if_scx.c revision 1.40 1 /* $NetBSD: if_scx.c,v 1.40 2023/05/21 00:35:38 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #define NOT_MP_SAFE 0
33
34 /*
35 * Socionext SC2A11 SynQuacer NetSec GbE driver
36 *
37 * Multiple Tx and Rx queues exist inside and dedicated descriptor
38 * fields specifies which queue is to use. Three internal micro-processors
39 * to handle incoming frames, outgoing frames and packet data crypto
40 * processing. uP programs are stored in an external flash memory and
41 * have to be loaded by device driver.
42 * NetSec uses Synopsys DesignWare Core EMAC. DWC implementation
43 * register (0x20) is known to have 0x10.36 and feature register (0x1058)
44 * reports 0x11056f37.
45 * <24> alternative/enhanced desc format
46 * <18> receive IP type 2 checksum offload
47 * <16> transmit checksum offload
48 * <11> event counter (mac management counter, MMC)
49 */
50
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.40 2023/05/21 00:35:38 nisimura Exp $");
53
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/intr.h>
57 #include <sys/device.h>
58 #include <sys/callout.h>
59 #include <sys/mbuf.h>
60 #include <sys/errno.h>
61 #include <sys/rndsource.h>
62 #include <sys/kernel.h>
63 #include <sys/systm.h>
64
65 #include <net/if.h>
66 #include <net/if_media.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <net/bpf.h>
72
73 #include <dev/fdt/fdtvar.h>
74 #include <dev/acpi/acpireg.h>
75 #include <dev/acpi/acpivar.h>
76 #include <dev/acpi/acpi_intr.h>
77
78 /* SC2A11 GbE 64-bit paddr descriptor */
79 struct tdes {
80 uint32_t t0, t1, t2, t3;
81 };
82 struct rdes {
83 uint32_t r0, r1, r2, r3;
84 };
85 #define T0_OWN (1U<<31) /* desc is ready to Tx */
86 #define T0_LD (1U<<30) /* last descriptor in array */
87 #define T0_DRID (24) /* 29:24 desc ring id */
88 #define T0_PT (1U<<21) /* 23:21 "pass-through" */
89 #define T0_TDRID (16) /* 20:16 target desc ring id: GMAC=15 */
90 #define T0_CC (1U<<15) /* ??? */
91 #define T0_FS (1U<<9) /* first segment of frame */
92 #define T0_LS (1U<<8) /* last segment of frame */
93 #define T0_CSUM (1U<<7) /* enable check sum offload */
94 #define T0_TSO (1U<<6) /* enable TCP segment offload */
95 #define T0_TRS (1U<<4) /* 5:4 "TRS" ??? */
96 /* T1 frame segment address 63:32 */
97 /* T2 frame segment address 31:0 */
98 /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
99 #define R0_OWN (1U<<31) /* desc is empty */
100 #define R0_LD (1U<<30) /* last descriptor in array */
101 #define R0_SDRID (24) /* 29:24 source desc ring id */
102 #define R0_FR (1U<<23) /* found fragmented */
103 #define R0_ER (1U<<21) /* Rx error indication */
104 #define R0_ERR (3U<<16) /* 18:16 receive error code */
105 #define R0_TDRID (12) /* 15:12 target desc ring id */
106 #define R0_FS (1U<<9) /* first segment of frame */
107 #define R0_LS (1U<<8) /* last segment of frame */
108 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
109 #define R0_CERR (2U<<6) /* 0: undone, 1: found ok, 2: bad */
110 /* R1 frame address 63:32 */
111 /* R2 frame address 31:0 */
112 /* R3 31:16 received frame length, 15:0 buffer length to receive */
113
114 /*
115 * SC2A11 registers. 0x100 - 1204
116 */
117 #define SWRESET 0x104
118 #define SRST_RUN (1U<<31) /* instruct start, 0 to stop */
119 #define COMINIT 0x120
120 #define INIT_DB (1U<<2) /* ???; self clear when done */
121 #define INIT_CLS (1U<<1) /* ???; self clear when done */
122 #define PKTCTRL 0x140 /* pkt engine control */
123 #define MODENRM (1U<<28) /* change mode to normal */
124 #define ENJUMBO (1U<<27) /* allow jumbo frame */
125 #define RPTCSUMERR (1U<<3) /* log Rx checksum error */
126 #define RPTHDCOMP (1U<<2) /* log HD incomplete condition */
127 #define RPTHDERR (1U<<1) /* log HD error */
128 #define DROPNOMATCH (1U<<0) /* drop no match frames */
129 #define xINTSR 0x200 /* aggregated interrupt status */
130 #define IRQ_UCODE (1U<<20) /* ucode load completed; W1C */
131 #define IRQ_MAC (1U<<19) /* ??? */
132 #define IRQ_PKT (1U<<18) /* ??? */
133 #define IRQ_BOOTCODE (1U<<5) /* ??? */
134 #define IRQ_XDONE (1U<<4) /* ??? mode change completed */
135 #define IRQ_RX (1U<<1) /* top level Rx interrupt */
136 #define IRQ_TX (1U<<0) /* top level Tx interrupt */
137 #define xINTAEN 0x204 /* INT_A enable */
138 #define xINTAE_SET 0x234 /* bit to set */
139 #define xINTAE_CLR 0x238 /* bit to clr */
140 #define xINTBEN 0x23c /* INT_B enable */
141 #define xINTBE_SET 0x240 /* bit to set */
142 #define xINTBE_CLR 0x244 /* bit to clr */
143 #define TXISR 0x400 /* transmit status; W1C */
144 #define TXIEN 0x404 /* tx interrupt enable */
145 #define TXIE_SET 0x428 /* bit to set */
146 #define TXIE_CLR 0x42c /* bit to clr */
147 #define TXI_NTOWNR (1U<<17) /* ??? desc array got empty */
148 #define TXI_TR_ERR (1U<<16) /* tx error */
149 #define TXI_TXDONE (1U<<15) /* tx completed */
150 #define TXI_TMREXP (1U<<14) /* coalesce timer expired */
151 #define RXISR 0x440 /* receive status; W1C */
152 #define RXIEN 0x444 /* rx interrupt enable */
153 #define RXIE_SET 0x468 /* bit to set */
154 #define RXIE_CLR 0x46c /* bit to clr */
155 #define RXI_RC_ERR (1U<<16) /* rx error */
156 #define RXI_PKTCNT (1U<<15) /* rx counter has new value */
157 #define RXI_TMREXP (1U<<14) /* coalesce timer expired */
158 /* 13 sets of special purpose desc interrupt handling register exist */
159 #define TDBA_LO 0x408 /* tdes array base addr 31:0 */
160 #define TDBA_HI 0x434 /* tdes array base addr 63:32 */
161 #define RDBA_LO 0x448 /* rdes array base addr 31:0 */
162 #define RDBA_HI 0x474 /* rdes array base addr 63:32 */
163 /* 13 pairs of special purpose desc array base address register exist */
164 #define TXCONF 0x430
165 #define RXCONF 0x470
166 #define DESCNF_UP (1U<<31) /* up-and-running */
167 #define DESCNF_CHRST (1U<<30) /* channel reset */
168 #define DESCNF_TMR (1U<<4) /* coalesce timer mode select */
169 #define DESCNF_LE (1) /* little endian desc format */
170 #define TXSUBMIT 0x410 /* submit frame(s) to transmit */
171 #define TXCLSCMAX 0x418 /* tx intr coalesce upper bound */
172 #define RXCLSCMAX 0x458 /* rx intr coalesce upper bound */
173 #define TXITIMER 0x420 /* coalesce timer usec, MSB to use */
174 #define RXITIMER 0x460 /* coalesce timer usec, MSB to use */
175 #define TXDONECNT 0x414 /* tx completed count, auto-zero */
176 #define RXDONECNT 0x454 /* rx available count, auto-zero */
177 #define DMACTL_TMR 0x20c /* engine DMA timer value */
178 #define UCODE_H2M 0x210 /* host2media engine ucode port */
179 #define UCODE_M2H 0x21c /* media2host engine ucode port */
180 #define CORESTAT 0x218 /* engine run state */
181 #define PKTSTOP (1U<<2)
182 #define M2HSTOP (1U<<1)
183 #define H2MSTOP (1U<<0)
184 #define DMACTL_H2M 0x214 /* host2media engine control */
185 #define DMACTL_M2H 0x220 /* media2host engine control */
186 #define DMACTL_STOP (1U<<0) /* instruct stop; self-clear */
187 #define UCODE_PKT 0x0d0 /* packet engine ucode port */
188 #define CLKEN 0x100 /* clock distribution enable */
189 #define CLK_G (1U<<5) /* feed clk domain E */
190 #define CLK_C (1U<<1) /* feed clk domain C */
191 #define CLK_D (1U<<0) /* feed clk domain D */
192 #define CLK_ALL 0x23 /* all above; 0x24 ??? 0x3f ??? */
193
194 /* GMAC register indirect access. thru MACCMD/MACDATA operation */
195 #define MACDATA 0x11c0 /* gmac register rd/wr data */
196 #define MACCMD 0x11c4 /* gmac register operation */
197 #define CMD_IOWR (1U<<28) /* write op */
198 #define CMD_BUSY (1U<<31) /* busy bit */
199 #define MACSTAT 0x1024 /* gmac status; ??? */
200 #define MACINTE 0x1028 /* interrupt enable; ??? */
201
202 #define FLOWTHR 0x11cc /* flow control threshold */
203 /* 31:16 pause threshold, 15:0 resume threshold */
204 #define INTF_SEL 0x11d4 /* ??? */
205
206 #define DESC_INIT 0x11fc /* write 1 for desc init, SC */
207 #define DESC_SRST 0x1204 /* write 1 for desc sw reset, SC */
208 #define MODE_TRANS 0x500 /* mode change completion status */
209 #define N2T_DONE (1U<<20) /* normal->taiki change completed */
210 #define T2N_DONE (1U<<19) /* taiki->normal change completed */
211 #define MACADRH 0x10c /* ??? */
212 #define MACADRL 0x110 /* ??? */
213 #define MCVER 0x22c /* micro controller version */
214 #define HWVER 0x230 /* hardware version */
215
216 /*
217 * GMAC registers are mostly identical to Synopsys DesignWare Core
218 * Ethernet. These must be handled by indirect access.
219 */
220 #define GMACMCR 0x0000 /* MAC configuration */
221 #define MCR_IBN (1U<<30) /* ??? */
222 #define MCR_CST (1U<<25) /* strip CRC */
223 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
224 #define MCR_WD (1U<<23) /* allow long >2048 tx frame */
225 #define MCR_JE (1U<<20) /* allow ~9018 tx jumbo frame */
226 #define MCR_IFG (7U<<17) /* 19:17 IFG value 0~7 */
227 #define MCR_DCRS (1U<<16) /* ignore (G)MII HDX Tx error */
228 #define MCR_PS (1U<<15) /* 1: MII 10/100, 0: GMII 1000 */
229 #define MCR_FES (1U<<14) /* force speed 100 */
230 #define MCR_DO (1U<<13) /* don't receive my own HDX Tx frames */
231 #define MCR_LOOP (1U<<12) /* run loop back */
232 #define MCR_USEFDX (1U<<11) /* force full duplex */
233 #define MCR_IPCEN (1U<<10) /* handle checksum */
234 #define MCR_DR (1U<<9) /* attempt no tx retry, send once */
235 #define MCR_LUD (1U<<8) /* link condition report when RGMII */
236 #define MCR_ACS (1U<<7) /* auto pad strip CRC */
237 #define MCR_DC (1U<<4) /* report excessive tx deferral */
238 #define MCR_TE (1U<<3) /* run Tx MAC engine, 0 to stop */
239 #define MCR_RE (1U<<2) /* run Rx MAC engine, 0 to stop */
240 #define MCR_PREA (3U) /* 1:0 preamble len. 0~2 */
241 #define GMACAFR 0x0004 /* frame DA/SA address filter */
242 #define AFR_RA (1U<<31) /* accept all irrespective of filt. */
243 #define AFR_HPF (1U<<10) /* hash+perfect filter, or hash only */
244 #define AFR_SAF (1U<<9) /* source address filter */
245 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
246 #define AFR_PCF (2U<<6) /* ??? */
247 #define AFR_DBF (1U<<5) /* reject broadcast frame */
248 #define AFR_PM (1U<<4) /* accept all multicast frame */
249 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
250 #define AFR_MHTE (1U<<2) /* use multicast hash table */
251 #define AFR_UHTE (1U<<1) /* use hash table for unicast */
252 #define AFR_PR (1U<<0) /* run promisc mode */
253 #define GMACGAR 0x0010 /* MDIO operation */
254 #define GAR_PHY (11) /* 15:11 mii phy */
255 #define GAR_REG (6) /* 10:6 mii reg */
256 #define GAR_CLK (2) /* 5:2 mdio clock tick ratio */
257 #define GAR_IOWR (1U<<1) /* MDIO write op */
258 #define GAR_BUSY (1U<<0) /* busy bit */
259 #define GAR_MDIO_25_35MHZ 2
260 #define GAR_MDIO_35_60MHZ 3
261 #define GAR_MDIO_60_100MHZ 0
262 #define GAR_MDIO_100_150MHZ 1
263 #define GAR_MDIO_150_250MHZ 4
264 #define GAR_MDIO_250_300MHZ 5
265 #define GMACGDR 0x0014 /* MDIO rd/wr data */
266 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
267 /* 31:16 pause timer value, 5:4 pause timer threshold */
268 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
269 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
270 #define GMACIMPL 0x0020 /* implementation id */
271 #define GMACISR 0x0038 /* interrupt status indication */
272 #define GMACIMR 0x003c /* interrupt mask to inhibit */
273 #define ISR_TS (1U<<9) /* time stamp operation detected */
274 #define ISR_CO (1U<<7) /* Rx checksum offload completed */
275 #define ISR_TX (1U<<6) /* Tx completed */
276 #define ISR_RX (1U<<5) /* Rx completed */
277 #define ISR_ANY (1U<<4) /* any of above 5-7 report */
278 #define ISR_LC (1U<<0) /* link status change detected */
279 #define GMACMAH0 0x0040 /* my own MAC address 47:32 */
280 #define GMACMAL0 0x0044 /* my own MAC address 31:0 */
281 #define GMACMAH(i) ((i)*8+0x40) /* supplemental MAC addr 1-15 */
282 #define GMACMAL(i) ((i)*8+0x44) /* 31:0 MAC address low part */
283 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
284 #define GMACAMAH(i) ((i)*8+0x800) /* supplemental MAC addr 16-31 */
285 #define GMACAMAL(i) ((i)*8+0x804) /* 31: MAC address low part */
286 /* supplimental MAH bit-31: slot in use, no other bit is effective */
287 #define GMACMHTH 0x0008 /* 64bit multicast hash table 63:32 */
288 #define GMACMHTL 0x000c /* 64bit multicast hash table 31:0 */
289 #define GMACMHT(i) ((i)*4+0x500) /* 256-bit alternative mcast hash 0-7 */
290 #define GMACVTAG 0x001c /* VLAN tag control */
291 #define VTAG_HASH (1U<<19) /* use VLAN tag hash table */
292 #define VTAG_SVLAN (1U<<18) /* handle type 0x88A8 SVLAN frame */
293 #define VTAG_INV (1U<<17) /* run inverse match logic */
294 #define VTAG_ETV (1U<<16) /* use only 12bit VID field to match */
295 /* 15:0 concat of PRIO+CFI+VID */
296 #define GMACVHT 0x0588 /* 16-bit VLAN tag hash */
297 #define GMACMIISR 0x00d8 /* resolved RGMII/SGMII link status */
298 #define MIISR_LUP (1U<<3) /* link up(1)/down(0) report */
299 #define MIISR_SPD (3U<<1) /* 2:1 speed 10(0)/100(1)/1000(2) */
300 #define MIISR_FDX (1U<<0) /* fdx detected */
301
302 #define GMACLPIS 0x0030 /* LPI control & status */
303 #define LPIS_TXA (1U<<19) /* complete Tx in progress and LPI */
304 #define LPIS_PLS (1U<<17)
305 #define LPIS_EN (1U<<16) /* 1: enter LPI mode, 0: exit */
306 #define LPIS_TEN (1U<<0) /* Tx LPI report */
307 #define GMACLPIC 0x0034 /* LPI timer control */
308 #define LPIC_LST (5) /* 16:5 ??? */
309 #define LPIC_TWT (0) /* 15:0 ??? */
310 /* 0x700-764 Time Stamp control */
311
312 #define GMACBMR 0x1000 /* DMA bus mode control */
313 /* 24 8xPBL multiply by 8 for RPBL & PBL values
314 * 23 USP 1 to use RPBL for Rx DMA burst, 0 to share PBL by Rx and Tx
315 * 22:17 RPBL
316 * 16 FB fixed burst
317 * 15:14 priority between Rx and Tx
318 * 3 rxtx ratio 41
319 * 2 rxtx ratio 31
320 * 1 rxtx ratio 21
321 * 0 rxtx ratio 11
322 * 13:8 PBL possible DMA burst length
323 * 7 ATDS select 32-byte descriptor format for advanced features
324 * 6:2 DSL descriptor skip length, 0 for adjuscent, counted on bus width
325 * 0 MAC reset op. self-clear
326 */
327 #define BMR_RST (1) /* reset op. self clear when done */
328 #define GMACTPD 0x1004 /* write any to resume tdes */
329 #define GMACRPD 0x1008 /* write any to resume rdes */
330 #define GMACRDLA 0x100c /* rdes base address 32bit paddr */
331 #define GMACTDLA 0x1010 /* tdes base address 32bit paddr */
332 #define GMACDSR 0x1014 /* DMA status detail report; W1C */
333 #define GMACDIE 0x101c /* DMA interrupt enable */
334 #define DMAI_LPI (1U<<30) /* LPI interrupt */
335 #define DMAI_TTI (1U<<29) /* timestamp trigger interrupt */
336 #define DMAI_GMI (1U<<27) /* management counter interrupt */
337 #define DMAI_GLI (1U<<26) /* xMII link change detected */
338 #define DMAI_EB (23) /* 25:23 DMA bus error detected */
339 #define DMAI_TS (20) /* 22:20 Tx DMA state report */
340 #define DMAI_RS (17) /* 29:17 Rx DMA state report */
341 #define DMAI_NIS (1U<<16) /* normal interrupt summary; W1C */
342 #define DMAI_AIS (1U<<15) /* abnormal interrupt summary; W1C */
343 #define DMAI_ERI (1U<<14) /* the first Rx buffer is filled */
344 #define DMAI_FBI (1U<<13) /* DMA bus error detected */
345 #define DMAI_ETI (1U<<10) /* single frame Tx completed */
346 #define DMAI_RWT (1U<<9) /* longer than 2048 frame received */
347 #define DMAI_RPS (1U<<8) /* Rx process is now stopped */
348 #define DMAI_RU (1U<<7) /* Rx descriptor not available */
349 #define DMAI_RI (1U<<6) /* frame Rx completed by !R1_DIC */
350 #define DMAI_UNF (1U<<5) /* Tx underflow detected */
351 #define DMAI_OVF (1U<<4) /* receive buffer overflow detected */
352 #define DMAI_TJT (1U<<3) /* longer than 2048 frame sent */
353 #define DMAI_TU (1U<<2) /* Tx descriptor not available */
354 #define DMAI_TPS (1U<<1) /* transmission is stopped */
355 #define DMAI_TI (1U<<0) /* frame Tx completed by T0_IC */
356 #define GMACOMR 0x1018 /* DMA operation mode */
357 #define OMR_RSF (1U<<25) /* 1: Rx store&forward, 0: immed. */
358 #define OMR_TSF (1U<<21) /* 1: Tx store&forward, 0: immed. */
359 #define OMR_TTC (14) /* 16:14 Tx threshold */
360 #define OMR_ST (1U<<13) /* run Tx DMA engine, 0 to stop */
361 #define OMR_RFD (11) /* 12:11 Rx FIFO fill level */
362 #define OMR_EFC (1U<<8) /* transmit PAUSE to throttle Rx lvl. */
363 #define OMR_FEF (1U<<7) /* allow to receive error frames */
364 #define OMR_SR (1U<<1) /* run Rx DMA engine, 0 to stop */
365 #define GMACEVCS 0x1020 /* missed frame or ovf detected */
366 #define GMACRWDT 0x1024 /* enable rx watchdog timer interrupt */
367 #define GMACAXIB 0x1028 /* AXI bus mode control */
368 #define GMACAXIS 0x102c /* AXI status report */
369 /* 0x1048 current tx desc address */
370 /* 0x104c current rx desc address */
371 /* 0x1050 current tx buffer address */
372 /* 0x1054 current rx buffer address */
373 #define HWFEA 0x1058 /* DWC feature report */
374 #define FEA_EXDESC (1U<<24) /* alternative/enhanced desc layout */
375 #define FEA_2COE (1U<<18) /* Rx type 2 IP checksum offload */
376 #define FEA_1COE (1U<<17) /* Rx type 1 IP checksum offload */
377 #define FEA_TXOE (1U<<16) /* Tx checksum offload */
378 #define FEA_MMC (1U<<11) /* RMON event counter */
379
380 #define GMACEVCTL 0x0100 /* event counter control */
381 #define EVC_FHP (1U<<5) /* full-half preset */
382 #define EVC_CP (1U<<4) /* counter preset */
383 #define EVC_MCF (1U<<3) /* counter freeze */
384 #define EVC_ROR (1U<<2) /* auto-zero on counter read */
385 #define EVC_CSR (1U<<1) /* counter stop rollover */
386 #define EVC_CR (1U<<0) /* reset counters */
387 #define GMACEVCNT(i) ((i)*4+0x114) /* 80 event counters 0x114 - 0x284 */
388
389 /* 0x400-4ac L3/L4 control */
390
391 /*
392 * flash memory layout
393 * 0x00 - 07 48-bit MAC station address. 4 byte wise in BE order.
394 * 0x08 - 0b H->MAC xfer engine program start addr 63:32.
395 * 0x0c - 0f H2M program addr 31:0 (these are absolute addr, not offset)
396 * 0x10 - 13 H2M program length in 4 byte count.
397 * 0x14 - 0b M->HOST xfer engine program start addr 63:32.
398 * 0x18 - 0f M2H program addr 31:0 (absolute addr, not relative)
399 * 0x1c - 13 M2H program length in 4 byte count.
400 * 0x20 - 23 packet engine program addr 31:0, (absolute addr, not offset)
401 * 0x24 - 27 packet program length in 4 byte count.
402 *
403 * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
404 */
405
406 #define _BMR 0x00412080 /* XXX TBD */
407 #define _BMR0 0x00020181 /* XXX TBD */
408 /* NetSec uses local RAM to handle GMAC desc arrays and frame buffers */
409 #define _RDLA 0x18000
410 #define _TDLA 0x1c000
411 #define _MCR_FDX 0x0000280c /* XXX TBD */
412 #define _MCR_HDX 0x0001a00c /* XXX TBD */
413
414 /*
415 * all below are software constraction.
416 */
417 #define MD_NTXDESC 128
418 #define MD_NRXDESC 64
419
420 #define MD_NTXSEGS 16
421 #define MD_TXQUEUELEN 8
422 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1)
423 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4)
424 #define MD_NTXDESC_MASK (MD_NTXDESC - 1)
425 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK)
426 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK)
427
428 #define MD_NRXDESC_MASK (MD_NRXDESC - 1)
429 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK)
430
431 struct control_data {
432 struct tdes cd_txdescs[MD_NTXDESC];
433 struct rdes cd_rxdescs[MD_NRXDESC];
434 };
435 #define SCX_CDOFF(x) offsetof(struct control_data, x)
436 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
437 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
438
439 struct scx_txsoft {
440 struct mbuf *txs_mbuf; /* head of our mbuf chain */
441 bus_dmamap_t txs_dmamap; /* our DMA map */
442 int txs_firstdesc; /* first descriptor in packet */
443 int txs_lastdesc; /* last descriptor in packet */
444 int txs_ndesc; /* # of descriptors used */
445 };
446
447 struct scx_rxsoft {
448 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
449 bus_dmamap_t rxs_dmamap; /* our DMA map */
450 };
451
452 struct scx_softc {
453 device_t sc_dev; /* generic device information */
454 bus_space_tag_t sc_st; /* bus space tag */
455 bus_space_handle_t sc_sh; /* bus space handle */
456 bus_size_t sc_sz; /* csr map size */
457 bus_space_handle_t sc_eesh; /* eeprom section handle */
458 bus_size_t sc_eesz; /* eeprom map size */
459 bus_dma_tag_t sc_dmat; /* bus DMA tag */
460 struct ethercom sc_ethercom; /* Ethernet common data */
461 struct mii_data sc_mii; /* MII */
462 callout_t sc_callout; /* PHY monitor callout */
463 bus_dma_segment_t sc_seg; /* descriptor store seg */
464 int sc_nseg; /* descriptor store nseg */
465 void *sc_ih; /* interrupt cookie */
466 int sc_phy_id; /* PHY address */
467 int sc_flowflags; /* 802.3x PAUSE flow control */
468 uint32_t sc_mdclk; /* GAR 5:2 clock selection */
469 uint32_t sc_t0cotso; /* T0_CSUM | T0_TSO to run */
470 int sc_miigmii; /* 1: MII/GMII, 0: RGMII */
471 int sc_phandle; /* fdt phandle */
472 uint64_t sc_freq;
473 uint32_t sc_maxsize;
474
475 bus_dmamap_t sc_cddmamap; /* control data DMA map */
476 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
477
478 struct control_data *sc_control_data;
479 #define sc_txdescs sc_control_data->cd_txdescs
480 #define sc_rxdescs sc_control_data->cd_rxdescs
481
482 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
483 struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
484 int sc_txfree; /* number of free Tx descriptors */
485 int sc_txnext; /* next ready Tx descriptor */
486 int sc_txsfree; /* number of free Tx jobs */
487 int sc_txsnext; /* next ready Tx job */
488 int sc_txsdirty; /* dirty Tx jobs */
489 int sc_rxptr; /* next ready Rx descriptor/descsoft */
490
491 krndsource_t rnd_source; /* random source */
492 #ifdef GMAC_EVENT_COUNTERS
493 /* 80 event counters exist */
494 #endif
495 };
496
497 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
498 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
499
500 #define SCX_CDTXSYNC(sc, x, n, ops) \
501 do { \
502 int __x, __n; \
503 \
504 __x = (x); \
505 __n = (n); \
506 \
507 /* If it will wrap around, sync to the end of the ring. */ \
508 if ((__x + __n) > MD_NTXDESC) { \
509 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
510 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
511 (MD_NTXDESC - __x), (ops)); \
512 __n -= (MD_NTXDESC - __x); \
513 __x = 0; \
514 } \
515 \
516 /* Now sync whatever is left. */ \
517 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
518 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
519 } while (/*CONSTCOND*/0)
520
521 #define SCX_CDRXSYNC(sc, x, ops) \
522 do { \
523 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
524 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
525 } while (/*CONSTCOND*/0)
526
527 #define SCX_INIT_RXDESC(sc, x) \
528 do { \
529 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
530 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
531 struct mbuf *__m = __rxs->rxs_mbuf; \
532 bus_addr_t __p = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
533 bus_size_t __z = __rxs->rxs_dmamap->dm_segs[0].ds_len; \
534 __m->m_data = __m->m_ext.ext_buf; \
535 __rxd->r3 = htole32(__z); \
536 __rxd->r2 = htole32(BUS_ADDR_LO32(__p)); \
537 __rxd->r1 = htole32(BUS_ADDR_HI32(__p)); \
538 __rxd->r0 &= htole32(R0_LD); \
539 __rxd->r0 |= htole32(R0_OWN); \
540 } while (/*CONSTCOND*/0)
541
542 /* memory mapped CSR register access */
543 #define CSR_READ(sc,off) \
544 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
545 #define CSR_WRITE(sc,off,val) \
546 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
547
548 /* flash memory access */
549 #define EE_READ(sc,off) \
550 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
551
552 static int scx_fdt_match(device_t, cfdata_t, void *);
553 static void scx_fdt_attach(device_t, device_t, void *);
554 static int scx_acpi_match(device_t, cfdata_t, void *);
555 static void scx_acpi_attach(device_t, device_t, void *);
556
557 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
558 scx_fdt_match, scx_fdt_attach, NULL, NULL);
559
560 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
561 scx_acpi_match, scx_acpi_attach, NULL, NULL);
562
563 static void scx_attach_i(struct scx_softc *);
564 static void scx_reset(struct scx_softc *);
565 static int scx_init(struct ifnet *);
566 static void scx_stop(struct ifnet *, int);
567 static int scx_ioctl(struct ifnet *, u_long, void *);
568 static void scx_set_rcvfilt(struct scx_softc *);
569 static void scx_start(struct ifnet *);
570 static void scx_watchdog(struct ifnet *);
571 static int scx_intr(void *);
572 static void txreap(struct scx_softc *);
573 static void rxintr(struct scx_softc *);
574 static int add_rxbuf(struct scx_softc *, int);
575 static void rxdrain(struct scx_softc *sc);
576 static void mii_statchg(struct ifnet *);
577 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
578 static int mii_readreg(device_t, int, int, uint16_t *);
579 static int mii_writereg(device_t, int, int, uint16_t);
580 static void phy_tick(void *);
581 static void dump_hwfeature(struct scx_softc *);
582
583 static void stopuengine(struct scx_softc *);
584 static void startuengine(struct scx_softc *);
585 static void loaducode(struct scx_softc *);
586 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
587
588 static int get_mdioclk(uint32_t);
589
590 #define WAIT_FOR_SET(sc, reg, set, fail) \
591 wait_for_bits(sc, reg, set, ~0, fail)
592 #define WAIT_FOR_CLR(sc, reg, clr, fail) \
593 wait_for_bits(sc, reg, 0, clr, fail)
594
595 static int
596 wait_for_bits(struct scx_softc *sc, int reg,
597 uint32_t set, uint32_t clr, uint32_t fail)
598 {
599 uint32_t val;
600 int ntries;
601
602 for (ntries = 0; ntries < 1000; ntries++) {
603 val = CSR_READ(sc, reg);
604 if ((val & set) || !(val & clr))
605 return 0;
606 if (val & fail)
607 return 1;
608 DELAY(1);
609 }
610 return 1;
611 }
612
613 /* GMAC register indirect access */
614 static int
615 mac_read(struct scx_softc *sc, int reg)
616 {
617
618 CSR_WRITE(sc, MACCMD, reg | CMD_BUSY);
619 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
620 return CSR_READ(sc, MACDATA);
621 }
622
623 static void
624 mac_write(struct scx_softc *sc, int reg, int val)
625 {
626
627 CSR_WRITE(sc, MACDATA, val);
628 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY);
629 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
630 }
631
632 /* dig and decode "clock-frequency" value for a given clkname */
633 static int
634 get_clk_freq(int phandle, const char *clkname)
635 {
636 u_int index, n, cells;
637 const u_int *p;
638 int err, len, resid;
639 unsigned int freq = 0;
640
641 err = fdtbus_get_index(phandle, "clock-names", clkname, &index);
642 if (err == -1)
643 return -1;
644 p = fdtbus_get_prop(phandle, "clocks", &len);
645 if (p == NULL)
646 return -1;
647 for (n = 0, resid = len; resid > 0; n++) {
648 const int cc_phandle =
649 fdtbus_get_phandle_from_native(be32toh(p[0]));
650 if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells))
651 return -1;
652 if (n == index) {
653 if (of_getprop_uint32(cc_phandle,
654 "clock-frequency", &freq))
655 return -1;
656 return freq;
657 }
658 resid -= (cells + 1) * 4;
659 p += (cells + 1) * 4;
660 }
661 return -1;
662 }
663
664 #define ATTACH_DEBUG 1
665
666 static const struct device_compatible_entry compat_data[] = {
667 { .compat = "socionext,synquacer-netsec" },
668 DEVICE_COMPAT_EOL
669 };
670 static const struct device_compatible_entry compatible[] = {
671 { .compat = "SCX0001" },
672 DEVICE_COMPAT_EOL
673 };
674
675 static int
676 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
677 {
678 struct fdt_attach_args * const faa = aux;
679
680 return of_compatible_match(faa->faa_phandle, compat_data);
681 }
682
683 static void
684 scx_fdt_attach(device_t parent, device_t self, void *aux)
685 {
686 struct scx_softc * const sc = device_private(self);
687 struct fdt_attach_args * const faa = aux;
688 const int phandle = faa->faa_phandle;
689 bus_space_handle_t bsh;
690 bus_space_handle_t eebsh;
691 bus_addr_t addr[2];
692 bus_size_t size[2];
693 void *intrh;
694 char intrstr[128];
695 int phy_phandle;
696 const char *phy_mode;
697 bus_addr_t phy_id;
698 long ref_clk;
699
700 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
701 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
702 aprint_error(": unable to map registers\n");
703 return;
704 }
705 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
706 || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
707 aprint_error(": unable to map device eeprom\n");
708 goto fail;
709 }
710 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
711 aprint_error(": failed to decode interrupt\n");
712 goto fail;
713 }
714
715 phy_mode = fdtbus_get_string(phandle, "phy-mode");
716 if (phy_mode == NULL)
717 aprint_error(": missing 'phy-mode' property\n");
718 phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
719 if (phy_phandle == -1
720 || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0)
721 phy_id = MII_PHY_ANY;
722 ref_clk = get_clk_freq(phandle, "phy_ref_clk");
723 if (ref_clk == -1)
724 ref_clk = 250 * 1000 * 1000;
725
726 #if ATTACH_DEBUG == 1
727 aprint_normal("\n");
728 aprint_normal_dev(self,
729 "[FDT] phy mode %s, phy id %d, freq %ld\n",
730 phy_mode, (int)phy_id, ref_clk);
731 aprint_normal("%s", device_xname(self));
732 #endif
733
734 intrh = fdtbus_intr_establish(phandle, 0, IPL_NET,
735 NOT_MP_SAFE, scx_intr, sc);
736 if (intrh == NULL) {
737 aprint_error(": couldn't establish interrupt\n");
738 goto fail;
739 }
740 aprint_normal(" interrupt on %s", intrstr);
741
742 sc->sc_dev = self;
743 sc->sc_st = faa->faa_bst;
744 sc->sc_sh = bsh;
745 sc->sc_sz = size[0];
746 sc->sc_eesh = eebsh;
747 sc->sc_eesz = size[1];
748 sc->sc_ih = intrh;
749 sc->sc_dmat = faa->faa_dmat;
750 sc->sc_phandle = phandle;
751 sc->sc_phy_id = phy_id;
752 sc->sc_freq = ref_clk;
753
754 scx_attach_i(sc);
755
756 return;
757 fail:
758 if (sc->sc_eesz)
759 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
760 if (sc->sc_sz)
761 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
762 return;
763 }
764
765 static int
766 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 struct acpi_attach_args *aa = aux;
769
770 return acpi_compatible_match(aa, compatible);
771 }
772
773 #define HWFEA_DEBUG 1
774
775 static void
776 scx_acpi_attach(device_t parent, device_t self, void *aux)
777 {
778 struct scx_softc * const sc = device_private(self);
779 struct acpi_attach_args * const aa = aux;
780 ACPI_HANDLE handle = aa->aa_node->ad_handle;
781 bus_space_handle_t bsh, eebsh;
782 struct acpi_resources res;
783 struct acpi_mem *mem, *mem1;
784 struct acpi_irq *irq;
785 ACPI_INTEGER max_spd, max_frame, phy_id, phy_freq;
786 ACPI_STATUS rv;
787 void *intrh;
788
789 rv = acpi_resource_parse(self, handle, "_CRS",
790 &res, &acpi_resource_parse_ops_default);
791 if (ACPI_FAILURE(rv))
792 return;
793 mem = acpi_res_mem(&res, 0);
794 irq = acpi_res_irq(&res, 0);
795 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
796 aprint_error(": incomplete crs resources\n");
797 goto done;
798 }
799 if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
800 &bsh) != 0) {
801 aprint_error(": unable to map registers\n");
802 goto done;
803 }
804 mem1 = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
805 if (mem1 == NULL || mem1->ar_length == 0) {
806 aprint_error(": incomplete eeprom resources\n");
807 goto fail_0;
808 }
809 if (bus_space_map(aa->aa_memt, mem1->ar_base, mem1->ar_length, 0,
810 &eebsh)) {
811 aprint_error(": unable to map device eeprom\n");
812 goto fail_0;
813 }
814 rv = acpi_dsd_integer(handle, "max-speed", &max_spd);
815 if (ACPI_FAILURE(rv))
816 max_spd = 1000;
817 rv = acpi_dsd_integer(handle, "max-frame-size", &max_frame);
818 if (ACPI_FAILURE(rv))
819 max_frame = 2048;
820 rv = acpi_dsd_integer(handle, "phy-channel", &phy_id);
821 if (ACPI_FAILURE(rv))
822 phy_id = MII_PHY_ANY;
823 rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
824 &phy_freq);
825 if (ACPI_FAILURE(rv))
826 phy_freq = 250 * 1000 * 1000;
827
828 #if ATTACH_DEBUG == 1
829 aprint_normal_dev(self,
830 "[ACPI] max-speed %d, phy id %d, freq %ld\n",
831 (int)max_spd, (int)phy_id, phy_freq);
832 aprint_normal("%s", device_xname(self));
833 #endif
834
835 intrh = acpi_intr_establish(self, (uint64_t)(uintptr_t)handle,
836 IPL_NET, NOT_MP_SAFE, scx_intr, sc, device_xname(self));
837 if (intrh == NULL) {
838 aprint_error(": couldn't establish interrupt\n");
839 goto fail_1;
840 }
841
842 sc->sc_dev = self;
843 sc->sc_st = aa->aa_memt;
844 sc->sc_sh = bsh;
845 sc->sc_sz = mem->ar_length;
846 sc->sc_eesh = eebsh;
847 sc->sc_eesz = mem1->ar_length;
848 sc->sc_ih = intrh;
849 sc->sc_dmat =
850 BUS_DMA_TAG_VALID(aa->aa_dmat64) ? aa->aa_dmat64 : aa->aa_dmat;
851 sc->sc_phy_id = (int)phy_id;
852 sc->sc_freq = phy_freq;
853 sc->sc_maxsize = max_frame;
854
855 scx_attach_i(sc);
856 done:
857 acpi_resource_cleanup(&res);
858 return;
859 fail_1:
860 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
861 fail_0:
862 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
863 acpi_resource_cleanup(&res);
864 return;
865 }
866
867 static void
868 scx_attach_i(struct scx_softc *sc)
869 {
870 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
871 struct mii_data * const mii = &sc->sc_mii;
872 struct ifmedia * const ifm = &mii->mii_media;
873 uint32_t which, dwimp, dwfea;
874 uint8_t enaddr[ETHER_ADDR_LEN];
875 bus_dma_segment_t seg;
876 paddr_t paddr;
877 uint32_t csr;
878 int i, nseg, error = 0;
879
880 which = CSR_READ(sc, HWVER); /* Socionext version 5.xx */
881 dwimp = mac_read(sc, GMACIMPL); /* DWC implementation XX.YY */
882 dwfea = mac_read(sc, HWFEA); /* DWC feature bits */
883
884 aprint_naive("\n");
885 aprint_normal(": Socionext NetSec Gigabit Ethernet controller "
886 "%x.%x\n", which >> 16, which & 0xffff);
887
888 aprint_normal_dev(sc->sc_dev,
889 "DesignWare EMAC ver 0x%x (0x%x) hw feature %08x\n",
890 dwimp & 0xff, dwimp >> 8, dwfea);
891 dump_hwfeature(sc);
892
893 /* detected PHY type */
894 sc->sc_miigmii = ((dwfea & __BITS(30,28) >> 28) == 0);
895
896 /* fetch MAC address in flash 0:7, stored in big endian order */
897 csr = EE_READ(sc, 0x00);
898 enaddr[0] = csr >> 24;
899 enaddr[1] = csr >> 16;
900 enaddr[2] = csr >> 8;
901 enaddr[3] = csr;
902 csr = EE_READ(sc, 0x04);
903 enaddr[4] = csr >> 24;
904 enaddr[5] = csr >> 16;
905 aprint_normal_dev(sc->sc_dev,
906 "Ethernet address %s\n", ether_sprintf(enaddr));
907
908 sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */
909
910 mii->mii_ifp = ifp;
911 mii->mii_readreg = mii_readreg;
912 mii->mii_writereg = mii_writereg;
913 mii->mii_statchg = mii_statchg;
914
915 sc->sc_ethercom.ec_mii = mii;
916 ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
917 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
918 MII_OFFSET_ANY, MIIF_DOPAUSE);
919 if (LIST_FIRST(&mii->mii_phys) == NULL) {
920 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
921 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
922 } else
923 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
924 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
925
926 /*
927 * Allocate the control data structures, and create and load the
928 * DMA map for it.
929 */
930 error = bus_dmamem_alloc(sc->sc_dmat,
931 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
932 if (error != 0) {
933 aprint_error_dev(sc->sc_dev,
934 "unable to allocate control data, error = %d\n", error);
935 goto fail_0;
936 }
937 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
938 sizeof(struct control_data), (void **)&sc->sc_control_data,
939 BUS_DMA_COHERENT);
940 if (error != 0) {
941 aprint_error_dev(sc->sc_dev,
942 "unable to map control data, error = %d\n", error);
943 goto fail_1;
944 }
945 error = bus_dmamap_create(sc->sc_dmat,
946 sizeof(struct control_data), 1,
947 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
948 if (error != 0) {
949 aprint_error_dev(sc->sc_dev,
950 "unable to create control data DMA map, "
951 "error = %d\n", error);
952 goto fail_2;
953 }
954 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
955 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
956 if (error != 0) {
957 aprint_error_dev(sc->sc_dev,
958 "unable to load control data DMA map, error = %d\n",
959 error);
960 goto fail_3;
961 }
962 for (i = 0; i < MD_TXQUEUELEN; i++) {
963 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
964 MD_NTXSEGS, MCLBYTES, 0, 0,
965 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
966 aprint_error_dev(sc->sc_dev,
967 "unable to create tx DMA map %d, error = %d\n",
968 i, error);
969 goto fail_4;
970 }
971 }
972 for (i = 0; i < MD_NRXDESC; i++) {
973 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
974 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
975 aprint_error_dev(sc->sc_dev,
976 "unable to create rx DMA map %d, error = %d\n",
977 i, error);
978 goto fail_5;
979 }
980 sc->sc_rxsoft[i].rxs_mbuf = NULL;
981 }
982 sc->sc_seg = seg;
983 sc->sc_nseg = nseg;
984 #if 0
985 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
986 #endif
987 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
988 ifp->if_softc = sc;
989 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
990 ifp->if_ioctl = scx_ioctl;
991 ifp->if_start = scx_start;
992 ifp->if_watchdog = scx_watchdog;
993 ifp->if_init = scx_init;
994 ifp->if_stop = scx_stop;
995 IFQ_SET_READY(&ifp->if_snd);
996
997 /* 802.1Q VLAN-sized frames, and 9000 jumbo frame are supported */
998 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
999 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1000
1001 sc->sc_flowflags = 0; /* track PAUSE flow caps */
1002
1003 if_attach(ifp);
1004 if_deferred_start_init(ifp, NULL);
1005 ether_ifattach(ifp, enaddr);
1006
1007 callout_init(&sc->sc_callout, 0);
1008 callout_setfunc(&sc->sc_callout, phy_tick, sc);
1009
1010 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1011 RND_TYPE_NET, RND_FLAG_DEFAULT);
1012
1013 stopuengine(sc);
1014 loaducode(sc);
1015
1016 /* feed NetSec descriptor array base addresses and timer value */
1017 paddr = SCX_CDTXADDR(sc, 0); /* tdes array (ring#0) */
1018 CSR_WRITE(sc, TDBA_HI, BUS_ADDR_HI32(paddr));
1019 CSR_WRITE(sc, TDBA_LO, BUS_ADDR_LO32(paddr));
1020 paddr = SCX_CDRXADDR(sc, 0); /* rdes array (ring#1) */
1021 CSR_WRITE(sc, RDBA_HI, BUS_ADDR_HI32(paddr));
1022 CSR_WRITE(sc, RDBA_LO, BUS_ADDR_LO32(paddr));
1023 CSR_WRITE(sc, TXCONF, DESCNF_LE); /* little endian */
1024 CSR_WRITE(sc, RXCONF, DESCNF_LE); /* little endian */
1025 CSR_WRITE(sc, DMACTL_TMR, sc->sc_freq / 1000000 - 1);
1026
1027 startuengine(sc);
1028
1029 return;
1030
1031 fail_5:
1032 for (i = 0; i < MD_NRXDESC; i++) {
1033 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1034 bus_dmamap_destroy(sc->sc_dmat,
1035 sc->sc_rxsoft[i].rxs_dmamap);
1036 }
1037 fail_4:
1038 for (i = 0; i < MD_TXQUEUELEN; i++) {
1039 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1040 bus_dmamap_destroy(sc->sc_dmat,
1041 sc->sc_txsoft[i].txs_dmamap);
1042 }
1043 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1044 fail_3:
1045 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1046 fail_2:
1047 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1048 sizeof(struct control_data));
1049 fail_1:
1050 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
1051 fail_0:
1052 if (sc->sc_phandle)
1053 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
1054 else
1055 acpi_intr_disestablish(sc->sc_ih);
1056 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1057 return;
1058 }
1059
1060 static void
1061 scx_reset(struct scx_softc *sc)
1062 {
1063 int loop = 0, busy;
1064
1065 mac_write(sc, GMACOMR, 0);
1066 mac_write(sc, GMACBMR, BMR_RST);
1067 do {
1068 DELAY(1);
1069 busy = mac_read(sc, GMACBMR) & BMR_RST;
1070 } while (++loop < 3000 && busy);
1071 mac_write(sc, GMACBMR, _BMR);
1072 mac_write(sc, GMACAFR, 0);
1073
1074 #if 0
1075 CSR_WRITE(sc, CLKEN, CLK_ALL); /* distribute clock sources */
1076 CSR_WRITE(sc, SWRESET, 0); /* reset operation */
1077 CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */
1078 CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1079 WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
1080
1081 CSR_WRITE(sc, TXISR, ~0);
1082 CSR_WRITE(sc, xINTAE_CLR, ~0);
1083 #endif
1084 }
1085
1086 static int
1087 scx_init(struct ifnet *ifp)
1088 {
1089 struct scx_softc *sc = ifp->if_softc;
1090 const uint8_t *ea = CLLADDR(ifp->if_sadl);
1091 uint32_t csr;
1092 int i, error;
1093
1094 /* Cancel pending I/O. */
1095 scx_stop(ifp, 0);
1096
1097 /* Reset the chip to a known state. */
1098 scx_reset(sc);
1099
1100 /* build sane Tx */
1101 memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
1102 sc->sc_txdescs[MD_NTXDESC - 1].t0 = T0_LD; /* tie off the ring */
1103 SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
1104 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1105 sc->sc_txfree = MD_NTXDESC;
1106 sc->sc_txnext = 0;
1107 for (i = 0; i < MD_TXQUEUELEN; i++)
1108 sc->sc_txsoft[i].txs_mbuf = NULL;
1109 sc->sc_txsfree = MD_TXQUEUELEN;
1110 sc->sc_txsnext = 0;
1111 sc->sc_txsdirty = 0;
1112
1113 /* load Rx descriptors with fresh mbuf */
1114 for (i = 0; i < MD_NRXDESC; i++) {
1115 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
1116 if ((error = add_rxbuf(sc, i)) != 0) {
1117 aprint_error_dev(sc->sc_dev,
1118 "unable to allocate or map rx "
1119 "buffer %d, error = %d\n",
1120 i, error);
1121 rxdrain(sc);
1122 goto out;
1123 }
1124 }
1125 else
1126 SCX_INIT_RXDESC(sc, i);
1127 }
1128 sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_LD; /* tie off the ring */
1129 sc->sc_rxptr = 0;
1130
1131 /* set my address in perfect match slot 0. little endian order */
1132 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
1133 mac_write(sc, GMACMAL0, csr);
1134 csr = (ea[5] << 8) | ea[4];
1135 mac_write(sc, GMACMAH0, csr);
1136
1137 /* accept multicast frame or run promisc mode */
1138 scx_set_rcvfilt(sc);
1139
1140 /* set current media */
1141 if ((error = ether_mediachange(ifp)) != 0)
1142 goto out;
1143
1144 CSR_WRITE(sc, DESC_SRST, 01);
1145 WAIT_FOR_CLR(sc, DESC_SRST, 01, 0);
1146
1147 CSR_WRITE(sc, DESC_INIT, 01);
1148 WAIT_FOR_CLR(sc, DESC_INIT, 01, 0);
1149
1150 /* feed local memory descriptor array base addresses */
1151 mac_write(sc, GMACRDLA, _RDLA); /* GMAC rdes store */
1152 mac_write(sc, GMACTDLA, _TDLA); /* GMAC tdes store */
1153
1154 CSR_WRITE(sc, FLOWTHR, (48<<16) | 36); /* pause|resume threshold */
1155 mac_write(sc, GMACFCR, 256 << 16); /* 31:16 pause value */
1156
1157 CSR_WRITE(sc, RXIE_CLR, ~0); /* clear Rx interrupt enable */
1158 CSR_WRITE(sc, TXIE_CLR, ~0); /* clear Tx interrupt enable */
1159
1160 CSR_WRITE(sc, RXCLSCMAX, 8); /* Rx coalesce upper bound */
1161 CSR_WRITE(sc, TXCLSCMAX, 8); /* Tx coalesce upper bound */
1162 CSR_WRITE(sc, RXITIMER, 500); /* Rx co. timer usec */
1163 CSR_WRITE(sc, TXITIMER, 500); /* Tx co. timer usec */
1164
1165 CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP);
1166 CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP);
1167
1168 CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX);
1169 #if 1
1170 /* clear event counters, auto-zero after every read */
1171 mac_write(sc, GMACEVCTL, EVC_CR /* | EVC_ROR */);
1172 #endif
1173 /* kick to start GMAC engine */
1174 csr = mac_read(sc, GMACOMR);
1175 mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);
1176
1177 ifp->if_flags |= IFF_RUNNING;
1178
1179 /* start one second timer */
1180 callout_schedule(&sc->sc_callout, hz);
1181 out:
1182 return error;
1183 }
1184
1185 static void
1186 scx_stop(struct ifnet *ifp, int disable)
1187 {
1188 struct scx_softc *sc = ifp->if_softc;
1189
1190 /* Stop the one second clock. */
1191 callout_stop(&sc->sc_callout);
1192
1193 /* Down the MII. */
1194 mii_down(&sc->sc_mii);
1195
1196 /* Mark the interface down and cancel the watchdog timer. */
1197 ifp->if_flags &= ~IFF_RUNNING;
1198 ifp->if_timer = 0;
1199
1200 CSR_WRITE(sc, xINTAE_CLR, ~0);
1201 CSR_WRITE(sc, TXISR, ~0);
1202 CSR_WRITE(sc, RXISR, ~0);
1203 }
1204
1205 static int
1206 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1207 {
1208 struct scx_softc *sc = ifp->if_softc;
1209 struct ifreq *ifr = (struct ifreq *)data;
1210 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1211 int s, error;
1212
1213 s = splnet();
1214
1215 switch (cmd) {
1216 case SIOCSIFMEDIA:
1217 /* Flow control requires full-duplex mode. */
1218 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1219 (ifr->ifr_media & IFM_FDX) == 0)
1220 ifr->ifr_media &= ~IFM_ETH_FMASK;
1221 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1222 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1223 /* We can do both TXPAUSE and RXPAUSE. */
1224 ifr->ifr_media |=
1225 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1226 }
1227 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1228 }
1229 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
1230 break;
1231 default:
1232 error = ether_ioctl(ifp, cmd, data);
1233 if (error != ENETRESET)
1234 break;
1235 error = 0;
1236 if (cmd == SIOCSIFCAP)
1237 error = if_init(ifp);
1238 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1239 ;
1240 else if (ifp->if_flags & IFF_RUNNING) {
1241 /*
1242 * Multicast list has changed; set the hardware filter
1243 * accordingly.
1244 */
1245 scx_set_rcvfilt(sc);
1246 }
1247 break;
1248 }
1249
1250 splx(s);
1251 return error;
1252 }
1253
1254 static uint32_t
1255 bit_reverse_32(uint32_t x)
1256 {
1257 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
1258 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
1259 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
1260 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
1261 return (x >> 16) | (x << 16);
1262 }
1263
1264 #define MCAST_DEBUG 0
1265
1266 static void
1267 scx_set_rcvfilt(struct scx_softc *sc)
1268 {
1269 struct ethercom * const ec = &sc->sc_ethercom;
1270 struct ifnet * const ifp = &ec->ec_if;
1271 struct ether_multistep step;
1272 struct ether_multi *enm;
1273 uint32_t mchash[2]; /* 2x 32 = 64 bit */
1274 uint32_t csr, crc;
1275 int i;
1276
1277 csr = mac_read(sc, GMACAFR);
1278 csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1279 mac_write(sc, GMACAFR, csr);
1280
1281 /* clear 15 entry supplemental perfect match filter */
1282 for (i = 1; i < 16; i++)
1283 mac_write(sc, GMACMAH(i), 0);
1284 /* build 64 bit multicast hash filter */
1285 crc = mchash[1] = mchash[0] = 0;
1286
1287 ETHER_LOCK(ec);
1288 if (ifp->if_flags & IFF_PROMISC) {
1289 ec->ec_flags |= ETHER_F_ALLMULTI;
1290 ETHER_UNLOCK(ec);
1291 /* run promisc. mode */
1292 csr |= AFR_PR;
1293 goto update;
1294 }
1295 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1296 ETHER_FIRST_MULTI(step, ec, enm);
1297 i = 1; /* slot 0 is occupied */
1298 while (enm != NULL) {
1299 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1300 /*
1301 * We must listen to a range of multicast addresses.
1302 * For now, just accept all multicasts, rather than
1303 * trying to set only those filter bits needed to match
1304 * the range. (At this time, the only use of address
1305 * ranges is for IP multicast routing, for which the
1306 * range is big enough to require all bits set.)
1307 */
1308 ec->ec_flags |= ETHER_F_ALLMULTI;
1309 ETHER_UNLOCK(ec);
1310 /* accept all multi */
1311 csr |= AFR_PM;
1312 goto update;
1313 }
1314 #if MCAST_DEBUG == 1
1315 aprint_normal_dev(sc->sc_dev, "[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1316 #endif
1317 if (i < 16) {
1318 /* use 15 entry perfect match filter */
1319 uint32_t addr;
1320 uint8_t *ep = enm->enm_addrlo;
1321 addr = (ep[3] << 24) | (ep[2] << 16)
1322 | (ep[1] << 8) | ep[0];
1323 mac_write(sc, GMACMAL(i), addr);
1324 addr = (ep[5] << 8) | ep[4];
1325 mac_write(sc, GMACMAH(i), addr | 1U<<31);
1326 } else {
1327 /* use hash table when too many */
1328 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1329 crc = bit_reverse_32(~crc);
1330 /* 1(31) 5(30:26) bit sampling */
1331 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1332 }
1333 ETHER_NEXT_MULTI(step, enm);
1334 i++;
1335 }
1336 ETHER_UNLOCK(ec);
1337 if (crc)
1338 csr |= AFR_MHTE;
1339 csr |= AFR_HPF; /* use hash+perfect */
1340 mac_write(sc, GMACMHTH, mchash[1]);
1341 mac_write(sc, GMACMHTL, mchash[0]);
1342 update:
1343 /* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */
1344 mac_write(sc, GMACAFR, csr);
1345 return;
1346 }
1347
1348 static void
1349 scx_start(struct ifnet *ifp)
1350 {
1351 struct scx_softc *sc = ifp->if_softc;
1352 struct mbuf *m0;
1353 struct scx_txsoft *txs;
1354 bus_dmamap_t dmamap;
1355 int error, nexttx, lasttx, ofree, seg;
1356 uint32_t tdes0;
1357
1358 if ((ifp->if_flags & IFF_RUNNING) == 0)
1359 return;
1360
1361 /* Remember the previous number of free descriptors. */
1362 ofree = sc->sc_txfree;
1363
1364 /*
1365 * Loop through the send queue, setting up transmit descriptors
1366 * until we drain the queue, or use up all available transmit
1367 * descriptors.
1368 */
1369 for (;;) {
1370 IFQ_POLL(&ifp->if_snd, m0);
1371 if (m0 == NULL)
1372 break;
1373
1374 if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1375 txreap(sc);
1376 if (sc->sc_txsfree == 0)
1377 break;
1378 }
1379 txs = &sc->sc_txsoft[sc->sc_txsnext];
1380 dmamap = txs->txs_dmamap;
1381
1382 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1383 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1384 if (error) {
1385 if (error == EFBIG) {
1386 aprint_error_dev(sc->sc_dev,
1387 "Tx packet consumes too many "
1388 "DMA segments, dropping...\n");
1389 IFQ_DEQUEUE(&ifp->if_snd, m0);
1390 m_freem(m0);
1391 if_statinc_ref(ifp, if_oerrors);
1392 continue;
1393 }
1394 /* Short on resources, just stop for now. */
1395 break;
1396 }
1397
1398 if (dmamap->dm_nsegs > sc->sc_txfree) {
1399 /*
1400 * Not enough free descriptors to transmit this
1401 * packet. We haven't committed anything yet,
1402 * so just unload the DMA map, put the packet
1403 * back on the queue, and punt.
1404 */
1405 bus_dmamap_unload(sc->sc_dmat, dmamap);
1406 break;
1407 }
1408
1409 IFQ_DEQUEUE(&ifp->if_snd, m0);
1410
1411 /*
1412 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1413 */
1414
1415 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1416 BUS_DMASYNC_PREWRITE);
1417
1418 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1419 lasttx = -1;
1420 for (nexttx = sc->sc_txnext, seg = 0;
1421 seg < dmamap->dm_nsegs;
1422 seg++, nexttx = MD_NEXTTX(nexttx)) {
1423 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1424 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1425 /*
1426 * If this is the first descriptor we're
1427 * enqueueing, don't set the OWN bit just
1428 * yet. That could cause a race condition.
1429 * We'll do it below.
1430 */
1431 tdes->t3 = htole32(dmamap->dm_segs[seg].ds_len);
1432 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1433 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1434 tdes->t0 = htole32(tdes0 | (tdes->t0 & T0_LD) |
1435 (15 << T0_TDRID) | T0_PT |
1436 sc->sc_t0cotso | T0_TRS);
1437 tdes0 = T0_OWN; /* 2nd and other segments */
1438 /* NB; t0 DRID field contains zero */
1439 lasttx = nexttx;
1440 }
1441
1442 /* Write deferred 1st segment T0_OWN at the final stage */
1443 sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS);
1444 sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN);
1445 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1446 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1447
1448 /* submit one frame to xmit */
1449 CSR_WRITE(sc, TXSUBMIT, 1);
1450
1451 txs->txs_mbuf = m0;
1452 txs->txs_firstdesc = sc->sc_txnext;
1453 txs->txs_lastdesc = lasttx;
1454 txs->txs_ndesc = dmamap->dm_nsegs;
1455
1456 sc->sc_txfree -= txs->txs_ndesc;
1457 sc->sc_txnext = nexttx;
1458 sc->sc_txsfree--;
1459 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1460 /*
1461 * Pass the packet to any BPF listeners.
1462 */
1463 bpf_mtap(ifp, m0, BPF_D_OUT);
1464 }
1465
1466 if (sc->sc_txfree != ofree) {
1467 /* Set a watchdog timer in case the chip flakes out. */
1468 ifp->if_timer = 5;
1469 }
1470 }
1471
1472 #define EVENT_DEBUG 1
1473
1474 static void
1475 scx_watchdog(struct ifnet *ifp)
1476 {
1477 struct scx_softc *sc = ifp->if_softc;
1478
1479 /*
1480 * Since we're not interrupting every packet, sweep
1481 * up before we report an error.
1482 */
1483 txreap(sc);
1484
1485 if (sc->sc_txfree != MD_NTXDESC) {
1486 aprint_error_dev(sc->sc_dev,
1487 "device timeout (txfree %d txsfree %d txnext %d)\n",
1488 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1489 if_statinc(ifp, if_oerrors);
1490 #if EVENT_DEBUG == 1
1491 aprint_error_dev(sc->sc_dev,
1492 "rx frames %d, octects %d, bcast %d, mcast %d\n",
1493 mac_read(sc, GMACEVCNT(27)),
1494 mac_read(sc, GMACEVCNT(28)),
1495 mac_read(sc, GMACEVCNT(30)),
1496 mac_read(sc, GMACEVCNT(31)));
1497 aprint_error_dev(sc->sc_dev,
1498 "tx frames %d, octects %d, bcast %d, mcast %d\n",
1499 mac_read(sc, GMACEVCNT(1)),
1500 mac_read(sc, GMACEVCNT(0)),
1501 mac_read(sc, GMACEVCNT(2)),
1502 mac_read(sc, GMACEVCNT(3)));
1503 aprint_error_dev(sc->sc_dev,
1504 "current tdes addr %x, buf addr %x\n",
1505 mac_read(sc, 0x1048), mac_read(sc, 0x1050));
1506 aprint_error_dev(sc->sc_dev,
1507 "current rdes addr %x, buf addr %x\n",
1508 mac_read(sc, 0x104c), mac_read(sc, 0x1054));
1509 #endif
1510 /* Reset the interface. */
1511 scx_init(ifp);
1512 }
1513
1514 scx_start(ifp);
1515 }
1516
1517 static int
1518 scx_intr(void *arg)
1519 {
1520 struct scx_softc *sc = arg;
1521 uint32_t enable, status;
1522
1523 status = CSR_READ(sc, xINTSR); /* not W1C */
1524 enable = CSR_READ(sc, xINTAEN);
1525 if ((status & enable) == 0)
1526 return 0;
1527 if (status & (IRQ_TX | IRQ_RX)) {
1528 CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX));
1529
1530 status = CSR_READ(sc, RXISR);
1531 CSR_WRITE(sc, RXISR, status);
1532 if (status & RXI_RC_ERR)
1533 aprint_error_dev(sc->sc_dev, "Rx error\n");
1534 if (status & (RXI_PKTCNT | RXI_TMREXP)) {
1535 rxintr(sc);
1536 (void)CSR_READ(sc, RXDONECNT); /* clear RXI_RXDONE */
1537 }
1538
1539 status = CSR_READ(sc, TXISR);
1540 CSR_WRITE(sc, TXISR, status);
1541 if (status & TXI_TR_ERR)
1542 aprint_error_dev(sc->sc_dev, "Tx error\n");
1543 if (status & (TXI_TXDONE | TXI_TMREXP)) {
1544 txreap(sc);
1545 (void)CSR_READ(sc, TXDONECNT); /* clear TXI_TXDONE */
1546 }
1547
1548 CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX));
1549 }
1550 return 1;
1551 }
1552
1553 static void
1554 txreap(struct scx_softc *sc)
1555 {
1556 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1557 struct scx_txsoft *txs;
1558 uint32_t txstat;
1559 int i;
1560
1561 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1562 i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1563 txs = &sc->sc_txsoft[i];
1564
1565 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1566 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1567
1568 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0);
1569 if (txstat & T0_OWN) /* desc is still in use */
1570 break;
1571
1572 /* There is no way to tell transmission status per frame */
1573
1574 if_statinc(ifp, if_opackets);
1575
1576 sc->sc_txfree += txs->txs_ndesc;
1577 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1578 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1579 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1580 m_freem(txs->txs_mbuf);
1581 txs->txs_mbuf = NULL;
1582 }
1583 sc->sc_txsdirty = i;
1584 if (sc->sc_txsfree == MD_TXQUEUELEN)
1585 ifp->if_timer = 0;
1586 }
1587
1588 static void
1589 rxintr(struct scx_softc *sc)
1590 {
1591 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1592 struct scx_rxsoft *rxs;
1593 struct mbuf *m;
1594 uint32_t rxstat;
1595 int i, len;
1596
1597 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1598 rxs = &sc->sc_rxsoft[i];
1599
1600 SCX_CDRXSYNC(sc, i,
1601 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1602
1603 rxstat = le32toh(sc->sc_rxdescs[i].r0);
1604 if (rxstat & R0_OWN) /* desc is left empty */
1605 break;
1606
1607 /* R0_FS | R0_LS must have been marked for this desc */
1608
1609 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1610 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1611
1612 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1613 len -= ETHER_CRC_LEN; /* Trim CRC off */
1614 m = rxs->rxs_mbuf;
1615
1616 if (add_rxbuf(sc, i) != 0) {
1617 if_statinc(ifp, if_ierrors);
1618 SCX_INIT_RXDESC(sc, i);
1619 bus_dmamap_sync(sc->sc_dmat,
1620 rxs->rxs_dmamap, 0,
1621 rxs->rxs_dmamap->dm_mapsize,
1622 BUS_DMASYNC_PREREAD);
1623 continue;
1624 }
1625
1626 m_set_rcvif(m, ifp);
1627 m->m_pkthdr.len = m->m_len = len;
1628
1629 if (rxstat & R0_CSUM) {
1630 uint32_t csum = M_CSUM_IPv4;
1631 if (rxstat & R0_CERR)
1632 csum |= M_CSUM_IPv4_BAD;
1633 m->m_pkthdr.csum_flags |= csum;
1634 }
1635 if_percpuq_enqueue(ifp->if_percpuq, m);
1636 }
1637 sc->sc_rxptr = i;
1638 }
1639
1640 static int
1641 add_rxbuf(struct scx_softc *sc, int i)
1642 {
1643 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1644 struct mbuf *m;
1645 int error;
1646
1647 MGETHDR(m, M_DONTWAIT, MT_DATA);
1648 if (m == NULL)
1649 return ENOBUFS;
1650
1651 MCLGET(m, M_DONTWAIT);
1652 if ((m->m_flags & M_EXT) == 0) {
1653 m_freem(m);
1654 return ENOBUFS;
1655 }
1656
1657 if (rxs->rxs_mbuf != NULL)
1658 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1659
1660 rxs->rxs_mbuf = m;
1661
1662 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1663 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1664 if (error) {
1665 aprint_error_dev(sc->sc_dev,
1666 "can't load rx DMA map %d, error = %d\n", i, error);
1667 panic("add_rxbuf");
1668 }
1669
1670 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1671 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1672 SCX_INIT_RXDESC(sc, i);
1673
1674 return 0;
1675 }
1676
1677 static void
1678 rxdrain(struct scx_softc *sc)
1679 {
1680 struct scx_rxsoft *rxs;
1681 int i;
1682
1683 for (i = 0; i < MD_NRXDESC; i++) {
1684 rxs = &sc->sc_rxsoft[i];
1685 if (rxs->rxs_mbuf != NULL) {
1686 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1687 m_freem(rxs->rxs_mbuf);
1688 rxs->rxs_mbuf = NULL;
1689 }
1690 }
1691 }
1692
1693 #define LINK_DEBUG 0
1694
1695 void
1696 mii_statchg(struct ifnet *ifp)
1697 {
1698 struct scx_softc *sc = ifp->if_softc;
1699 struct mii_data *mii = &sc->sc_mii;
1700 const int Mbps[4] = { 10, 100, 1000, 0 };
1701 uint32_t miisr, mcr, fcr;
1702 int spd;
1703
1704 /* decode MIISR register value */
1705 miisr = mac_read(sc, GMACMIISR);
1706 spd = Mbps[(miisr & MIISR_SPD) >> 1];
1707 #if LINK_DEBUG == 1
1708 static uint32_t oldmiisr = 0;
1709 if (miisr != oldmiisr) {
1710 printf("MII link status (0x%x) %s",
1711 miisr, (miisr & MIISR_LUP) ? "up" : "down");
1712 if (miisr & MIISR_LUP) {
1713 printf(" spd%d", spd);
1714 if (miisr & MIISR_FDX)
1715 printf(",full-duplex");
1716 }
1717 printf("\n");
1718 }
1719 #endif
1720 /* Get flow control negotiation result. */
1721 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1722 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1723 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1724
1725 /* Adjust speed 1000/100/10. */
1726 mcr = mac_read(sc, GMACMCR) &~ (MCR_PS | MCR_FES);
1727 if (sc->sc_miigmii) {
1728 if (spd != 1000)
1729 mcr |= MCR_PS;
1730 } else {
1731 if (spd == 100)
1732 mcr |= MCR_FES;
1733 }
1734 mcr |= MCR_CST | MCR_JE;
1735 if (sc->sc_miigmii == 0)
1736 mcr |= MCR_IBN;
1737
1738 /* Adjust duplexity and PAUSE flow control. */
1739 mcr &= ~MCR_USEFDX;
1740 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1741 if (miisr & MIISR_FDX) {
1742 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1743 fcr |= FCR_TFE;
1744 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1745 fcr |= FCR_RFE;
1746 mcr |= MCR_USEFDX;
1747 }
1748 mac_write(sc, GMACMCR, mcr);
1749 mac_write(sc, GMACFCR, fcr);
1750 #if LINK_DEBUG == 1
1751 if (miisr != oldmiisr) {
1752 printf("%ctxfe, %crxfe\n",
1753 (fcr & FCR_TFE) ? '+' : '-',
1754 (fcr & FCR_RFE) ? '+' : '-');
1755 }
1756 oldmiisr = miisr;
1757 #endif
1758 }
1759
1760 static void
1761 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1762 {
1763 struct scx_softc *sc = ifp->if_softc;
1764 struct mii_data *mii = &sc->sc_mii;
1765
1766 mii_pollstat(mii);
1767 ifmr->ifm_status = mii->mii_media_status;
1768 ifmr->ifm_active = sc->sc_flowflags |
1769 (mii->mii_media_active & ~IFM_ETH_FMASK);
1770 }
1771
1772 static int
1773 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1774 {
1775 struct scx_softc *sc = device_private(self);
1776 uint32_t miia;
1777 int ntries;
1778
1779 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1780 mac_write(sc, GMACGAR, miia | GAR_BUSY);
1781 for (ntries = 0; ntries < 1000; ntries++) {
1782 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1783 goto unbusy;
1784 DELAY(1);
1785 }
1786 return ETIMEDOUT;
1787 unbusy:
1788 *val = mac_read(sc, GMACGDR);
1789 return 0;
1790 }
1791
1792 static int
1793 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1794 {
1795 struct scx_softc *sc = device_private(self);
1796 uint32_t miia;
1797 uint16_t dummy;
1798 int ntries;
1799
1800 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1801 mac_write(sc, GMACGDR, val);
1802 mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1803 for (ntries = 0; ntries < 1000; ntries++) {
1804 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1805 goto unbusy;
1806 DELAY(1);
1807 }
1808 return ETIMEDOUT;
1809 unbusy:
1810 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1811 return 0;
1812 }
1813
1814 static void
1815 phy_tick(void *arg)
1816 {
1817 struct scx_softc *sc = arg;
1818 struct mii_data *mii = &sc->sc_mii;
1819 int s;
1820
1821 s = splnet();
1822 mii_tick(mii);
1823 splx(s);
1824 #ifdef GMAC_EVENT_COUNTERS
1825 /* 80 event counters exist */
1826 #endif
1827 callout_schedule(&sc->sc_callout, hz);
1828 }
1829
1830 static void
1831 stopuengine(struct scx_softc *sc)
1832 {
1833
1834 if (CSR_READ(sc, CORESTAT) != 0) {
1835 CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
1836 CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
1837 WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP, 0);
1838 WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP, 0);
1839 }
1840 CSR_WRITE(sc, SWRESET, 0); /* reset operation */
1841 CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */
1842 CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1843 WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
1844 }
1845
1846 static void
1847 startuengine(struct scx_softc *sc)
1848 {
1849 int err;
1850
1851 CSR_WRITE(sc, CORESTAT, 0);
1852 err = WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE, 0);
1853 if (err) {
1854 aprint_error_dev(sc->sc_dev, "uengine start failed\n");
1855 }
1856 CSR_WRITE(sc, xINTSR, IRQ_UCODE);
1857 }
1858
1859 /*
1860 * 3 independent uengines exist to process host2media, media2host and
1861 * packet data flows.
1862 */
1863 static void
1864 loaducode(struct scx_softc *sc)
1865 {
1866 uint32_t up, lo, sz;
1867 uint64_t addr;
1868
1869 CSR_WRITE(sc, xINTSR, IRQ_UCODE);
1870
1871 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1872 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1873 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1874 sz *= 4;
1875 addr = ((uint64_t)up << 32) | lo;
1876 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1877 injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
1878
1879 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1880 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1881 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1882 sz *= 4;
1883 addr = ((uint64_t)up << 32) | lo;
1884 injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
1885 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1886
1887 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1888 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1889 sz *= 4;
1890 injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
1891 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1892 }
1893
1894 static void
1895 injectucode(struct scx_softc *sc, int port,
1896 bus_addr_t addr, bus_size_t size)
1897 {
1898 bus_space_handle_t bsh;
1899 bus_size_t off;
1900 uint32_t ucode;
1901
1902 if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1903 aprint_error_dev(sc->sc_dev,
1904 "eeprom map failure for ucode port 0x%x\n", port);
1905 return;
1906 }
1907 for (off = 0; off < size; off += 4) {
1908 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1909 CSR_WRITE(sc, port, ucode);
1910 }
1911 bus_space_unmap(sc->sc_st, bsh, size);
1912 }
1913
1914 /* GAR 5:2 MDIO frequency selection */
1915 static int
1916 get_mdioclk(uint32_t freq)
1917 {
1918
1919 freq /= 1000 * 1000;
1920 if (freq < 35)
1921 return GAR_MDIO_25_35MHZ;
1922 if (freq < 60)
1923 return GAR_MDIO_35_60MHZ;
1924 if (freq < 100)
1925 return GAR_MDIO_60_100MHZ;
1926 if (freq < 150)
1927 return GAR_MDIO_100_150MHZ;
1928 if (freq < 250)
1929 return GAR_MDIO_150_250MHZ;
1930 return GAR_MDIO_250_300MHZ;
1931 }
1932
1933 #define HWFEA_DEBUG 1
1934
1935 void
1936 dump_hwfeature(struct scx_softc *sc)
1937 {
1938 #if HWFEA_DEBUG == 1
1939 struct {
1940 uint32_t bit;
1941 const char *des;
1942 } field[] = {
1943 { 27, "SA/VLAN insertion replacement enabled" },
1944 { 26, "flexible PPS enabled" },
1945 { 25, "time stamping with internal system enabled" },
1946 { 24, "alternate/enhanced descriptor enabled" },
1947 { 19, "rx FIFO >2048 enabled" },
1948 { 18, "type 2 IP checksum offload enabled" },
1949 { 17, "type 1 IP checksum offload enabled" },
1950 { 16, "Tx checksum offload enabled" },
1951 { 15, "AV feature enabled" },
1952 { 14, "EEE energy save feature enabled" },
1953 { 13, "1588-2008 version 2 advanced feature enabled" },
1954 { 12, "only 1588-2002 version 1 feature enabled" },
1955 { 11, "RMON event counter enabled" },
1956 { 10, "PMT magic packet enabled" },
1957 { 9, "PMT remote wakeup enabled" },
1958 { 8, "MDIO enabled", },
1959 { 7, "L3/L4 filter enabled" },
1960 { 6, "TBI/SGMII/RTBI support enabled" },
1961 { 5, "supplimental MAC address enabled" },
1962 { 4, "receive hash filter enabled" },
1963 { 3, "hash size is expanded" },
1964 { 2, "Half Duplex enabled" },
1965 { 1, "1000 Mbps enabled" },
1966 { 0, "10/100 Mbps enabled" },
1967 };
1968 const char *nameofmii[] = {
1969 "GMII or MII",
1970 "RGMII",
1971 "SGMII",
1972 "TBI",
1973 "RMII",
1974 "RTBI",
1975 "SMII",
1976 "RevMII"
1977 };
1978 uint32_t hwfea, mtype, txchan, rxchan;
1979
1980 hwfea = CSR_READ(sc, HWFEA);
1981 mtype = (hwfea & __BITS(30,28)) >> 28;
1982 aprint_normal("HWFEA 0x%08x\n", hwfea);
1983 aprint_normal("%s <30:28>\n", nameofmii[mtype]);
1984 for (unsigned i = 0; i < __arraycount(field); i++) {
1985 if ((hwfea & (1U << field[i].bit)) == 0)
1986 continue;
1987 aprint_normal("%s <%d>\n", field[i].des, field[i].bit);
1988 }
1989 if ((txchan = (hwfea & __BITS(23,22)) >> 22) != 0)
1990 aprint_normal("+%d tx channel available <23,22>\n", txchan);
1991 if ((rxchan = (hwfea & __BITS(21,20)) >> 20) != 0)
1992 aprint_normal("+%d rx channel available <21:20>\n", rxchan);
1993 return;
1994 #endif
1995 }
1996