if_scx.c revision 1.41 1 /* $NetBSD: if_scx.c,v 1.41 2023/06/13 00:15:52 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #define NOT_MP_SAFE 0
33
34 /*
35 * Socionext SC2A11 SynQuacer NetSec GbE driver
36 *
37 * Multiple Tx and Rx queues exist inside and dedicated descriptor
38 * fields specifies which queue is to use. Three internal micro-processors
39 * to handle incoming frames, outgoing frames and packet data crypto
40 * processing. uP programs are stored in an external flash memory and
41 * have to be loaded by device driver.
42 * NetSec uses Synopsys DesignWare Core EMAC. DWC implementation
43 * register (0x20) is known to have 0x10.36 and feature register (0x1058)
44 * reports 0x11056f37.
45 * <24> alternative/enhanced desc format
46 * <18> receive IP type 2 checksum offload
47 * <16> transmit checksum offload
48 * <11> event counter (mac management counter, MMC)
49 */
50
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.41 2023/06/13 00:15:52 nisimura Exp $");
53
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/intr.h>
57 #include <sys/device.h>
58 #include <sys/callout.h>
59 #include <sys/mbuf.h>
60 #include <sys/errno.h>
61 #include <sys/rndsource.h>
62 #include <sys/kernel.h>
63 #include <sys/systm.h>
64
65 #include <net/if.h>
66 #include <net/if_media.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <net/bpf.h>
72
73 #include <dev/fdt/fdtvar.h>
74 #include <dev/acpi/acpireg.h>
75 #include <dev/acpi/acpivar.h>
76 #include <dev/acpi/acpi_intr.h>
77
78 /* SC2A11 GbE has 64-bit paddr descriptor */
79 struct tdes {
80 uint32_t t0, t1, t2, t3;
81 };
82 struct rdes {
83 uint32_t r0, r1, r2, r3;
84 };
85 #define T0_OWN (1U<<31) /* desc is ready to Tx */
86 #define T0_LD (1U<<30) /* last descriptor in array */
87 #define T0_DRID (24) /* 29:24 desc ring id */
88 #define T0_PT (1U<<21) /* 23:21 "pass-through" */
89 #define T0_TDRID (16) /* 20:16 target desc ring id: GMAC=15 */
90 #define T0_CC (1U<<15) /* ??? */
91 #define T0_FS (1U<<9) /* first segment of frame */
92 #define T0_LS (1U<<8) /* last segment of frame */
93 #define T0_CSUM (1U<<7) /* enable check sum offload */
94 #define T0_TSO (1U<<6) /* enable TCP segment offload */
95 #define T0_TRS (1U<<4) /* 5:4 "TRS" ??? */
96 /* T1 frame segment address 63:32 */
97 /* T2 frame segment address 31:0 */
98 /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
99 #define R0_OWN (1U<<31) /* desc is empty */
100 #define R0_LD (1U<<30) /* last descriptor in array */
101 #define R0_SDRID (24) /* 29:24 source desc ring id */
102 #define R0_FR (1U<<23) /* found fragmented */
103 #define R0_ER (1U<<21) /* Rx error indication */
104 #define R0_ERR (3U<<16) /* 18:16 receive error code */
105 #define R0_TDRID (12) /* 15:12 target desc ring id */
106 #define R0_FS (1U<<9) /* first segment of frame */
107 #define R0_LS (1U<<8) /* last segment of frame */
108 #define R0_CSUM (3U<<6) /* 7:6 checksum status, 0: undone */
109 #define R0_CERR (2U<<6) /* 2: found bad */
110 #define R0_COK (1U<<6) /* 1: found ok */
111 /* R1 frame address 63:32 */
112 /* R2 frame address 31:0 */
113 /* R3 31:16 received frame length, 15:0 buffer length to receive */
114
115 /*
116 * SC2A11 registers. 0x100 - 1204
117 */
118 #define SWRESET 0x104
119 #define SRST_RUN (1U<<31) /* instruct start, 0 to stop */
120 #define COMINIT 0x120
121 #define INIT_DB (1U<<2) /* ???; self clear when done */
122 #define INIT_CLS (1U<<1) /* ???; self clear when done */
123 #define PKTCTRL 0x140 /* pkt engine control */
124 #define MODENRM (1U<<28) /* set operational mode to 'normal' */
125 #define ENJUMBO (1U<<27) /* allow jumbo frame */
126 #define RPTCSUMERR (1U<<3) /* log Rx checksum error */
127 #define RPTHDCOMP (1U<<2) /* log header incomplete condition */
128 #define RPTHDERR (1U<<1) /* log header error */
129 #define DROPNOMATCH (1U<<0) /* drop no match frames */
130 #define xINTSR 0x200 /* aggregated interrupt status */
131 #define IRQ_UCODE (1U<<20) /* ucode load completed; W1C */
132 #define IRQ_MAC (1U<<19) /* ??? */
133 #define IRQ_PKT (1U<<18) /* ??? */
134 #define IRQ_BOOTCODE (1U<<5) /* ??? */
135 #define IRQ_XDONE (1U<<4) /* ??? mode change completed */
136 #define IRQ_RX (1U<<1) /* top level Rx interrupt */
137 #define IRQ_TX (1U<<0) /* top level Tx interrupt */
138 #define xINTAEN 0x204 /* INT_A enable */
139 #define xINTAE_SET 0x234 /* bit to set */
140 #define xINTAE_CLR 0x238 /* bit to clr */
141 #define xINTBEN 0x23c /* INT_B enable */
142 #define xINTBE_SET 0x240 /* bit to set */
143 #define xINTBE_CLR 0x244 /* bit to clr */
144 #define TXISR 0x400 /* transmit status; W1C */
145 #define TXIEN 0x404 /* tx interrupt enable */
146 #define TXIE_SET 0x428 /* bit to set */
147 #define TXIE_CLR 0x42c /* bit to clr */
148 #define TXI_NTOWNR (1U<<17) /* ??? desc array got empty */
149 #define TXI_TR_ERR (1U<<16) /* xmit error */
150 #define TXI_TXDONE (1U<<15) /* xmit completed */
151 #define TXI_TMREXP (1U<<14) /* coalesce guard timer expired */
152 #define RXISR 0x440 /* receive status; W1C */
153 #define RXIEN 0x444 /* rx interrupt enable */
154 #define RXIE_SET 0x468 /* bit to set */
155 #define RXIE_CLR 0x46c /* bit to clr */
156 #define RXI_RC_ERR (1U<<16) /* recv error */
157 #define RXI_PKTCNT (1U<<15) /* recv counter has new value */
158 #define RXI_TMREXP (1U<<14) /* coalesce guard timer expired */
159 /* 13 sets of special purpose desc interrupt handling register exist */
160 #define TDBA_LO 0x408 /* tdes array base addr 31:0 */
161 #define TDBA_HI 0x434 /* tdes array base addr 63:32 */
162 #define RDBA_LO 0x448 /* rdes array base addr 31:0 */
163 #define RDBA_HI 0x474 /* rdes array base addr 63:32 */
164 /* 13 pairs of special purpose desc array base address register exist */
165 #define TXCONF 0x430
166 #define RXCONF 0x470
167 #define DESCNF_UP (1U<<31) /* 'up-and-running' */
168 #define DESCNF_CHRST (1U<<30) /* channel reset */
169 #define DESCNF_TMR (1U<<4) /* coalesce timer mode select */
170 #define DESCNF_LE (1) /* little endian desc format */
171 #define TXSUBMIT 0x410 /* submit frame(s) to transmit */
172 #define TXCOALESC 0x418 /* tx intr coalesce upper bound */
173 #define RXCOALESC 0x458 /* rx intr coalesce upper bound */
174 #define TCLSCTIME 0x420 /* tintr guard time usec, MSB to on */
175 #define RCLSCTIME 0x460 /* rintr guard time usec, MSB to on */
176 #define TXDONECNT 0x414 /* tx completed count, auto-zero */
177 #define RXAVAILCNT 0x454 /* rx available count, auto-zero */
178 #define DMACTL_TMR 0x20c /* engine DMA timer value */
179 #define UCODE_H2M 0x210 /* host2media engine ucode port */
180 #define UCODE_M2H 0x21c /* media2host engine ucode port */
181 #define CORESTAT 0x218 /* engine run state */
182 #define PKTSTOP (1U<<2) /* pkt engine stopped */
183 #define M2HSTOP (1U<<1) /* M2H engine stopped */
184 #define H2MSTOP (1U<<0) /* H2M engine stopped */
185 #define DMACTL_H2M 0x214 /* host2media engine control */
186 #define DMACTL_M2H 0x220 /* media2host engine control */
187 #define DMACTL_STOP (1U<<0) /* instruct stop; self-clear */
188 #define M2H_MODE_TRANS (1U<<20) /* initiate M2H mode change */
189 #define UCODE_PKT 0x0d0 /* packet engine ucode port */
190 #define CLKEN 0x100 /* clock distribution enable */
191 #define CLK_G (1U<<5) /* feed clk domain G */
192 #define CLK_C (1U<<1) /* feed clk domain C */
193 #define CLK_D (1U<<0) /* feed clk domain D */
194
195 /* GMAC register indirect access. thru MACCMD/MACDATA operation */
196 #define MACDATA 0x11c0 /* gmac register rd/wr data */
197 #define MACCMD 0x11c4 /* gmac register operation */
198 #define CMD_IOWR (1U<<28) /* write op */
199 #define CMD_BUSY (1U<<31) /* busy bit */
200 #define MACSTAT 0x1024 /* gmac status; ??? */
201 #define MACINTE 0x1028 /* interrupt enable; ??? */
202
203 #define FLOWTHR 0x11cc /* flow control threshold */
204 /* 31:16 pause threshold, 15:0 resume threshold */
205 #define INTF_SEL 0x11d4 /* phy interface type */
206 #define INTF_GMII 0
207 #define INTF_RGMII 1
208 #define INTF_RMII 4
209
210 #define DESC_INIT 0x11fc /* write 1 for desc init, SC */
211 #define DESC_SRST 0x1204 /* write 1 for desc sw reset, SC */
212 #define MODE_TRANS 0x500 /* mode change completion status */
213 #define N2T_DONE (1U<<20) /* normal->taiki change completed */
214 #define T2N_DONE (1U<<19) /* taiki->normal change completed */
215 #define MACADRH 0x10c /* ??? */
216 #define MACADRL 0x110 /* ??? */
217 #define MCVER 0x22c /* micro controller version */
218 #define HWVER 0x230 /* hardware version */
219
220 /*
221 * GMAC registers are mostly identical to Synopsys DesignWare Core
222 * Ethernet. These must be handled by indirect access.
223 */
224 #define GMACMCR 0x0000 /* MAC configuration */
225 #define MCR_IBN (1U<<30) /* watch in-band-signal */
226 #define MCR_CST (1U<<25) /* strip CRC */
227 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
228 #define MCR_WD (1U<<23) /* allow long >2048 tx frame */
229 #define MCR_JE (1U<<20) /* allow ~9018 tx jumbo frame */
230 #define MCR_IFG (7U<<17) /* 19:17 IFG value 0~7 */
231 #define MCR_DCRS (1U<<16) /* ignore (G)MII HDX Tx error */
232 #define MCR_PS (1U<<15) /* 1: MII 10/100, 0: GMII 1000 */
233 #define MCR_FES (1U<<14) /* force speed 100 */
234 #define MCR_DO (1U<<13) /* don't receive my own HDX Tx frames */
235 #define MCR_LOOP (1U<<12) /* run loop back */
236 #define MCR_USEFDX (1U<<11) /* force full duplex */
237 #define MCR_IPCEN (1U<<10) /* handle checksum */
238 #define MCR_DR (1U<<9) /* attempt no tx retry, send once */
239 #define MCR_LUD (1U<<8) /* link condition report when RGMII */
240 #define MCR_ACS (1U<<7) /* auto pad auto strip CRC */
241 #define MCR_DC (1U<<4) /* report excessive tx deferral */
242 #define MCR_TE (1U<<3) /* run Tx MAC engine, 0 to stop */
243 #define MCR_RE (1U<<2) /* run Rx MAC engine, 0 to stop */
244 #define MCR_PREA (3U) /* 1:0 preamble len. 0~2 */
245 #define GMACAFR 0x0004 /* frame DA/SA address filter */
246 #define AFR_RA (1U<<31) /* accept all irrespective of filt. */
247 #define AFR_HPF (1U<<10) /* hash+perfect filter, or hash only */
248 #define AFR_SAF (1U<<9) /* source address filter */
249 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
250 #define AFR_PCF (2U<<6) /* ??? */
251 #define AFR_DBF (1U<<5) /* reject broadcast frame */
252 #define AFR_PM (1U<<4) /* accept all multicast frame */
253 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
254 #define AFR_MHTE (1U<<2) /* use multicast hash table */
255 #define AFR_UHTE (1U<<1) /* use hash table for unicast */
256 #define AFR_PR (1U<<0) /* run promisc mode */
257 #define GMACGAR 0x0010 /* MDIO operation */
258 #define GAR_PHY (11) /* 15:11 mii phy */
259 #define GAR_REG (6) /* 10:6 mii reg */
260 #define GAR_CLK (2) /* 5:2 mdio clock tick ratio */
261 #define GAR_IOWR (1U<<1) /* MDIO write op */
262 #define GAR_BUSY (1U<<0) /* busy bit */
263 #define GAR_MDIO_25_35MHZ 2
264 #define GAR_MDIO_35_60MHZ 3
265 #define GAR_MDIO_60_100MHZ 0
266 #define GAR_MDIO_100_150MHZ 1
267 #define GAR_MDIO_150_250MHZ 4
268 #define GAR_MDIO_250_300MHZ 5
269 #define GMACGDR 0x0014 /* MDIO rd/wr data */
270 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
271 /* 31:16 pause timer value, 5:4 pause timer threshold */
272 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
273 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
274 #define GMACIMPL 0x0020 /* implementation id */
275 #define GMACISR 0x0038 /* interrupt status indication */
276 #define GMACIMR 0x003c /* interrupt mask to inhibit */
277 #define ISR_TS (1U<<9) /* time stamp operation detected */
278 #define ISR_CO (1U<<7) /* Rx checksum offload completed */
279 #define ISR_TX (1U<<6) /* Tx completed */
280 #define ISR_RX (1U<<5) /* Rx completed */
281 #define ISR_ANY (1U<<4) /* any of above 5-7 report */
282 #define ISR_LC (1U<<0) /* link status change detected */
283 #define GMACMAH0 0x0040 /* my own MAC address 47:32 */
284 #define GMACMAL0 0x0044 /* my own MAC address 31:0 */
285 #define GMACMAH(i) ((i)*8+0x40) /* supplemental MAC addr 1-15 */
286 #define GMACMAL(i) ((i)*8+0x44) /* 31:0 MAC address low part */
287 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
288 #define GMACAMAH(i) ((i)*8+0x800) /* supplemental MAC addr 16-31 */
289 #define GMACAMAL(i) ((i)*8+0x804) /* 31: MAC address low part */
290 /* supplimental MAH bit-31: slot in use, no other bit is effective */
291 #define GMACMHTH 0x0008 /* 64bit multicast hash table 63:32 */
292 #define GMACMHTL 0x000c /* 64bit multicast hash table 31:0 */
293 #define GMACMHT(i) ((i)*4+0x500) /* 256-bit alternative mcast hash 0-7 */
294 #define GMACVTAG 0x001c /* VLAN tag control */
295 #define VTAG_HASH (1U<<19) /* use VLAN tag hash table */
296 #define VTAG_SVLAN (1U<<18) /* handle type 0x88A8 SVLAN frame */
297 #define VTAG_INV (1U<<17) /* run inverse match logic */
298 #define VTAG_ETV (1U<<16) /* use only 12bit VID field to match */
299 /* 15:0 concat of PRIO+CFI+VID */
300 #define GMACVHT 0x0588 /* 16-bit VLAN tag hash */
301 #define GMACMIISR 0x00d8 /* resolved RGMII/SGMII link status */
302 #define MIISR_LUP (1U<<3) /* link up(1)/down(0) report */
303 #define MIISR_SPD (3U<<1) /* 2:1 speed 10(0)/100(1)/1000(2) */
304 #define MIISR_FDX (1U<<0) /* fdx detected */
305
306 #define GMACLPIS 0x0030 /* LPI control & status */
307 #define LPIS_TXA (1U<<19) /* complete Tx in progress and LPI */
308 #define LPIS_PLS (1U<<17)
309 #define LPIS_EN (1U<<16) /* 1: enter LPI mode, 0: exit */
310 #define LPIS_TEN (1U<<0) /* Tx LPI report */
311 #define GMACLPIC 0x0034 /* LPI timer control */
312 #define LPIC_LST (5) /* 16:5 ??? */
313 #define LPIC_TWT (0) /* 15:0 ??? */
314 /* 0x700-764 Time Stamp control */
315
316 #define GMACBMR 0x1000 /* DMA bus mode control */
317 /* 24 8xPBL multiply by 8 for RPBL & PBL values
318 * 23 USP 1 to use RPBL for Rx DMA burst, 0 to share PBL by Rx and Tx
319 * 22:17 RPBL
320 * 16 FB fixed burst
321 * 15:14 priority between Rx and Tx
322 * 3 rxtx ratio 41
323 * 2 rxtx ratio 31
324 * 1 rxtx ratio 21
325 * 0 rxtx ratio 11
326 * 13:8 PBL possible DMA burst length
327 * 7 ATDS select 32-byte descriptor format for advanced features
328 * 6:2 DSL descriptor skip length, 0 for adjuscent, counted on bus width
329 * 0 MAC reset op. self-clear
330 */
331 #define BMR_RST (1) /* reset op. self clear when done */
332 #define GMACTPD 0x1004 /* write any to resume tdes */
333 #define GMACRPD 0x1008 /* write any to resume rdes */
334 #define GMACRDLA 0x100c /* rdes base address 32bit paddr */
335 #define GMACTDLA 0x1010 /* tdes base address 32bit paddr */
336 #define GMACDSR 0x1014 /* DMA status detail report; W1C */
337 #define GMACDIE 0x101c /* DMA interrupt enable */
338 #define DMAI_LPI (1U<<30) /* LPI interrupt */
339 #define DMAI_TTI (1U<<29) /* timestamp trigger interrupt */
340 #define DMAI_GMI (1U<<27) /* management counter interrupt */
341 #define DMAI_GLI (1U<<26) /* xMII link change detected */
342 #define DMAI_EB (23) /* 25:23 DMA bus error detected */
343 #define DMAI_TS (20) /* 22:20 Tx DMA state report */
344 #define DMAI_RS (17) /* 29:17 Rx DMA state report */
345 #define DMAI_NIS (1U<<16) /* normal interrupt summary; W1C */
346 #define DMAI_AIS (1U<<15) /* abnormal interrupt summary; W1C */
347 #define DMAI_ERI (1U<<14) /* the first Rx buffer is filled */
348 #define DMAI_FBI (1U<<13) /* DMA bus error detected */
349 #define DMAI_ETI (1U<<10) /* single frame Tx completed */
350 #define DMAI_RWT (1U<<9) /* longer than 2048 frame received */
351 #define DMAI_RPS (1U<<8) /* Rx process is now stopped */
352 #define DMAI_RU (1U<<7) /* Rx descriptor not available */
353 #define DMAI_RI (1U<<6) /* frame Rx completed by !R1_DIC */
354 #define DMAI_UNF (1U<<5) /* Tx underflow detected */
355 #define DMAI_OVF (1U<<4) /* receive buffer overflow detected */
356 #define DMAI_TJT (1U<<3) /* longer than 2048 frame sent */
357 #define DMAI_TU (1U<<2) /* Tx descriptor not available */
358 #define DMAI_TPS (1U<<1) /* transmission is stopped */
359 #define DMAI_TI (1U<<0) /* frame Tx completed by T0_IC */
360 #define GMACOMR 0x1018 /* DMA operation mode */
361 #define OMR_RSF (1U<<25) /* 1: Rx store&forward, 0: immed. */
362 #define OMR_TSF (1U<<21) /* 1: Tx store&forward, 0: immed. */
363 #define OMR_TTC (14) /* 16:14 Tx threshold */
364 #define OMR_ST (1U<<13) /* run Tx DMA engine, 0 to stop */
365 #define OMR_RFD (11) /* 12:11 Rx FIFO fill level */
366 #define OMR_EFC (1U<<8) /* transmit PAUSE to throttle Rx lvl. */
367 #define OMR_FEF (1U<<7) /* allow to receive error frames */
368 #define OMR_SR (1U<<1) /* run Rx DMA engine, 0 to stop */
369 #define GMACEVCS 0x1020 /* missed frame or ovf detected */
370 #define GMACRWDT 0x1024 /* enable rx watchdog timer interrupt */
371 #define GMACAXIB 0x1028 /* AXI bus mode control */
372 #define GMACAXIS 0x102c /* AXI status report */
373 /* 0x1048 current tx desc address */
374 /* 0x104c current rx desc address */
375 /* 0x1050 current tx buffer address */
376 /* 0x1054 current rx buffer address */
377 #define HWFEA 0x1058 /* DWC feature report */
378 #define FEA_EXDESC (1U<<24) /* alternative/enhanced desc layout */
379 #define FEA_2COE (1U<<18) /* Rx type 2 IP checksum offload */
380 #define FEA_1COE (1U<<17) /* Rx type 1 IP checksum offload */
381 #define FEA_TXOE (1U<<16) /* Tx checksum offload */
382 #define FEA_MMC (1U<<11) /* RMON event counter */
383
384 #define GMACEVCTL 0x0100 /* event counter control */
385 #define EVC_FHP (1U<<5) /* full-half preset */
386 #define EVC_CP (1U<<4) /* counter preset */
387 #define EVC_MCF (1U<<3) /* counter freeze */
388 #define EVC_ROR (1U<<2) /* auto-zero on counter read */
389 #define EVC_CSR (1U<<1) /* counter stop rollover */
390 #define EVC_CR (1U<<0) /* reset counters */
391 #define GMACEVCNT(i) ((i)*4+0x114) /* 80 event counters 0x114 - 0x284 */
392
393 /* 0x400-4ac L3/L4 control */
394
395 /*
396 * flash memory layout
397 * 0x00 - 07 48-bit MAC station address. 4 byte wise in BE order.
398 * 0x08 - 0b H->MAC xfer engine program start addr 63:32.
399 * 0x0c - 0f H2M program addr 31:0 (these are absolute addr, not offset)
400 * 0x10 - 13 H2M program length in 4 byte count.
401 * 0x14 - 0b M->HOST xfer engine program start addr 63:32.
402 * 0x18 - 0f M2H program addr 31:0 (absolute addr, not relative)
403 * 0x1c - 13 M2H program length in 4 byte count.
404 * 0x20 - 23 packet engine program addr 31:0, (absolute addr, not offset)
405 * 0x24 - 27 packet program length in 4 byte count.
406 *
407 * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
408 */
409
410 #define _BMR 0x00412080 /* XXX TBD */
411 /* NetSec uses local RAM to handle GMAC desc arrays */
412 #define _RDLA 0x18000
413 #define _TDLA 0x1c000
414 /* lower address region is used for intermediate frame data buffers */
415
416 /*
417 * all below are software construction.
418 */
419 #define MD_NTXDESC 128
420 #define MD_NRXDESC 64
421
422 #define MD_NTXSEGS 16
423 #define MD_TXQUEUELEN 8
424 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1)
425 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4)
426 #define MD_NTXDESC_MASK (MD_NTXDESC - 1)
427 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK)
428 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK)
429
430 #define MD_NRXDESC_MASK (MD_NRXDESC - 1)
431 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK)
432
433 struct control_data {
434 struct tdes cd_txdescs[MD_NTXDESC];
435 struct rdes cd_rxdescs[MD_NRXDESC];
436 };
437 #define SCX_CDOFF(x) offsetof(struct control_data, x)
438 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
439 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
440
441 struct scx_txsoft {
442 struct mbuf *txs_mbuf; /* head of our mbuf chain */
443 bus_dmamap_t txs_dmamap; /* our DMA map */
444 int txs_firstdesc; /* first descriptor in packet */
445 int txs_lastdesc; /* last descriptor in packet */
446 int txs_ndesc; /* # of descriptors used */
447 };
448
449 struct scx_rxsoft {
450 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
451 bus_dmamap_t rxs_dmamap; /* our DMA map */
452 };
453
454 struct scx_softc {
455 device_t sc_dev; /* generic device information */
456 bus_space_tag_t sc_st; /* bus space tag */
457 bus_space_handle_t sc_sh; /* bus space handle */
458 bus_size_t sc_sz; /* csr map size */
459 bus_space_handle_t sc_eesh; /* eeprom section handle */
460 bus_size_t sc_eesz; /* eeprom map size */
461 bus_dma_tag_t sc_dmat; /* bus DMA tag */
462 struct ethercom sc_ethercom; /* Ethernet common data */
463 struct mii_data sc_mii; /* MII */
464 callout_t sc_callout; /* PHY monitor callout */
465 bus_dma_segment_t sc_seg; /* descriptor store seg */
466 int sc_nseg; /* descriptor store nseg */
467 void *sc_ih; /* interrupt cookie */
468 int sc_phy_id; /* PHY address */
469 int sc_flowflags; /* 802.3x PAUSE flow control */
470 uint32_t sc_mdclk; /* GAR 5:2 clock selection */
471 uint32_t sc_t0cotso; /* T0_CSUM | T0_TSO to run */
472 int sc_miigmii; /* 1: MII/GMII, 0: RGMII */
473 int sc_phandle; /* fdt phandle */
474 uint64_t sc_freq;
475 uint32_t sc_maxsize;
476
477 bus_dmamap_t sc_cddmamap; /* control data DMA map */
478 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
479
480 struct control_data *sc_control_data;
481 #define sc_txdescs sc_control_data->cd_txdescs
482 #define sc_rxdescs sc_control_data->cd_rxdescs
483
484 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
485 struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
486 int sc_txfree; /* number of free Tx descriptors */
487 int sc_txnext; /* next ready Tx descriptor */
488 int sc_txsfree; /* number of free Tx jobs */
489 int sc_txsnext; /* next ready Tx job */
490 int sc_txsdirty; /* dirty Tx jobs */
491 int sc_rxptr; /* next ready Rx descriptor/descsoft */
492
493 krndsource_t rnd_source; /* random source */
494 #ifdef GMAC_EVENT_COUNTERS
495 /* 80 event counters exist */
496 #endif
497 };
498
499 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
500 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
501
502 #define SCX_CDTXSYNC(sc, x, n, ops) \
503 do { \
504 int __x, __n; \
505 \
506 __x = (x); \
507 __n = (n); \
508 \
509 /* If it will wrap around, sync to the end of the ring. */ \
510 if ((__x + __n) > MD_NTXDESC) { \
511 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
512 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
513 (MD_NTXDESC - __x), (ops)); \
514 __n -= (MD_NTXDESC - __x); \
515 __x = 0; \
516 } \
517 \
518 /* Now sync whatever is left. */ \
519 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
520 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
521 } while (/*CONSTCOND*/0)
522
523 #define SCX_CDRXSYNC(sc, x, ops) \
524 do { \
525 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
526 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
527 } while (/*CONSTCOND*/0)
528
529 #define SCX_INIT_RXDESC(sc, x) \
530 do { \
531 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
532 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
533 struct mbuf *__m = __rxs->rxs_mbuf; \
534 bus_addr_t __p = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
535 bus_size_t __z = __rxs->rxs_dmamap->dm_segs[0].ds_len; \
536 __m->m_data = __m->m_ext.ext_buf; \
537 __rxd->r3 = htole32(__z - 4); \
538 __rxd->r2 = htole32(BUS_ADDR_LO32(__p)); \
539 __rxd->r1 = htole32(BUS_ADDR_HI32(__p)); \
540 __rxd->r0 &= htole32(R0_LD); \
541 __rxd->r0 |= htole32(R0_OWN); \
542 } while (/*CONSTCOND*/0)
543
544 /* memory mapped CSR register access */
545 #define CSR_READ(sc,off) \
546 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
547 #define CSR_WRITE(sc,off,val) \
548 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
549
550 /* flash memory access */
551 #define EE_READ(sc,off) \
552 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
553
554 static int scx_fdt_match(device_t, cfdata_t, void *);
555 static void scx_fdt_attach(device_t, device_t, void *);
556 static int scx_acpi_match(device_t, cfdata_t, void *);
557 static void scx_acpi_attach(device_t, device_t, void *);
558
559 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
560 scx_fdt_match, scx_fdt_attach, NULL, NULL);
561
562 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
563 scx_acpi_match, scx_acpi_attach, NULL, NULL);
564
565 static void scx_attach_i(struct scx_softc *);
566 static void scx_reset(struct scx_softc *);
567 static void scx_stop(struct ifnet *, int);
568 static int scx_init(struct ifnet *);
569 static int scx_ioctl(struct ifnet *, u_long, void *);
570 static void scx_set_rcvfilt(struct scx_softc *);
571 static void scx_start(struct ifnet *);
572 static void scx_watchdog(struct ifnet *);
573 static int scx_intr(void *);
574 static void txreap(struct scx_softc *);
575 static void rxfill(struct scx_softc *);
576 static int add_rxbuf(struct scx_softc *, int);
577 static void rxdrain(struct scx_softc *sc);
578 static void mii_statchg(struct ifnet *);
579 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
580 static int mii_readreg(device_t, int, int, uint16_t *);
581 static int mii_writereg(device_t, int, int, uint16_t);
582 static void phy_tick(void *);
583 static void dump_hwfeature(struct scx_softc *);
584
585 static void resetuengine(struct scx_softc *);
586 static void loaducode(struct scx_softc *);
587 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
588
589 static int get_mdioclk(uint32_t);
590
591 #define WAIT_FOR_SET(sc, reg, set) \
592 wait_for_bits(sc, reg, set, ~0, 0)
593 #define WAIT_FOR_CLR(sc, reg, clr) \
594 wait_for_bits(sc, reg, 0, clr, 0)
595
596 static int
597 wait_for_bits(struct scx_softc *sc, int reg,
598 uint32_t set, uint32_t clr, uint32_t fail)
599 {
600 uint32_t val;
601 int ntries;
602
603 for (ntries = 0; ntries < 1000; ntries++) {
604 val = CSR_READ(sc, reg);
605 if ((val & set) || !(val & clr))
606 return 0;
607 if (val & fail)
608 return 1;
609 DELAY(1);
610 }
611 return 1;
612 }
613
614 /* GMAC register indirect access */
615 static int
616 mac_read(struct scx_softc *sc, int reg)
617 {
618
619 CSR_WRITE(sc, MACCMD, reg | CMD_BUSY);
620 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY);
621 return CSR_READ(sc, MACDATA);
622 }
623
624 static void
625 mac_write(struct scx_softc *sc, int reg, int val)
626 {
627
628 CSR_WRITE(sc, MACDATA, val);
629 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY);
630 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY);
631 }
632
633 /* dig and decode "clock-frequency" value for a given clkname */
634 static int
635 get_clk_freq(int phandle, const char *clkname)
636 {
637 u_int index, n, cells;
638 const u_int *p;
639 int err, len, resid;
640 unsigned int freq = 0;
641
642 err = fdtbus_get_index(phandle, "clock-names", clkname, &index);
643 if (err == -1)
644 return -1;
645 p = fdtbus_get_prop(phandle, "clocks", &len);
646 if (p == NULL)
647 return -1;
648 for (n = 0, resid = len; resid > 0; n++) {
649 const int cc_phandle =
650 fdtbus_get_phandle_from_native(be32toh(p[0]));
651 if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells))
652 return -1;
653 if (n == index) {
654 if (of_getprop_uint32(cc_phandle,
655 "clock-frequency", &freq))
656 return -1;
657 return freq;
658 }
659 resid -= (cells + 1) * 4;
660 p += (cells + 1) * 4;
661 }
662 return -1;
663 }
664
665 #define ATTACH_DEBUG 1
666
667 static const struct device_compatible_entry compat_data[] = {
668 { .compat = "socionext,synquacer-netsec" },
669 DEVICE_COMPAT_EOL
670 };
671 static const struct device_compatible_entry compatible[] = {
672 { .compat = "SCX0001" },
673 DEVICE_COMPAT_EOL
674 };
675
676 static int
677 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
678 {
679 struct fdt_attach_args * const faa = aux;
680
681 return of_compatible_match(faa->faa_phandle, compat_data);
682 }
683
684 static void
685 scx_fdt_attach(device_t parent, device_t self, void *aux)
686 {
687 struct scx_softc * const sc = device_private(self);
688 struct fdt_attach_args * const faa = aux;
689 const int phandle = faa->faa_phandle;
690 bus_space_handle_t bsh;
691 bus_space_handle_t eebsh;
692 bus_addr_t addr[2];
693 bus_size_t size[2];
694 void *intrh;
695 char intrstr[128];
696 int phy_phandle;
697 const char *phy_mode;
698 bus_addr_t phy_id;
699 long ref_clk;
700
701 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
702 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
703 aprint_error(": unable to map registers\n");
704 return;
705 }
706 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
707 || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
708 aprint_error(": unable to map device eeprom\n");
709 goto fail;
710 }
711 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
712 aprint_error(": failed to decode interrupt\n");
713 goto fail;
714 }
715
716 phy_mode = fdtbus_get_string(phandle, "phy-mode");
717 if (phy_mode == NULL)
718 aprint_error(": missing 'phy-mode' property\n");
719 phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
720 if (phy_phandle == -1
721 || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0)
722 phy_id = MII_PHY_ANY;
723 ref_clk = get_clk_freq(phandle, "phy_ref_clk");
724 if (ref_clk == -1)
725 ref_clk = 250 * 1000 * 1000;
726
727 #if ATTACH_DEBUG == 1
728 aprint_normal("\n");
729 aprint_normal_dev(self,
730 "[FDT] phy mode %s, phy id %d, freq %ld\n",
731 phy_mode, (int)phy_id, ref_clk);
732 aprint_normal("%s", device_xname(self));
733 #endif
734
735 intrh = fdtbus_intr_establish(phandle, 0, IPL_NET,
736 NOT_MP_SAFE, scx_intr, sc);
737 if (intrh == NULL) {
738 aprint_error(": couldn't establish interrupt\n");
739 goto fail;
740 }
741 aprint_normal(" interrupt on %s", intrstr);
742
743 sc->sc_dev = self;
744 sc->sc_st = faa->faa_bst;
745 sc->sc_sh = bsh;
746 sc->sc_sz = size[0];
747 sc->sc_eesh = eebsh;
748 sc->sc_eesz = size[1];
749 sc->sc_ih = intrh;
750 sc->sc_dmat = faa->faa_dmat;
751 sc->sc_phandle = phandle;
752 sc->sc_phy_id = phy_id;
753 sc->sc_freq = ref_clk;
754
755 scx_attach_i(sc);
756
757 return;
758 fail:
759 if (sc->sc_eesz)
760 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
761 if (sc->sc_sz)
762 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
763 return;
764 }
765
766 static int
767 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
768 {
769 struct acpi_attach_args *aa = aux;
770
771 return acpi_compatible_match(aa, compatible);
772 }
773
774 #define HWFEA_DEBUG 1
775
776 static void
777 scx_acpi_attach(device_t parent, device_t self, void *aux)
778 {
779 struct scx_softc * const sc = device_private(self);
780 struct acpi_attach_args * const aa = aux;
781 ACPI_HANDLE handle = aa->aa_node->ad_handle;
782 bus_space_handle_t bsh, eebsh;
783 struct acpi_resources res;
784 struct acpi_mem *mem, *mem1;
785 struct acpi_irq *irq;
786 ACPI_INTEGER max_spd, max_frame, phy_id, phy_freq;
787 ACPI_STATUS rv;
788 void *intrh;
789
790 rv = acpi_resource_parse(self, handle, "_CRS",
791 &res, &acpi_resource_parse_ops_default);
792 if (ACPI_FAILURE(rv))
793 return;
794 mem = acpi_res_mem(&res, 0);
795 irq = acpi_res_irq(&res, 0);
796 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
797 aprint_error(": incomplete crs resources\n");
798 goto done;
799 }
800 if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
801 &bsh) != 0) {
802 aprint_error(": unable to map registers\n");
803 goto done;
804 }
805 mem1 = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
806 if (mem1 == NULL || mem1->ar_length == 0) {
807 aprint_error(": incomplete eeprom resources\n");
808 goto fail_0;
809 }
810 if (bus_space_map(aa->aa_memt, mem1->ar_base, mem1->ar_length, 0,
811 &eebsh)) {
812 aprint_error(": unable to map device eeprom\n");
813 goto fail_0;
814 }
815 rv = acpi_dsd_integer(handle, "max-speed", &max_spd);
816 if (ACPI_FAILURE(rv))
817 max_spd = 1000;
818 rv = acpi_dsd_integer(handle, "max-frame-size", &max_frame);
819 if (ACPI_FAILURE(rv))
820 max_frame = 2048;
821 rv = acpi_dsd_integer(handle, "phy-channel", &phy_id);
822 if (ACPI_FAILURE(rv))
823 phy_id = MII_PHY_ANY;
824 rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
825 &phy_freq);
826 if (ACPI_FAILURE(rv))
827 phy_freq = 250 * 1000 * 1000;
828
829 #if ATTACH_DEBUG == 1
830 aprint_normal_dev(self,
831 "[ACPI] max-speed %d, phy id %d, freq %ld\n",
832 (int)max_spd, (int)phy_id, phy_freq);
833 aprint_normal("%s", device_xname(self));
834 #endif
835
836 intrh = acpi_intr_establish(self, (uint64_t)(uintptr_t)handle,
837 IPL_NET, NOT_MP_SAFE, scx_intr, sc, device_xname(self));
838 if (intrh == NULL) {
839 aprint_error(": couldn't establish interrupt\n");
840 goto fail_1;
841 }
842
843 sc->sc_dev = self;
844 sc->sc_st = aa->aa_memt;
845 sc->sc_sh = bsh;
846 sc->sc_sz = mem->ar_length;
847 sc->sc_eesh = eebsh;
848 sc->sc_eesz = mem1->ar_length;
849 sc->sc_ih = intrh;
850 sc->sc_dmat =
851 BUS_DMA_TAG_VALID(aa->aa_dmat64) ? aa->aa_dmat64 : aa->aa_dmat;
852 sc->sc_phy_id = (int)phy_id;
853 sc->sc_freq = phy_freq;
854 sc->sc_maxsize = max_frame;
855
856 scx_attach_i(sc);
857 done:
858 acpi_resource_cleanup(&res);
859 return;
860 fail_1:
861 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
862 fail_0:
863 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
864 acpi_resource_cleanup(&res);
865 return;
866 }
867
868 static void
869 scx_attach_i(struct scx_softc *sc)
870 {
871 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
872 struct mii_data * const mii = &sc->sc_mii;
873 struct ifmedia * const ifm = &mii->mii_media;
874 uint32_t which, dwimp, dwfea;
875 uint8_t enaddr[ETHER_ADDR_LEN];
876 bus_dma_segment_t seg;
877 paddr_t p, q;
878 uint32_t csr;
879 int i, nseg, error = 0;
880
881 which = CSR_READ(sc, HWVER); /* Socionext version 5.xx */
882 dwimp = mac_read(sc, GMACIMPL); /* DWC implementation XX.YY */
883 dwfea = mac_read(sc, HWFEA); /* DWC feature bits */
884
885 aprint_naive("\n");
886 aprint_normal(": Socionext NetSec Gigabit Ethernet controller "
887 "%x.%x\n", which >> 16, which & 0xffff);
888
889 aprint_normal_dev(sc->sc_dev,
890 "DesignWare EMAC ver 0x%x (0x%x) hw feature %08x\n",
891 dwimp & 0xff, dwimp >> 8, dwfea);
892 dump_hwfeature(sc);
893
894 /* detected PHY type */
895 sc->sc_miigmii = ((dwfea & __BITS(30,28) >> 28) == 0);
896
897 /* fetch MAC address in flash 0:7, stored in big endian order */
898 csr = EE_READ(sc, 0x00);
899 enaddr[0] = csr >> 24;
900 enaddr[1] = csr >> 16;
901 enaddr[2] = csr >> 8;
902 enaddr[3] = csr;
903 csr = EE_READ(sc, 0x04);
904 enaddr[4] = csr >> 24;
905 enaddr[5] = csr >> 16;
906 aprint_normal_dev(sc->sc_dev,
907 "Ethernet address %s\n", ether_sprintf(enaddr));
908
909 sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */
910
911 mii->mii_ifp = ifp;
912 mii->mii_readreg = mii_readreg;
913 mii->mii_writereg = mii_writereg;
914 mii->mii_statchg = mii_statchg;
915
916 sc->sc_ethercom.ec_mii = mii;
917 ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
918 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
919 MII_OFFSET_ANY, MIIF_DOPAUSE);
920 if (LIST_FIRST(&mii->mii_phys) == NULL) {
921 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
922 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
923 } else
924 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
925 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
926
927 /*
928 * Allocate the control data structures, and create and load the
929 * DMA map for it.
930 */
931 error = bus_dmamem_alloc(sc->sc_dmat,
932 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
933 if (error != 0) {
934 aprint_error_dev(sc->sc_dev,
935 "unable to allocate control data, error = %d\n", error);
936 goto fail_0;
937 }
938 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
939 sizeof(struct control_data), (void **)&sc->sc_control_data,
940 BUS_DMA_COHERENT);
941 if (error != 0) {
942 aprint_error_dev(sc->sc_dev,
943 "unable to map control data, error = %d\n", error);
944 goto fail_1;
945 }
946 error = bus_dmamap_create(sc->sc_dmat,
947 sizeof(struct control_data), 1,
948 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
949 if (error != 0) {
950 aprint_error_dev(sc->sc_dev,
951 "unable to create control data DMA map, "
952 "error = %d\n", error);
953 goto fail_2;
954 }
955 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
956 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
957 if (error != 0) {
958 aprint_error_dev(sc->sc_dev,
959 "unable to load control data DMA map, error = %d\n",
960 error);
961 goto fail_3;
962 }
963 for (i = 0; i < MD_TXQUEUELEN; i++) {
964 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
965 MD_NTXSEGS, MCLBYTES, 0, 0,
966 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
967 aprint_error_dev(sc->sc_dev,
968 "unable to create tx DMA map %d, error = %d\n",
969 i, error);
970 goto fail_4;
971 }
972 }
973 for (i = 0; i < MD_NRXDESC; i++) {
974 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
975 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
976 aprint_error_dev(sc->sc_dev,
977 "unable to create rx DMA map %d, error = %d\n",
978 i, error);
979 goto fail_5;
980 }
981 sc->sc_rxsoft[i].rxs_mbuf = NULL;
982 }
983 sc->sc_seg = seg;
984 sc->sc_nseg = nseg;
985 #if 0
986 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
987 #endif
988 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
989 ifp->if_softc = sc;
990 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
991 ifp->if_ioctl = scx_ioctl;
992 ifp->if_start = scx_start;
993 ifp->if_watchdog = scx_watchdog;
994 ifp->if_init = scx_init;
995 ifp->if_stop = scx_stop;
996 IFQ_SET_READY(&ifp->if_snd);
997
998 /* 802.1Q VLAN-sized frames, and 9000 jumbo frame are supported */
999 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1000 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1001
1002 sc->sc_flowflags = 0; /* track PAUSE flow caps */
1003
1004 if_attach(ifp);
1005 if_deferred_start_init(ifp, NULL);
1006 ether_ifattach(ifp, enaddr);
1007
1008 callout_init(&sc->sc_callout, 0);
1009 callout_setfunc(&sc->sc_callout, phy_tick, sc);
1010
1011 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1012 RND_TYPE_NET, RND_FLAG_DEFAULT);
1013
1014 resetuengine(sc);
1015 loaducode(sc);
1016
1017 /* feed NetSec descriptor array base addresses and timer value */
1018 p = SCX_CDTXADDR(sc, 0); /* tdes array (ring#0) */
1019 q = SCX_CDRXADDR(sc, 0); /* rdes array (ring#1) */
1020 CSR_WRITE(sc, TDBA_LO, BUS_ADDR_LO32(p));
1021 CSR_WRITE(sc, TDBA_HI, BUS_ADDR_HI32(p));
1022 CSR_WRITE(sc, RDBA_LO, BUS_ADDR_LO32(q));
1023 CSR_WRITE(sc, RDBA_HI, BUS_ADDR_HI32(q));
1024 CSR_WRITE(sc, TXCONF, DESCNF_LE); /* little endian */
1025 CSR_WRITE(sc, RXCONF, DESCNF_LE); /* little endian */
1026 CSR_WRITE(sc, DMACTL_TMR, sc->sc_freq / 1000000 - 1);
1027
1028 CSR_WRITE(sc, DMACTL_M2H, M2H_MODE_TRANS);
1029 CSR_WRITE(sc, PKTCTRL, MODENRM); /* change to use normal mode */
1030 WAIT_FOR_SET(sc, MODE_TRANS, T2N_DONE);
1031 /* do {
1032 csr = CSR_READ(sc, MODE_TRANS);
1033 } while ((csr & T2N_DONE) == 0); */
1034
1035 CSR_WRITE(sc, TXISR, ~0); /* clear pending emtpry/error irq */
1036 CSR_WRITE(sc, xINTAE_CLR, ~0); /* disable tx / rx interrupts */
1037
1038 return;
1039
1040 fail_5:
1041 for (i = 0; i < MD_NRXDESC; i++) {
1042 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1043 bus_dmamap_destroy(sc->sc_dmat,
1044 sc->sc_rxsoft[i].rxs_dmamap);
1045 }
1046 fail_4:
1047 for (i = 0; i < MD_TXQUEUELEN; i++) {
1048 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1049 bus_dmamap_destroy(sc->sc_dmat,
1050 sc->sc_txsoft[i].txs_dmamap);
1051 }
1052 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1053 fail_3:
1054 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1055 fail_2:
1056 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1057 sizeof(struct control_data));
1058 fail_1:
1059 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
1060 fail_0:
1061 if (sc->sc_phandle)
1062 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
1063 else
1064 acpi_intr_disestablish(sc->sc_ih);
1065 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1066 return;
1067 }
1068
1069 static void
1070 scx_reset(struct scx_softc *sc)
1071 {
1072 int loop = 0, busy;
1073
1074 mac_write(sc, GMACOMR, 0);
1075 mac_write(sc, GMACBMR, BMR_RST);
1076 do {
1077 DELAY(1);
1078 busy = mac_read(sc, GMACBMR) & BMR_RST;
1079 } while (++loop < 3000 && busy);
1080 mac_write(sc, GMACBMR, _BMR);
1081 mac_write(sc, GMACAFR, 0);
1082 }
1083
1084 static void
1085 scx_stop(struct ifnet *ifp, int disable)
1086 {
1087 struct scx_softc *sc = ifp->if_softc;
1088 uint32_t csr;
1089
1090 /* Stop the one second clock. */
1091 callout_stop(&sc->sc_callout);
1092
1093 /* Down the MII. */
1094 mii_down(&sc->sc_mii);
1095
1096 /* Mark the interface down and cancel the watchdog timer. */
1097 ifp->if_flags &= ~IFF_RUNNING;
1098 ifp->if_timer = 0;
1099
1100 CSR_WRITE(sc, RXIE_CLR, ~0);
1101 CSR_WRITE(sc, TXIE_CLR, ~0);
1102 CSR_WRITE(sc, xINTAE_CLR, ~0);
1103 CSR_WRITE(sc, TXISR, ~0);
1104 CSR_WRITE(sc, RXISR, ~0);
1105
1106 csr = mac_read(sc, GMACOMR);
1107 mac_write(sc, GMACOMR, csr &~ (OMR_SR | OMR_ST));
1108 }
1109
1110 static int
1111 scx_init(struct ifnet *ifp)
1112 {
1113 struct scx_softc *sc = ifp->if_softc;
1114 const uint8_t *ea = CLLADDR(ifp->if_sadl);
1115 uint32_t csr;
1116 int i, error;
1117
1118 /* Cancel pending I/O. */
1119 scx_stop(ifp, 0);
1120
1121 /* Reset the chip to a known state. */
1122 scx_reset(sc);
1123
1124 /* build sane Tx */
1125 memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
1126 sc->sc_txdescs[MD_NTXDESC - 1].t0 = T0_LD; /* tie off the ring */
1127 SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
1128 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1129 sc->sc_txfree = MD_NTXDESC;
1130 sc->sc_txnext = 0;
1131 for (i = 0; i < MD_TXQUEUELEN; i++)
1132 sc->sc_txsoft[i].txs_mbuf = NULL;
1133 sc->sc_txsfree = MD_TXQUEUELEN;
1134 sc->sc_txsnext = 0;
1135 sc->sc_txsdirty = 0;
1136
1137 /* load Rx descriptors with fresh mbuf */
1138 for (i = 0; i < MD_NRXDESC; i++) {
1139 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
1140 if ((error = add_rxbuf(sc, i)) != 0) {
1141 aprint_error_dev(sc->sc_dev,
1142 "unable to allocate or map rx "
1143 "buffer %d, error = %d\n",
1144 i, error);
1145 rxdrain(sc);
1146 goto out;
1147 }
1148 }
1149 else
1150 SCX_INIT_RXDESC(sc, i);
1151 }
1152 sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_LD; /* tie off the ring */
1153 sc->sc_rxptr = 0;
1154
1155 /* set my address in perfect match slot 0. little endian order */
1156 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
1157 mac_write(sc, GMACMAL0, csr);
1158 csr = (ea[5] << 8) | ea[4];
1159 mac_write(sc, GMACMAH0, csr);
1160
1161 /* accept multicast frame or run promisc mode */
1162 scx_set_rcvfilt(sc);
1163
1164 /* set current media */
1165 if ((error = ether_mediachange(ifp)) != 0)
1166 goto out;
1167
1168 CSR_WRITE(sc, DESC_SRST, 01);
1169 WAIT_FOR_CLR(sc, DESC_SRST, 01);
1170
1171 CSR_WRITE(sc, DESC_INIT, 01);
1172 WAIT_FOR_CLR(sc, DESC_INIT, 01);
1173
1174 /* feed local memory descriptor array base addresses */
1175 mac_write(sc, GMACRDLA, _RDLA); /* GMAC rdes store */
1176 mac_write(sc, GMACTDLA, _TDLA); /* GMAC tdes store */
1177
1178 CSR_WRITE(sc, FLOWTHR, (48<<16) | 36); /* pause|resume threshold */
1179 mac_write(sc, GMACFCR, 256 << 16); /* 31:16 pause value */
1180
1181 CSR_WRITE(sc, INTF_SEL, sc->sc_miigmii ? INTF_GMII : INTF_RGMII);
1182
1183 CSR_WRITE(sc, RXCOALESC, 8); /* Rx coalesce bound */
1184 CSR_WRITE(sc, TXCOALESC, 8); /* Tx coalesce bound */
1185 CSR_WRITE(sc, RCLSCTIME, 500|(1U<<31)); /* Rx co. guard time usec */
1186 CSR_WRITE(sc, TCLSCTIME, 500|(1U<<31)); /* Tx co. guard time usec */
1187
1188 CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP);
1189 CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP);
1190 CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX);
1191 #if 1
1192 /* clear event counters, auto-zero after every read */
1193 mac_write(sc, GMACEVCTL, EVC_CR | EVC_ROR);
1194 #endif
1195 /* kick to start GMAC engine */
1196 csr = mac_read(sc, GMACOMR);
1197 mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);
1198
1199 ifp->if_flags |= IFF_RUNNING;
1200
1201 /* start one second timer */
1202 callout_schedule(&sc->sc_callout, hz);
1203 out:
1204 return error;
1205 }
1206
1207 static int
1208 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1209 {
1210 struct scx_softc *sc = ifp->if_softc;
1211 struct ifreq *ifr = (struct ifreq *)data;
1212 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1213 int s, error;
1214
1215 s = splnet();
1216
1217 switch (cmd) {
1218 case SIOCSIFMEDIA:
1219 /* Flow control requires full-duplex mode. */
1220 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1221 (ifr->ifr_media & IFM_FDX) == 0)
1222 ifr->ifr_media &= ~IFM_ETH_FMASK;
1223 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1224 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1225 /* We can do both TXPAUSE and RXPAUSE. */
1226 ifr->ifr_media |=
1227 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1228 }
1229 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1230 }
1231 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
1232 break;
1233 default:
1234 error = ether_ioctl(ifp, cmd, data);
1235 if (error != ENETRESET)
1236 break;
1237 error = 0;
1238 if (cmd == SIOCSIFCAP)
1239 error = if_init(ifp);
1240 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1241 ;
1242 else if (ifp->if_flags & IFF_RUNNING) {
1243 /*
1244 * Multicast list has changed; set the hardware filter
1245 * accordingly.
1246 */
1247 scx_set_rcvfilt(sc);
1248 }
1249 break;
1250 }
1251
1252 splx(s);
1253 return error;
1254 }
1255
1256 static uint32_t
1257 bit_reverse_32(uint32_t x)
1258 {
1259 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
1260 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
1261 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
1262 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
1263 return (x >> 16) | (x << 16);
1264 }
1265
1266 #define MCAST_DEBUG 0
1267
1268 static void
1269 scx_set_rcvfilt(struct scx_softc *sc)
1270 {
1271 struct ethercom * const ec = &sc->sc_ethercom;
1272 struct ifnet * const ifp = &ec->ec_if;
1273 struct ether_multistep step;
1274 struct ether_multi *enm;
1275 uint32_t mchash[2]; /* 2x 32 = 64 bit */
1276 uint32_t csr, crc;
1277 int i;
1278
1279 csr = mac_read(sc, GMACAFR);
1280 csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1281 mac_write(sc, GMACAFR, csr);
1282
1283 /* clear 15 entry supplemental perfect match filter */
1284 for (i = 1; i < 16; i++)
1285 mac_write(sc, GMACMAH(i), 0);
1286 /* build 64 bit multicast hash filter */
1287 crc = mchash[1] = mchash[0] = 0;
1288
1289 ETHER_LOCK(ec);
1290 if (ifp->if_flags & IFF_PROMISC) {
1291 ec->ec_flags |= ETHER_F_ALLMULTI;
1292 ETHER_UNLOCK(ec);
1293 /* run promisc. mode */
1294 csr |= AFR_PR;
1295 goto update;
1296 }
1297 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1298 ETHER_FIRST_MULTI(step, ec, enm);
1299 i = 1; /* slot 0 is occupied */
1300 while (enm != NULL) {
1301 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1302 /*
1303 * We must listen to a range of multicast addresses.
1304 * For now, just accept all multicasts, rather than
1305 * trying to set only those filter bits needed to match
1306 * the range. (At this time, the only use of address
1307 * ranges is for IP multicast routing, for which the
1308 * range is big enough to require all bits set.)
1309 */
1310 ec->ec_flags |= ETHER_F_ALLMULTI;
1311 ETHER_UNLOCK(ec);
1312 /* accept all multi */
1313 csr |= AFR_PM;
1314 goto update;
1315 }
1316 #if MCAST_DEBUG == 1
1317 aprint_normal_dev(sc->sc_dev, "[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1318 #endif
1319 if (i < 16) {
1320 /* use 15 entry perfect match filter */
1321 uint32_t addr;
1322 uint8_t *ep = enm->enm_addrlo;
1323 addr = (ep[3] << 24) | (ep[2] << 16)
1324 | (ep[1] << 8) | ep[0];
1325 mac_write(sc, GMACMAL(i), addr);
1326 addr = (ep[5] << 8) | ep[4];
1327 mac_write(sc, GMACMAH(i), addr | 1U<<31);
1328 } else {
1329 /* use hash table when too many */
1330 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1331 crc = bit_reverse_32(~crc);
1332 /* 1(31) 5(30:26) bit sampling */
1333 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1334 }
1335 ETHER_NEXT_MULTI(step, enm);
1336 i++;
1337 }
1338 ETHER_UNLOCK(ec);
1339 if (crc)
1340 csr |= AFR_MHTE; /* use mchash[] */
1341 csr |= AFR_HPF; /* use perfect match as well */
1342 update:
1343 mac_write(sc, GMACMHTH, mchash[1]);
1344 mac_write(sc, GMACMHTL, mchash[0]);
1345 mac_write(sc, GMACAFR, csr);
1346 return;
1347 }
1348
1349 static void
1350 scx_start(struct ifnet *ifp)
1351 {
1352 struct scx_softc *sc = ifp->if_softc;
1353 struct mbuf *m0;
1354 struct scx_txsoft *txs;
1355 bus_dmamap_t dmamap;
1356 int error, nexttx, lasttx, ofree, seg;
1357 uint32_t tdes0;
1358
1359 if ((ifp->if_flags & IFF_RUNNING) == 0)
1360 return;
1361
1362 /* Remember the previous number of free descriptors. */
1363 ofree = sc->sc_txfree;
1364 /*
1365 * Loop through the send queue, setting up transmit descriptors
1366 * until we drain the queue, or use up all available transmit
1367 * descriptors.
1368 */
1369 for (;;) {
1370 IFQ_POLL(&ifp->if_snd, m0);
1371 if (m0 == NULL)
1372 break;
1373 if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1374 txreap(sc);
1375 if (sc->sc_txsfree == 0)
1376 break;
1377 }
1378 txs = &sc->sc_txsoft[sc->sc_txsnext];
1379 dmamap = txs->txs_dmamap;
1380 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1381 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1382 if (error) {
1383 if (error == EFBIG) {
1384 aprint_error_dev(sc->sc_dev,
1385 "Tx packet consumes too many "
1386 "DMA segments, dropping...\n");
1387 IFQ_DEQUEUE(&ifp->if_snd, m0);
1388 m_freem(m0);
1389 if_statinc_ref(ifp, if_oerrors);
1390 continue;
1391 }
1392 /* Short on resources, just stop for now. */
1393 break;
1394 }
1395 if (dmamap->dm_nsegs > sc->sc_txfree) {
1396 /*
1397 * Not enough free descriptors to transmit this
1398 * packet. We haven't committed anything yet,
1399 * so just unload the DMA map, put the packet
1400 * back on the queue, and punt.
1401 */
1402 bus_dmamap_unload(sc->sc_dmat, dmamap);
1403 break;
1404 }
1405
1406 IFQ_DEQUEUE(&ifp->if_snd, m0);
1407 /*
1408 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1409 */
1410 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1411 BUS_DMASYNC_PREWRITE);
1412
1413 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1414 lasttx = -1;
1415 for (nexttx = sc->sc_txnext, seg = 0;
1416 seg < dmamap->dm_nsegs;
1417 seg++, nexttx = MD_NEXTTX(nexttx)) {
1418 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1419 bus_addr_t p = dmamap->dm_segs[seg].ds_addr;
1420 bus_size_t z = dmamap->dm_segs[seg].ds_len;
1421 /*
1422 * If this is the first descriptor we're
1423 * enqueueing, don't set the OWN bit just
1424 * yet. That could cause a race condition.
1425 * We'll do it below.
1426 */
1427 tdes->t3 = htole32(z);
1428 tdes->t2 = htole32(BUS_ADDR_LO32(p));
1429 tdes->t1 = htole32(BUS_ADDR_HI32(p));
1430 tdes->t0 &= htole32(T0_LD);
1431 tdes->t0 |= htole32(tdes0 |
1432 (15 << T0_TDRID) | T0_PT |
1433 sc->sc_t0cotso | T0_TRS);
1434 tdes0 = T0_OWN; /* 2nd and other segments */
1435 /* NB; t0 DRID field contains zero */
1436 lasttx = nexttx;
1437 }
1438
1439 /* HW lacks of per-frame xmit done interrupt control */
1440
1441 /* Write deferred 1st segment T0_OWN at the final stage */
1442 sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS);
1443 sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN);
1444 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1445 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1446
1447 /* submit one frame to xmit */
1448 CSR_WRITE(sc, TXSUBMIT, 1);
1449
1450 txs->txs_mbuf = m0;
1451 txs->txs_firstdesc = sc->sc_txnext;
1452 txs->txs_lastdesc = lasttx;
1453 txs->txs_ndesc = dmamap->dm_nsegs;
1454 sc->sc_txfree -= txs->txs_ndesc;
1455 sc->sc_txnext = nexttx;
1456 sc->sc_txsfree--;
1457 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1458 /*
1459 * Pass the packet to any BPF listeners.
1460 */
1461 bpf_mtap(ifp, m0, BPF_D_OUT);
1462 }
1463 if (sc->sc_txfree != ofree) {
1464 /* Set a watchdog timer in case the chip flakes out. */
1465 ifp->if_timer = 5;
1466 }
1467 }
1468
1469 #define EVENT_DEBUG 1
1470
1471 static void
1472 scx_watchdog(struct ifnet *ifp)
1473 {
1474 struct scx_softc *sc = ifp->if_softc;
1475
1476 /*
1477 * Since we're not interrupting every packet, sweep
1478 * up before we report an error.
1479 */
1480 txreap(sc);
1481
1482 if (sc->sc_txfree != MD_NTXDESC) {
1483 aprint_error_dev(sc->sc_dev,
1484 "device timeout (txfree %d txsfree %d txnext %d)\n",
1485 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1486 if_statinc(ifp, if_oerrors);
1487 #if EVENT_DEBUG == 1
1488 aprint_error_dev(sc->sc_dev,
1489 "tx frames %d, octects %d, bcast %d, mcast %d\n",
1490 mac_read(sc, GMACEVCNT(1)),
1491 mac_read(sc, GMACEVCNT(0)),
1492 mac_read(sc, GMACEVCNT(2)),
1493 mac_read(sc, GMACEVCNT(3)));
1494 aprint_error_dev(sc->sc_dev,
1495 "rx frames %d, octects %d, bcast %d, mcast %d\n",
1496 mac_read(sc, GMACEVCNT(27)),
1497 mac_read(sc, GMACEVCNT(28)),
1498 mac_read(sc, GMACEVCNT(30)),
1499 mac_read(sc, GMACEVCNT(31)));
1500 aprint_error_dev(sc->sc_dev,
1501 "current tdes addr %x, buf addr %x\n",
1502 mac_read(sc, 0x1048), mac_read(sc, 0x1050));
1503 aprint_error_dev(sc->sc_dev,
1504 "current rdes addr %x, buf addr %x\n",
1505 mac_read(sc, 0x104c), mac_read(sc, 0x1054));
1506 #endif
1507 /* Reset the interface. */
1508 scx_init(ifp);
1509 }
1510
1511 scx_start(ifp);
1512 }
1513
1514 static int
1515 scx_intr(void *arg)
1516 {
1517 struct scx_softc *sc = arg;
1518 uint32_t enable, status;
1519
1520 status = CSR_READ(sc, xINTSR); /* not W1C */
1521 enable = CSR_READ(sc, xINTAEN);
1522 if ((status & enable) == 0)
1523 return 0;
1524 if (status & (IRQ_TX | IRQ_RX)) {
1525 CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX));
1526
1527 status = CSR_READ(sc, RXISR);
1528 CSR_WRITE(sc, RXISR, status);
1529 if (status & RXI_RC_ERR)
1530 aprint_error_dev(sc->sc_dev, "Rx error\n");
1531 if (status & (RXI_PKTCNT | RXI_TMREXP)) {
1532 rxfill(sc);
1533 (void)CSR_READ(sc, RXAVAILCNT); /* clear RXI_PKTCNT */
1534 }
1535
1536 status = CSR_READ(sc, TXISR);
1537 CSR_WRITE(sc, TXISR, status);
1538 if (status & TXI_TR_ERR)
1539 aprint_error_dev(sc->sc_dev, "Tx error\n");
1540 if (status & (TXI_TXDONE | TXI_TMREXP)) {
1541 txreap(sc);
1542 (void)CSR_READ(sc, TXDONECNT); /* clear TXI_TXDONE */
1543 }
1544
1545 CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX));
1546 }
1547 return 1;
1548 }
1549
1550 static void
1551 txreap(struct scx_softc *sc)
1552 {
1553 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1554 struct scx_txsoft *txs;
1555 uint32_t txstat;
1556 int i;
1557
1558 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1559 i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1560 txs = &sc->sc_txsoft[i];
1561
1562 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1563 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1564
1565 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0);
1566 if (txstat & T0_OWN) /* desc is still in use */
1567 break;
1568
1569 /* There is no way to tell transmission status per frame */
1570
1571 if_statinc(ifp, if_opackets);
1572
1573 sc->sc_txfree += txs->txs_ndesc;
1574 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1575 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1576 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1577 m_freem(txs->txs_mbuf);
1578 txs->txs_mbuf = NULL;
1579 }
1580 sc->sc_txsdirty = i;
1581 if (sc->sc_txsfree == MD_TXQUEUELEN)
1582 ifp->if_timer = 0;
1583 }
1584
1585 static void
1586 rxfill(struct scx_softc *sc)
1587 {
1588 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1589 struct scx_rxsoft *rxs;
1590 struct mbuf *m;
1591 uint32_t rxstat, rlen;
1592 int i;
1593
1594 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1595 SCX_CDRXSYNC(sc, i,
1596 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1597
1598 rxstat = le32toh(sc->sc_rxdescs[i].r0);
1599 if (rxstat & R0_OWN) /* desc is left empty */
1600 break;
1601
1602 /* received frame length in R3 31:16 */
1603 rlen = le32toh(sc->sc_rxdescs[i].r3) >> 16;
1604
1605 /* R0_FS | R0_LS must have been marked for this desc */
1606 rxs = &sc->sc_rxsoft[i];
1607 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1608 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1609
1610 /* dispense new storage to receive frame */
1611 m = rxs->rxs_mbuf;
1612 if (add_rxbuf(sc, i) != 0) {
1613 if_statinc(ifp, if_ierrors); /* resource shortage */
1614 SCX_INIT_RXDESC(sc, i); /* then reuse */
1615 bus_dmamap_sync(sc->sc_dmat,
1616 rxs->rxs_dmamap, 0,
1617 rxs->rxs_dmamap->dm_mapsize,
1618 BUS_DMASYNC_PREREAD);
1619 continue;
1620 }
1621 /* complete mbuf */
1622 m_set_rcvif(m, ifp);
1623 m->m_pkthdr.len = m->m_len = rlen;
1624 m->m_flags |= M_HASFCS;
1625 if (rxstat & R0_CSUM) {
1626 uint32_t csum = M_CSUM_IPv4;
1627 if (rxstat & R0_CERR)
1628 csum |= M_CSUM_IPv4_BAD;
1629 m->m_pkthdr.csum_flags |= csum;
1630 }
1631 /* and pass to upper layer */
1632 if_percpuq_enqueue(ifp->if_percpuq, m);
1633 }
1634 sc->sc_rxptr = i;
1635 }
1636
1637 static int
1638 add_rxbuf(struct scx_softc *sc, int i)
1639 {
1640 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1641 struct mbuf *m;
1642 int error;
1643
1644 MGETHDR(m, M_DONTWAIT, MT_DATA);
1645 if (m == NULL)
1646 return ENOBUFS;
1647 MCLGET(m, M_DONTWAIT);
1648 if ((m->m_flags & M_EXT) == 0) {
1649 m_freem(m);
1650 return ENOBUFS;
1651 }
1652 if (rxs->rxs_mbuf != NULL)
1653 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1654 rxs->rxs_mbuf = m;
1655 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1656 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1657 if (error) {
1658 aprint_error_dev(sc->sc_dev,
1659 "can't load rx DMA map %d, error = %d\n", i, error);
1660 panic("add_rxbuf");
1661 }
1662 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1663 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1664 SCX_INIT_RXDESC(sc, i);
1665
1666 return 0;
1667 }
1668
1669 static void
1670 rxdrain(struct scx_softc *sc)
1671 {
1672 struct scx_rxsoft *rxs;
1673 int i;
1674
1675 for (i = 0; i < MD_NRXDESC; i++) {
1676 rxs = &sc->sc_rxsoft[i];
1677 if (rxs->rxs_mbuf != NULL) {
1678 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1679 m_freem(rxs->rxs_mbuf);
1680 rxs->rxs_mbuf = NULL;
1681 }
1682 }
1683 }
1684
1685 #define LINK_DEBUG 0
1686
1687 static void
1688 mii_statchg(struct ifnet *ifp)
1689 {
1690 struct scx_softc *sc = ifp->if_softc;
1691 struct mii_data *mii = &sc->sc_mii;
1692 const int Mbps[4] = { 10, 100, 1000, 0 };
1693 uint32_t miisr, mcr, fcr;
1694 int spd;
1695
1696 /* decode MIISR register value */
1697 miisr = mac_read(sc, GMACMIISR);
1698 spd = Mbps[(miisr & MIISR_SPD) >> 1];
1699 #if LINK_DEBUG == 1
1700 static uint32_t oldmiisr = 0;
1701 if (miisr != oldmiisr) {
1702 printf("MII link status (0x%x) %s",
1703 miisr, (miisr & MIISR_LUP) ? "up" : "down");
1704 if (miisr & MIISR_LUP) {
1705 printf(" spd%d", spd);
1706 if (miisr & MIISR_FDX)
1707 printf(",full-duplex");
1708 }
1709 printf("\n");
1710 }
1711 #endif
1712 /* Get flow control negotiation result. */
1713 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1714 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1715 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1716
1717 /* Adjust speed 1000/100/10. */
1718 mcr = mac_read(sc, GMACMCR) &~ (MCR_PS | MCR_FES);
1719 if (sc->sc_miigmii) {
1720 if (spd != 1000)
1721 mcr |= MCR_PS;
1722 } else {
1723 if (spd == 100)
1724 mcr |= MCR_FES;
1725 }
1726 mcr |= MCR_CST | MCR_JE;
1727 if (sc->sc_miigmii == 0)
1728 mcr |= MCR_IBN;
1729
1730 /* Adjust duplexity and PAUSE flow control. */
1731 mcr &= ~MCR_USEFDX;
1732 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1733 if (miisr & MIISR_FDX) {
1734 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1735 fcr |= FCR_TFE;
1736 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1737 fcr |= FCR_RFE;
1738 mcr |= MCR_USEFDX;
1739 }
1740 mac_write(sc, GMACMCR, mcr);
1741 mac_write(sc, GMACFCR, fcr);
1742 #if LINK_DEBUG == 1
1743 if (miisr != oldmiisr) {
1744 printf("%ctxfe, %crxfe\n",
1745 (fcr & FCR_TFE) ? '+' : '-',
1746 (fcr & FCR_RFE) ? '+' : '-');
1747 }
1748 oldmiisr = miisr;
1749 #endif
1750 }
1751
1752 static void
1753 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1754 {
1755 struct scx_softc *sc = ifp->if_softc;
1756 struct mii_data *mii = &sc->sc_mii;
1757
1758 mii_pollstat(mii);
1759 ifmr->ifm_status = mii->mii_media_status;
1760 ifmr->ifm_active = sc->sc_flowflags |
1761 (mii->mii_media_active & ~IFM_ETH_FMASK);
1762 }
1763
1764 static int
1765 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1766 {
1767 struct scx_softc *sc = device_private(self);
1768 uint32_t miia;
1769 int ntries;
1770
1771 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1772 mac_write(sc, GMACGAR, miia | GAR_BUSY);
1773 for (ntries = 0; ntries < 1000; ntries++) {
1774 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1775 goto unbusy;
1776 DELAY(1);
1777 }
1778 return ETIMEDOUT;
1779 unbusy:
1780 *val = mac_read(sc, GMACGDR);
1781 return 0;
1782 }
1783
1784 static int
1785 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1786 {
1787 struct scx_softc *sc = device_private(self);
1788 uint32_t miia;
1789 uint16_t dummy;
1790 int ntries;
1791
1792 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1793 mac_write(sc, GMACGDR, val);
1794 mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1795 for (ntries = 0; ntries < 1000; ntries++) {
1796 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1797 goto unbusy;
1798 DELAY(1);
1799 }
1800 return ETIMEDOUT;
1801 unbusy:
1802 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1803 return 0;
1804 }
1805
1806 static void
1807 phy_tick(void *arg)
1808 {
1809 struct scx_softc *sc = arg;
1810 struct mii_data *mii = &sc->sc_mii;
1811 int s;
1812
1813 s = splnet();
1814 mii_tick(mii);
1815 splx(s);
1816 #ifdef GMAC_EVENT_COUNTERS
1817 /* 80 event counters exist */
1818 #endif
1819 callout_schedule(&sc->sc_callout, hz);
1820 }
1821
1822 static void
1823 resetuengine(struct scx_softc *sc)
1824 {
1825
1826 if (CSR_READ(sc, CORESTAT) == 0) {
1827 /* make sure to stop */
1828 CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
1829 CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
1830 WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP);
1831 WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP);
1832 }
1833 CSR_WRITE(sc, SWRESET, 0); /* reset operation */
1834 CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */
1835 CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1836 WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS));
1837 }
1838
1839 #define UCODE_DEBUG 0
1840
1841 /*
1842 * 3 independent uengines exist to process host2media, media2host and
1843 * packet data flows.
1844 */
1845 static void
1846 loaducode(struct scx_softc *sc)
1847 {
1848 uint32_t up, lo, sz;
1849 uint64_t addr;
1850 int err;
1851
1852 CSR_WRITE(sc, xINTSR, IRQ_UCODE);
1853
1854 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1855 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1856 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1857 sz *= 4;
1858 addr = ((uint64_t)up << 32) | lo;
1859 injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
1860 #if UCODE_DEBUG == 1
1861 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1862 #endif
1863
1864 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1865 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1866 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1867 sz *= 4;
1868 addr = ((uint64_t)up << 32) | lo;
1869 injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
1870 #if UCODE_DEBUG == 1
1871 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1872 #endif
1873
1874 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1875 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1876 sz *= 4;
1877 injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
1878 #if UCODE_DEBUG == 1
1879 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1880 #endif
1881
1882 CSR_WRITE(sc, CORESTAT, 0);
1883 err = WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE);
1884 if (err) {
1885 aprint_error_dev(sc->sc_dev, "uengine start failed\n");
1886 }
1887 CSR_WRITE(sc, xINTSR, IRQ_UCODE);
1888 }
1889
1890 static void
1891 injectucode(struct scx_softc *sc, int port,
1892 bus_addr_t addr, bus_size_t size)
1893 {
1894 bus_space_handle_t bsh;
1895 bus_size_t off;
1896 uint32_t ucode;
1897
1898 if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1899 aprint_error_dev(sc->sc_dev,
1900 "eeprom map failure for ucode port 0x%x\n", port);
1901 return;
1902 }
1903 for (off = 0; off < size; off += 4) {
1904 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1905 CSR_WRITE(sc, port, ucode);
1906 }
1907 bus_space_unmap(sc->sc_st, bsh, size);
1908 }
1909
1910 /* GAR 5:2 MDIO frequency selection */
1911 static int
1912 get_mdioclk(uint32_t freq)
1913 {
1914
1915 freq /= 1000 * 1000;
1916 if (freq < 35)
1917 return GAR_MDIO_25_35MHZ;
1918 if (freq < 60)
1919 return GAR_MDIO_35_60MHZ;
1920 if (freq < 100)
1921 return GAR_MDIO_60_100MHZ;
1922 if (freq < 150)
1923 return GAR_MDIO_100_150MHZ;
1924 if (freq < 250)
1925 return GAR_MDIO_150_250MHZ;
1926 return GAR_MDIO_250_300MHZ;
1927 }
1928
1929 #define HWFEA_DEBUG 1
1930
1931 static void
1932 dump_hwfeature(struct scx_softc *sc)
1933 {
1934 #if HWFEA_DEBUG == 1
1935 struct {
1936 uint32_t bit;
1937 const char *des;
1938 } field[] = {
1939 { 27, "SA/VLAN insertion replacement enabled" },
1940 { 26, "flexible PPS enabled" },
1941 { 25, "time stamping with internal system enabled" },
1942 { 24, "alternate/enhanced descriptor enabled" },
1943 { 19, "rx FIFO >2048 enabled" },
1944 { 18, "type 2 IP checksum offload enabled" },
1945 { 17, "type 1 IP checksum offload enabled" },
1946 { 16, "Tx checksum offload enabled" },
1947 { 15, "AV feature enabled" },
1948 { 14, "EEE energy save feature enabled" },
1949 { 13, "1588-2008 version 2 advanced feature enabled" },
1950 { 12, "only 1588-2002 version 1 feature enabled" },
1951 { 11, "RMON event counter enabled" },
1952 { 10, "PMT magic packet enabled" },
1953 { 9, "PMT remote wakeup enabled" },
1954 { 8, "MDIO enabled", },
1955 { 7, "L3/L4 filter enabled" },
1956 { 6, "TBI/SGMII/RTBI support enabled" },
1957 { 5, "supplimental MAC address enabled" },
1958 { 4, "receive hash filter enabled" },
1959 { 3, "hash size is expanded" },
1960 { 2, "Half Duplex enabled" },
1961 { 1, "1000 Mbps enabled" },
1962 { 0, "10/100 Mbps enabled" },
1963 };
1964 const char *nameofmii[] = {
1965 "GMII or MII",
1966 "RGMII",
1967 "SGMII",
1968 "TBI",
1969 "RMII",
1970 "RTBI",
1971 "SMII",
1972 "RevMII"
1973 };
1974 uint32_t hwfea, mtype, txchan, rxchan;
1975
1976 hwfea = CSR_READ(sc, HWFEA);
1977 mtype = (hwfea & __BITS(30,28)) >> 28;
1978 aprint_normal("HWFEA 0x%08x\n", hwfea);
1979 aprint_normal("%s <30:28>\n", nameofmii[mtype]);
1980 for (unsigned i = 0; i < __arraycount(field); i++) {
1981 if ((hwfea & (1U << field[i].bit)) == 0)
1982 continue;
1983 aprint_normal("%s <%d>\n", field[i].des, field[i].bit);
1984 }
1985 if ((txchan = (hwfea & __BITS(23,22)) >> 22) != 0)
1986 aprint_normal("+%d tx channel available <23,22>\n", txchan);
1987 if ((rxchan = (hwfea & __BITS(21,20)) >> 20) != 0)
1988 aprint_normal("+%d rx channel available <21:20>\n", rxchan);
1989 return;
1990 #endif
1991 }
1992