 0)
1465 return 0;
1466 if (status & (IRQ_TX | IRQ_RX)) {
1467 CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX));
1468
1469 status = CSR_READ(sc, RXISR);
1470 CSR_WRITE(sc, RXISR, status);
1471 if (status & RXI_RC_ERR)
1472 aprint_error_dev(sc->sc_dev, "Rx error\n");
1473 if (status & (RXI_PKTCNT | RXI_TMREXP)) {
1474 rxintr(sc);
1475 (void)CSR_READ(sc, RXDONECNT); /* clear RXI_RXDONE */
1476 }
1477
1478 status = CSR_READ(sc, TXISR);
1479 CSR_WRITE(sc, TXISR, status);
1480 if (status & TXI_TR_ERR)
1481 aprint_error_dev(sc->sc_dev, "Tx error\n");
1482 if (status & (TXI_TXDONE | TXI_TMREXP)) {
1483 txreap(sc);
1484 (void)CSR_READ(sc, TXDONECNT); /* clear TXI_TXDONE */
1485 }
1486
1487 CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX));
1488 }
1489 return 1;
1490 }
1491
1492 static void
1493 txreap(struct scx_softc *sc)
1494 {
1495 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1496 struct scx_txsoft *txs;
1497 uint32_t txstat;
1498 int i;
1499
1500 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1501 i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1502 txs = &sc->sc_txsoft[i];
1503
1504 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1505 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1506
1507 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0);
1508 if (txstat & T0_OWN) /* desc is still in use */
1509 break;
1510
1511 /* There is no way to tell transmission status per frame */
1512
1513 if_statinc(ifp, if_opackets);
1514
1515 sc->sc_txfree += txs->txs_ndesc;
1516 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1517 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1518 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1519 m_freem(txs->txs_mbuf);
1520 txs->txs_mbuf = NULL;
1521 }
1522 sc->sc_txsdirty = i;
1523 if (sc->sc_txsfree == MD_TXQUEUELEN)
1524 ifp->if_timer = 0;
1525 }
1526
1527 static void
1528 rxintr(struct scx_softc *sc)
1529 {
1530 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1531 struct scx_rxsoft *rxs;
1532 struct mbuf *m;
1533 uint32_t rxstat;
1534 int i, len;
1535
1536 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1537 rxs = &sc->sc_rxsoft[i];
1538
1539 SCX_CDRXSYNC(sc, i,
1540 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1541
1542 rxstat = le32toh(sc->sc_rxdescs[i].r0);
1543 if (rxstat & R0_OWN) /* desc is left empty */
1544 break;
1545
1546 /* R0_FS | R0_LS must have been marked for this desc */
1547
1548 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1549 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1550
1551 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1552 len -= ETHER_CRC_LEN; /* Trim CRC off */
1553 m = rxs->rxs_mbuf;
1554
1555 if (add_rxbuf(sc, i) != 0) {
1556 if_statinc(ifp, if_ierrors);
1557 SCX_INIT_RXDESC(sc, i);
1558 bus_dmamap_sync(sc->sc_dmat,
1559 rxs->rxs_dmamap, 0,
1560 rxs->rxs_dmamap->dm_mapsize,
1561 BUS_DMASYNC_PREREAD);
1562 continue;
1563 }
1564
1565 m_set_rcvif(m, ifp);
1566 m->m_pkthdr.len = m->m_len = len;
1567
1568 if (rxstat & R0_CSUM) {
1569 uint32_t csum = M_CSUM_IPv4;
1570 if (rxstat & R0_CERR)
1571 csum |= M_CSUM_IPv4_BAD;
1572 m->m_pkthdr.csum_flags |= csum;
1573 }
1574 if_percpuq_enqueue(ifp->if_percpuq, m);
1575 }
1576 sc->sc_rxptr = i;
1577 }
1578
1579 static int
1580 add_rxbuf(struct scx_softc *sc, int i)
1581 {
1582 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1583 struct mbuf *m;
1584 int error;
1585
1586 MGETHDR(m, M_DONTWAIT, MT_DATA);
1587 if (m == NULL)
1588 return ENOBUFS;
1589
1590 MCLGET(m, M_DONTWAIT);
1591 if ((m->m_flags & M_EXT) == 0) {
1592 m_freem(m);
1593 return ENOBUFS;
1594 }
1595
1596 if (rxs->rxs_mbuf != NULL)
1597 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1598
1599 rxs->rxs_mbuf = m;
1600
1601 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1602 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1603 if (error) {
1604 aprint_error_dev(sc->sc_dev,
1605 "can't load rx DMA map %d, error = %d\n", i, error);
1606 panic("add_rxbuf");
1607 }
1608
1609 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1610 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1611 SCX_INIT_RXDESC(sc, i);
1612
1613 return 0;
1614 }
1615
1616 static void
1617 rxdrain(struct scx_softc *sc)
1618 {
1619 struct scx_rxsoft *rxs;
1620 int i;
1621
1622 for (i = 0; i < MD_NRXDESC; i++) {
1623 rxs = &sc->sc_rxsoft[i];
1624 if (rxs->rxs_mbuf != NULL) {
1625 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1626 m_freem(rxs->rxs_mbuf);
1627 rxs->rxs_mbuf = NULL;
1628 }
1629 }
1630 }
1631
1632 void
1633 mii_statchg(struct ifnet *ifp)
1634 {
1635 struct scx_softc *sc = ifp->if_softc;
1636 struct mii_data *mii = &sc->sc_mii;
1637 const int Mbps[4] = { 10, 100, 1000, 0 };
1638 uint32_t miisr, mcr, fcr;
1639 int spd;
1640
1641 /* decode MIISR register value */
1642 miisr = mac_read(sc, GMACMIISR);
1643 spd = Mbps[(miisr & MIISR_SPD) >> 1];
1644 #if 1
1645 static uint32_t oldmiisr = 0;
1646 if (miisr != oldmiisr) {
1647 printf("MII link status (0x%x) %s",
1648 miisr, (miisr & MIISR_LUP) ? "up" : "down");
1649 if (miisr & MIISR_LUP) {
1650 printf(" spd%d", spd);
1651 if (miisr & MIISR_FDX)
1652 printf(",full-duplex");
1653 }
1654 printf("\n");
1655 }
1656 #endif
1657 /* Get flow control negotiation result. */
1658 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1659 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1660 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1661
1662 /* Adjust speed 1000/100/10. */
1663 mcr = mac_read(sc, GMACMCR);
1664 if (spd == 1000)
1665 mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
1666 else {
1667 if (spd == 100 && sc->sc_100mii)
1668 mcr |= MCR_SPD100;
1669 mcr |= MCR_USEMII;
1670 }
1671 mcr |= MCR_CST | MCR_JE;
1672 if (sc->sc_100mii == 0)
1673 mcr |= MCR_IBN;
1674
1675 /* Adjust duplexity and PAUSE flow control. */
1676 mcr &= ~MCR_USEFDX;
1677 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1678 if (miisr & MIISR_FDX) {
1679 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1680 fcr |= FCR_TFE;
1681 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1682 fcr |= FCR_RFE;
1683 mcr |= MCR_USEFDX;
1684 }
1685 mac_write(sc, GMACMCR, mcr);
1686 mac_write(sc, GMACFCR, fcr);
1687
1688 #if 1
1689 if (miisr != oldmiisr) {
1690 printf("%ctxfe, %crxfe\n",
1691 (fcr & FCR_TFE) ? '+' : '-',
1692 (fcr & FCR_RFE) ? '+' : '-');
1693 }
1694 oldmiisr = miisr;
1695 #endif
1696 }
1697
1698 static void
1699 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1700 {
1701 struct scx_softc *sc = ifp->if_softc;
1702 struct mii_data *mii = &sc->sc_mii;
1703
1704 mii_pollstat(mii);
1705 ifmr->ifm_status = mii->mii_media_status;
1706 ifmr->ifm_active = sc->sc_flowflags |
1707 (mii->mii_media_active & ~IFM_ETH_FMASK);
1708 }
1709
1710 static int
1711 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1712 {
1713 struct scx_softc *sc = device_private(self);
1714 uint32_t miia;
1715 int ntries;
1716
1717 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1718 mac_write(sc, GMACGAR, miia | GAR_BUSY);
1719 for (ntries = 0; ntries < 1000; ntries++) {
1720 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1721 goto unbusy;
1722 DELAY(1);
1723 }
1724 return ETIMEDOUT;
1725 unbusy:
1726 *val = mac_read(sc, GMACGDR);
1727 return 0;
1728 }
1729
1730 static int
1731 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1732 {
1733 struct scx_softc *sc = device_private(self);
1734 uint32_t miia;
1735 uint16_t dummy;
1736 int ntries;
1737
1738 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1739 mac_write(sc, GMACGDR, val);
1740 mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1741 for (ntries = 0; ntries < 1000; ntries++) {
1742 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1743 goto unbusy;
1744 DELAY(1);
1745 }
1746 return ETIMEDOUT;
1747 unbusy:
1748 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1749 return 0;
1750 }
1751
1752 static void
1753 phy_tick(void *arg)
1754 {
1755 struct scx_softc *sc = arg;
1756 struct mii_data *mii = &sc->sc_mii;
1757 int s;
1758
1759 s = splnet();
1760 mii_tick(mii);
1761 splx(s);
1762 #ifdef GMAC_EVENT_COUNTERS
1763 /* 80 event counters exist */
1764 #endif
1765 callout_schedule(&sc->sc_callout, hz);
1766 }
1767
1768 static void
1769 reset_hardware(struct scx_softc *sc)
1770 {
1771
1772 if (CSR_READ(sc, CORESTAT) != 0) {
1773 CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
1774 CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
1775
1776 WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP, 0);
1777 WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP, 0);
1778 }
1779 CSR_WRITE(sc, SWRESET, 0); /* reset operation */
1780 CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */
1781 CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1782 WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
1783 }
1784
1785 /*
1786 * 3 independent uengines exist to process host2media, media2host and
1787 * packet data flows.
1788 */
1789 static void
1790 loaducode(struct scx_softc *sc)
1791 {
1792 uint32_t up, lo, sz;
1793 uint64_t addr;
1794
1795 reset_hardware(sc);
1796 CSR_WRITE(sc, xINTSR, IRQ_UCODE);
1797
1798 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1799 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1800 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1801 sz *= 4;
1802 addr = ((uint64_t)up << 32) | lo;
1803 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1804 injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
1805
1806 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1807 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1808 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1809 sz *= 4;
1810 addr = ((uint64_t)up << 32) | lo;
1811 injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
1812 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1813
1814 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1815 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1816 sz *= 4;
1817 injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
1818 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1819
1820 WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE, 0);
1821 /* XXX may take long time to end ?! XXX */
1822 CSR_WRITE(sc, xINTSR, IRQ_UCODE);
1823 }
1824
1825 static void
1826 injectucode(struct scx_softc *sc, int port,
1827 bus_addr_t addr, bus_size_t size)
1828 {
1829 bus_space_handle_t bsh;
1830 bus_size_t off;
1831 uint32_t ucode;
1832
1833 if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1834 aprint_error_dev(sc->sc_dev,
1835 "eeprom map failure for ucode port 0x%x\n", port);
1836 return;
1837 }
1838 for (off = 0; off < size; off += 4) {
1839 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1840 CSR_WRITE(sc, port, ucode);
1841 }
1842 bus_space_unmap(sc->sc_st, bsh, size);
1843 }
1844
1845 /* GAR 5:2 MDIO frequency selection */
1846 static int
1847 get_mdioclk(uint32_t freq)
1848 {
1849
1850 freq /= 1000 * 1000;
1851 if (freq < 35)
1852 return GAR_MDIO_25_35MHZ;
1853 if (freq < 60)
1854 return GAR_MDIO_35_60MHZ;
1855 if (freq < 100)
1856 return GAR_MDIO_60_100MHZ;
1857 if (freq < 150)
1858 return GAR_MDIO_100_150MHZ;
1859 if (freq < 250)
1860 return GAR_MDIO_150_250MHZ;
1861 return GAR_MDIO_250_300MHZ;
1862 }
1863