if_scx.c revision 1.6 1 /* $NetBSD: if_scx.c,v 1.6 2020/03/23 07:42:00 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #define NOT_MP_SAFE 0
33
34 /*
35 * Socionext SC2A11 SynQuacer NetSec GbE driver
36 *
37 * (possibly incorrect notes to be removed eventually)
38 * - 32 byte descriptor for 64 bit paddr design.
39 * - multiple rings seems available. There are special descriptor fields
40 * to designify ring number from which to arrive or to which go.
41 * - memory mapped EEPROM to hold MAC address. The rest of the area is
42 * occupied by a set of ucode for two DMA engines and one packet engine.
43 * - The size of frame address filter is unknown. Might be 32
44 * - The first slot is my own station address. Always enabled to perform
45 * to identify oneself.
46 * - 1~31 are for supplimental MAC addresses. Independently enabled
47 * for use. Good to catch multicast. Byte-wise selective match available.
48 * Use to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
49 * - The size of multicast hash filter store is unknown. Might be 256 bit.
50 */
51
52 #include <sys/cdefs.h>
53 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.6 2020/03/23 07:42:00 nisimura Exp $");
54
55 #include <sys/param.h>
56 #include <sys/bus.h>
57 #include <sys/intr.h>
58 #include <sys/device.h>
59 #include <sys/callout.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63 #include <sys/rndsource.h>
64 #include <sys/kernel.h>
65 #include <sys/systm.h>
66
67 #include <net/if.h>
68 #include <net/if_media.h>
69 #include <net/if_dl.h>
70 #include <net/if_ether.h>
71 #include <dev/mii/mii.h>
72 #include <dev/mii/miivar.h>
73 #include <net/bpf.h>
74
75 #include <dev/fdt/fdtvar.h>
76 #include <dev/acpi/acpireg.h>
77 #include <dev/acpi/acpivar.h>
78 #include <dev/acpi/acpi_intr.h>
79
80 #define SWRESET 0x104
81 #define COMINIT 0x120
82 #define INTRST 0x200
83 #define IRQ_RX (1U<<1)
84 #define IRQ_TX (1U<<0)
85 #define INTREN 0x204
86 #define INTR_SET 0x234
87 #define INTR_CLR 0x238
88 #define TXINTST 0x400
89 #define TXINTEN 0x404
90 #define TXINT_SET 0x428
91 #define TXINT_CLR 0x42c
92 #define TXI_NTOWNR (1U<<17)
93 #define TXI_TR_ERR (1U<<16)
94 #define TXI_TXDONE (1U<<15)
95 #define TXI_TMREXP (1U<<14)
96 #define RXINTST 0x440
97 #define RXINTEN 0x444
98 #define RXINT_SET 0x468
99 #define RXINT_CLR 0x46c
100 #define RXI_RC_ERR (1U<<16)
101 #define RXI_PKTCNT (1U<<15)
102 #define RXI_TMREXP (1U<<14)
103 #define TXTIMER 0x41c
104 #define RXTIMER 0x45c
105 #define TXCOUNT 0x410
106 #define RXCOUNT 0x454
107 #define H2MENG 0x210 /* DMAC host2media ucode port */
108 #define M2HENG 0x21c /* DMAC media2host ucode port */
109 #define PKTENG 0x0d0 /* packet engine ucode port */
110 #define HWVER0 0x22c
111 #define HWVER1 0x230
112
113 #define MACSTAT 0x1024 /* gmac status */
114 #define MACDATA 0x11c0 /* gmac rd/wr data */
115 #define MACCMD 0x11c4 /* gmac operation */
116 #define CMD_IOWR (1U<<28) /* write op */
117 #define CMD_BUSY (1U<<31) /* busy bit */
118 #define DESCENG_INIT 0x11fc
119 #define DESCENG_SRST 0x1204
120
121 #define GMACMCR 0x0000 /* MAC configuration */
122 #define MCR_IBN (1U<<30) /* */
123 #define MCR_CST (1U<<25) /* strip CRC */
124 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
125 #define MCR_JE (1U<<20) /* ignore oversized >9018 condition */
126 #define MCR_USEMII (1U<<15) /* 1: RMII/MII, 0: RGMII */
127 #define MCR_SPD100 (1U<<14) /* force speed 100 */
128 #define MCR_USEFDX (1U<<11) /* force full duplex */
129 #define MCR_IPCKEN (1U<<10) /* handle checksum */
130 #define MCR_ACS (1U<<7) /* auto pad strip CRC */
131 #define MCR_TXE (1U<<3) /* start Tx DMA engine */
132 #define MCR_RXE (1U<<2) /* start Rx DMA engine */
133 #define _MCR_FDX 0x0000280c /* XXX TBD */
134 #define _MCR_HDX 0x0001a00c /* XXX TBD */
135 #define GMACAFR 0x0004 /* frame DA/SA address filter */
136 #define AFR_RA (1U<<31) /* receive block all on */
137 #define AFR_HPF (1U<<10) /* activate hash or perfect filter */
138 #define AFR_SAF (1U<<9) /* source address filter */
139 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
140 #define AFR_PCF (3U<<6) /* */
141 #define AFR_RB (1U<<5) /* reject broadcast frame */
142 #define AFR_AM (1U<<4) /* accept all multicast frame */
143 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
144 #define AFR_MHTE (1U<<2) /* use multicast hash table */
145 #define AFR_UHTE (1U<<1) /* use additional MAC addresses */
146 #define AFR_PM (1U<<0) /* run promisc mode */
147 #define _AFR 0x80000001 /* XXX TBD */
148 #define GMACMHTH 0x0008 /* XXX multicast hash table 63:32 */
149 #define GMACMHTL 0x000c /* XXX multicast hash table 31:0 */
150 #define GMACGAR 0x0010 /* MDIO operation */
151 #define GAR_PHY (11) /* mii phy 15:11 */
152 #define GAR_REG (6) /* mii reg 10:6 */
153 #define GAR_CTL (2) /* control 5:2 */
154 #define GAR_IOWR (1U<<1) /* MDIO write op */
155 #define GAR_BUSY (1U) /* busy bit */
156 #define GMACGDR 0x0014 /* MDIO rd/wr data */
157 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
158 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
159 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
160 #define GMACIMPL 0x0020 /* implementation number XXXX.YYYY */
161 #define GMACVTAG 0x001c /* VLAN tag control */
162 #define GMACMAH0 0x0040 /* MAC address 0 47:32 */
163 #define GMACMAL0 0x0044 /* MAC address 0 31:0 */
164 #define GMACMAH(i) ((i)*8+0x40) /* supplimental MAC addr 1 - 15 */
165 #define GMACMAL(i) ((i)*8+0x44)
166 #define GMACMHT0 0x0500 /* multicast hash table 0 - 8*/
167
168 #define GMACBMR 0x1000 /* DMA bus mode control
169 * 24 4PBL
170 * 22:17 RPBL
171 * 16 fix burst
172 * 15:14 priority between Rx and Tx
173 * 3 rxtx41
174 * 2 rxtx31
175 * 1 rxtx21
176 * 0 rxtx11
177 * 13:8 PBL possible DMA burst len
178 * 0 reset op. self clear
179 */
180 #define _BMR 0x00412080 /* XXX TBD */
181 #define _BMR0 0x00020181 /* XXX TBD */
182 #define BMR_RST (1U<<0) /* reset op. self clear when done */
183 #define GMACRDLAR 0x100c /* */
184 #define _RDLAR 0x18000 /* XXX TBD */
185 #define GMACTDLAR 0x1010 /* */
186 #define _TDLAR 0x1c000 /* XXX TBD */
187 #define GMACOMR 0x1018 /* DMA operation */
188 #define OMR_TXE (1U<<13) /* start Tx DMA engine, 0 to stop */
189 #define OMR_RXE (1U<<1) /* start Rx DMA engine, 0 to stop */
190
191 static int get_garclk(uint32_t);
192
193 /* descriptor format definition */
194 struct tdes {
195 uint32_t t0, t1, t2, t3;
196 };
197
198 struct rdes {
199 uint32_t r0, r1, r2, r3;
200 };
201
202 #define T0_OWN (1U<<31) /* desc is ready to Tx */
203 #define T0_EOD (1U<<30) /* end of descriptor array */
204 #define T0_DRID (24) /* 29:24 D-RID */
205 #define T0_PT (1U<<21) /* 23:21 PT */
206 #define T0_TRID (16) /* 20:16 T-RID */
207 #define T0_FS (1U<<9) /* first segment of frame */
208 #define T0_LS (1U<<8) /* last segment of frame */
209 #define T0_CSUM (1U<<7) /* enable check sum offload */
210 #define T0_SGOL (1U<<6) /* enable TCP segment offload */
211 #define T0_TRS (1U<<4) /* 5:4 TRS */
212 #define T0_IOC (0) /* XXX TBD interrupt when completed */
213 /* T1 segment address 63:32 */
214 /* T2 segment address 31:0 */
215 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
216 #define R0_OWN (1U<<31) /* desc is empty */
217 #define R0_EOD (1U<<30) /* end of descriptor array */
218 #define R0_SRID (24) /* 29:24 S-RID */
219 #define R0_FR (1U<<23) /* FR */
220 #define R0_ER (1U<<21) /* Rx error indication */
221 #define R0_ERR (3U<<16) /* 18:16 receive error code */
222 #define R0_TDRID (14) /* 15:14 TD-RID */
223 #define R0_FS (1U<<9) /* first segment of frame */
224 #define R0_LS (1U<<8) /* last segment of frame */
225 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
226 #define R0_CERR (2U<<6) /* 0 (undone), 1 (found ok), 2 (bad) */
227 /* R1 frame address 63:32 */
228 /* R2 frame address 31:0 */
229 /* R3 31:16 received frame length, 15:0 buffer length to receive */
230
231 #define MD_NTXSEGS 16 /* fixed */
232 #define MD_TXQUEUELEN 16 /* tunable */
233 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1)
234 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4)
235 #define MD_NTXDESC (MD_TXQUEUELEN * MD_NTXSEGS)
236 #define MD_NTXDESC_MASK (MD_NTXDESC - 1)
237 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK)
238 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK)
239
240 #define MD_NRXDESC 64 /* tunable */
241 #define MD_NRXDESC_MASK (MD_NRXDESC - 1)
242 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK)
243
244 #define SCX_INIT_RXDESC(sc, x) \
245 do { \
246 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
247 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
248 struct mbuf *__m = __rxs->rxs_mbuf; \
249 bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr; \
250 __m->m_data = __m->m_ext.ext_buf; \
251 __rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len; \
252 __rxd->r2 = htole32(BUS_ADDR_LO32(__paddr)); \
253 __rxd->r1 = htole32(BUS_ADDR_HI32(__paddr)); \
254 __rxd->r0 = R0_OWN | R0_FS | R0_LS; \
255 if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD; \
256 } while (/*CONSTCOND*/0)
257
258 struct control_data {
259 struct tdes cd_txdescs[MD_NTXDESC];
260 struct rdes cd_rxdescs[MD_NRXDESC];
261 };
262 #define SCX_CDOFF(x) offsetof(struct control_data, x)
263 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
264 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
265
266 struct scx_txsoft {
267 struct mbuf *txs_mbuf; /* head of our mbuf chain */
268 bus_dmamap_t txs_dmamap; /* our DMA map */
269 int txs_firstdesc; /* first descriptor in packet */
270 int txs_lastdesc; /* last descriptor in packet */
271 int txs_ndesc; /* # of descriptors used */
272 };
273
274 struct scx_rxsoft {
275 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
276 bus_dmamap_t rxs_dmamap; /* our DMA map */
277 };
278
279 struct scx_softc {
280 device_t sc_dev; /* generic device information */
281 bus_space_tag_t sc_st; /* bus space tag */
282 bus_space_handle_t sc_sh; /* bus space handle */
283 bus_size_t sc_sz; /* csr map size */
284 bus_space_handle_t sc_eesh; /* eeprom section handle */
285 bus_size_t sc_eesz; /* eeprom map size */
286 bus_dma_tag_t sc_dmat; /* bus DMA tag */
287 struct ethercom sc_ethercom; /* Ethernet common data */
288 struct mii_data sc_mii; /* MII */
289 callout_t sc_tick_ch; /* PHY monitor callout */
290 bus_dma_segment_t sc_seg; /* descriptor store seg */
291 int sc_nseg; /* descriptor store nseg */
292 void *sc_ih; /* interrupt cookie */
293 int sc_phy_id; /* PHY address */
294 int sc_flowflags; /* 802.3x PAUSE flow control */
295 uint32_t sc_gar; /* GAR 5:2 clock selection */
296 uint32_t sc_t0coso; /* T0_CSUM | T0_SGOL to run */
297 int sc_ucodeloaded; /* ucode for H2M/M2H/PKT */
298 int sc_100mii; /* 1<<15 RMII/MII, 0 for RGMII */
299 int sc_phandle; /* fdt phandle */
300
301 bus_dmamap_t sc_cddmamap; /* control data DMA map */
302 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
303
304 struct control_data *sc_control_data;
305 #define sc_txdescs sc_control_data->cd_txdescs
306 #define sc_rxdescs sc_control_data->cd_rxdescs
307
308 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
309 struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
310 int sc_txfree; /* number of free Tx descriptors */
311 int sc_txnext; /* next ready Tx descriptor */
312 int sc_txsfree; /* number of free Tx jobs */
313 int sc_txsnext; /* next ready Tx job */
314 int sc_txsdirty; /* dirty Tx jobs */
315 int sc_rxptr; /* next ready Rx descriptor/descsoft */
316
317 krndsource_t rnd_source; /* random source */
318 };
319
320 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
321 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
322
323 #define SCX_CDTXSYNC(sc, x, n, ops) \
324 do { \
325 int __x, __n; \
326 \
327 __x = (x); \
328 __n = (n); \
329 \
330 /* If it will wrap around, sync to the end of the ring. */ \
331 if ((__x + __n) > MD_NTXDESC) { \
332 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
333 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
334 (MD_NTXDESC - __x), (ops)); \
335 __n -= (MD_NTXDESC - __x); \
336 __x = 0; \
337 } \
338 \
339 /* Now sync whatever is left. */ \
340 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
341 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
342 } while (/*CONSTCOND*/0)
343
344 #define SCX_CDRXSYNC(sc, x, ops) \
345 do { \
346 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
347 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
348 } while (/*CONSTCOND*/0)
349
350 static int scx_fdt_match(device_t, cfdata_t, void *);
351 static void scx_fdt_attach(device_t, device_t, void *);
352 static int scx_acpi_match(device_t, cfdata_t, void *);
353 static void scx_acpi_attach(device_t, device_t, void *);
354
355 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
356 scx_fdt_match, scx_fdt_attach, NULL, NULL);
357
358 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
359 scx_acpi_match, scx_acpi_attach, NULL, NULL);
360
361 static void scx_attach_i(struct scx_softc *);
362 static void scx_reset(struct scx_softc *);
363 static int scx_init(struct ifnet *);
364 static void scx_start(struct ifnet *);
365 static void scx_stop(struct ifnet *, int);
366 static void scx_watchdog(struct ifnet *);
367 static int scx_ioctl(struct ifnet *, u_long, void *);
368 static void scx_set_rcvfilt(struct scx_softc *);
369 static int scx_ifmedia_upd(struct ifnet *);
370 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
371 static void mii_statchg(struct ifnet *);
372 static void phy_tick(void *);
373 static int mii_readreg(device_t, int, int, uint16_t *);
374 static int mii_writereg(device_t, int, int, uint16_t);
375 static int scx_intr(void *);
376 static void txreap(struct scx_softc *);
377 static void rxintr(struct scx_softc *);
378 static int add_rxbuf(struct scx_softc *, int);
379 static int spin_waitfor(struct scx_softc *, int, int);
380 static int mac_read(struct scx_softc *, int);
381 static void mac_write(struct scx_softc *, int, int);
382 static void loaducode(struct scx_softc *);
383 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
384
385 #define CSR_READ(sc,off) \
386 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
387 #define CSR_WRITE(sc,off,val) \
388 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
389 #define EE_READ(sc,off) \
390 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
391
392 static int
393 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
394 {
395 static const char * compatible[] = {
396 "socionext,synquacer-netsec",
397 NULL
398 };
399 struct fdt_attach_args * const faa = aux;
400
401 return of_match_compatible(faa->faa_phandle, compatible);
402 }
403
404 static void
405 scx_fdt_attach(device_t parent, device_t self, void *aux)
406 {
407 struct scx_softc * const sc = device_private(self);
408 struct fdt_attach_args * const faa = aux;
409 const int phandle = faa->faa_phandle;
410 bus_space_tag_t bst = faa->faa_bst;
411 bus_space_handle_t bsh;
412 bus_space_handle_t eebsh;
413 bus_addr_t addr[2];
414 bus_size_t size[2];
415 char intrstr[128];
416 const char *phy_mode;
417
418 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
419 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
420 aprint_error(": unable to map device csr\n");
421 return;
422 }
423 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
424 aprint_error(": failed to decode interrupt\n");
425 goto fail;
426 }
427 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
428 NOT_MP_SAFE, scx_intr, sc);
429 if (sc->sc_ih == NULL) {
430 aprint_error_dev(self, "couldn't establish interrupt\n");
431 goto fail;
432 }
433 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
434 || bus_space_map(faa->faa_bst, addr[0], size[1], 0, &eebsh) != 0) {
435 aprint_error(": unable to map device eeprom\n");
436 goto fail;
437 }
438
439 phy_mode = fdtbus_get_string(phandle, "phy-mode");
440 if (phy_mode == NULL) {
441 aprint_error(": missing 'phy-mode' property\n");
442 phy_mode = "rgmii";
443 }
444
445 aprint_naive("\n");
446 aprint_normal(": Gigabit Ethernet Controller\n");
447 aprint_normal_dev(self, "interrupt on %s\n", intrstr);
448
449 sc->sc_dev = self;
450 sc->sc_st = bst;
451 sc->sc_sh = bsh;
452 sc->sc_sz = size[0];
453 sc->sc_eesh = eebsh;
454 sc->sc_eesz = size[1];
455 sc->sc_dmat = faa->faa_dmat;
456 sc->sc_phandle = phandle;
457 sc->sc_100mii = (strcmp(phy_mode, "rgmii") != 0) ? MCR_USEMII : 0;
458
459 scx_attach_i(sc);
460 return;
461 fail:
462 if (sc->sc_eesz)
463 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
464 if (sc->sc_sz)
465 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
466 return;
467 }
468
469 static int
470 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
471 {
472 static const char * compatible[] = {
473 "SCX0001",
474 NULL
475 };
476 struct acpi_attach_args *aa = aux;
477
478 if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
479 return 0;
480 return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
481 }
482
483 static void
484 scx_acpi_attach(device_t parent, device_t self, void *aux)
485 {
486 struct scx_softc * const sc = device_private(self);
487 struct acpi_attach_args * const aa = aux;
488 ACPI_HANDLE handle = aa->aa_node->ad_handle;
489 bus_space_tag_t bst = aa->aa_memt;
490 bus_space_handle_t bsh, eebsh;
491 struct acpi_resources res;
492 struct acpi_mem *mem;
493 struct acpi_irq *irq;
494 ACPI_STATUS rv;
495
496 rv = acpi_resource_parse(self, handle, "_CRS",
497 &res, &acpi_resource_parse_ops_default);
498 if (ACPI_FAILURE(rv))
499 return;
500 mem = acpi_res_mem(&res, 0);
501 irq = acpi_res_irq(&res, 0);
502 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
503 aprint_error(": incomplete csr resources\n");
504 return;
505 }
506 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
507 aprint_error(": couldn't map registers\n");
508 return;
509 }
510 sc->sc_sz = mem->ar_length;
511 sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
512 NOT_MP_SAFE, scx_intr, sc, device_xname(self));
513 if (sc->sc_ih == NULL) {
514 aprint_error_dev(self, "couldn't establish interrupt\n");
515 goto fail;
516 }
517 mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
518 if (mem == NULL || mem->ar_length == 0) {
519 aprint_error(": incomplete eeprom resources\n");
520 goto fail;
521 }
522 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
523 aprint_error(": couldn't map registers\n");
524 goto fail;
525 }
526 sc->sc_eesz = mem->ar_length;
527
528 aprint_naive("\n");
529 aprint_normal(": Gigabit Ethernet Controller\n");
530
531 sc->sc_dev = self;
532 sc->sc_st = bst;
533 sc->sc_sh = bsh;
534 sc->sc_eesh = eebsh;
535 sc->sc_dmat = aa->aa_dmat64;
536
537 scx_attach_i(sc);
538
539 acpi_resource_cleanup(&res);
540 return;
541 fail:
542 if (sc->sc_eesz > 0)
543 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
544 if (sc->sc_sz > 0)
545 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
546 acpi_resource_cleanup(&res);
547 return;
548 }
549
550 static void
551 scx_attach_i(struct scx_softc *sc)
552 {
553 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
554 struct mii_data * const mii = &sc->sc_mii;
555 struct ifmedia * const ifm = &mii->mii_media;
556 uint32_t hwver, phyfreq;
557 uint8_t enaddr[ETHER_ADDR_LEN];
558 bus_dma_segment_t seg;
559 uint32_t csr;
560 int i, nseg, error = 0;
561
562 hwver = CSR_READ(sc, HWVER1);
563 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
564 enaddr[0] = csr >> 24;
565 enaddr[1] = csr >> 16;
566 enaddr[2] = csr >> 8;
567 enaddr[3] = csr;
568 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
569 enaddr[4] = csr >> 24;
570 enaddr[5] = csr >> 16;
571 csr = CSR_READ(sc, GMACIMPL);
572
573 aprint_normal_dev(sc->sc_dev, "NetSec GbE (%d.%d) impl (%x.%x)\n",
574 hwver >> 16, hwver & 0xffff, csr >> 16, csr & 0xffff);
575 aprint_normal_dev(sc->sc_dev,
576 "Ethernet address %s\n", ether_sprintf(enaddr));
577
578 phyfreq = 0;
579 sc->sc_phy_id = MII_PHY_ANY;
580 sc->sc_gar = get_garclk(phyfreq) << GAR_CTL; /* 5:2 gar control */
581
582 sc->sc_flowflags = 0;
583
584 if (sc->sc_ucodeloaded == 0)
585 loaducode(sc);
586
587 mii->mii_ifp = ifp;
588 mii->mii_readreg = mii_readreg;
589 mii->mii_writereg = mii_writereg;
590 mii->mii_statchg = mii_statchg;
591
592 sc->sc_ethercom.ec_mii = mii;
593 ifmedia_init(ifm, 0, scx_ifmedia_upd, scx_ifmedia_sts);
594 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
595 MII_OFFSET_ANY, MIIF_DOPAUSE);
596 if (LIST_FIRST(&mii->mii_phys) == NULL) {
597 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
598 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
599 } else
600 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
601 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
602
603 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
604 ifp->if_softc = sc;
605 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
606 ifp->if_ioctl = scx_ioctl;
607 ifp->if_start = scx_start;
608 ifp->if_watchdog = scx_watchdog;
609 ifp->if_init = scx_init;
610 ifp->if_stop = scx_stop;
611 IFQ_SET_READY(&ifp->if_snd);
612
613 if_attach(ifp);
614 if_deferred_start_init(ifp, NULL);
615 ether_ifattach(ifp, enaddr);
616
617 callout_init(&sc->sc_tick_ch, 0);
618 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
619
620 /*
621 * Allocate the control data structures, and create and load the
622 * DMA map for it.
623 */
624 error = bus_dmamem_alloc(sc->sc_dmat,
625 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
626 if (error != 0) {
627 aprint_error_dev(sc->sc_dev,
628 "unable to allocate control data, error = %d\n", error);
629 goto fail_0;
630 }
631 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
632 sizeof(struct control_data), (void **)&sc->sc_control_data,
633 BUS_DMA_COHERENT);
634 if (error != 0) {
635 aprint_error_dev(sc->sc_dev,
636 "unable to map control data, error = %d\n", error);
637 goto fail_1;
638 }
639 error = bus_dmamap_create(sc->sc_dmat,
640 sizeof(struct control_data), 1,
641 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
642 if (error != 0) {
643 aprint_error_dev(sc->sc_dev,
644 "unable to create control data DMA map, "
645 "error = %d\n", error);
646 goto fail_2;
647 }
648 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
649 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
650 if (error != 0) {
651 aprint_error_dev(sc->sc_dev,
652 "unable to load control data DMA map, error = %d\n",
653 error);
654 goto fail_3;
655 }
656 for (i = 0; i < MD_TXQUEUELEN; i++) {
657 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
658 MD_NTXSEGS, MCLBYTES, 0, 0,
659 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
660 aprint_error_dev(sc->sc_dev,
661 "unable to create tx DMA map %d, error = %d\n",
662 i, error);
663 goto fail_4;
664 }
665 }
666 for (i = 0; i < MD_NRXDESC; i++) {
667 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
668 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
669 aprint_error_dev(sc->sc_dev,
670 "unable to create rx DMA map %d, error = %d\n",
671 i, error);
672 goto fail_5;
673 }
674 sc->sc_rxsoft[i].rxs_mbuf = NULL;
675 }
676 sc->sc_seg = seg;
677 sc->sc_nseg = nseg;
678 printf("bus_dmaseg ds_addr %08lx, ds_len %08lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
679
680 if (pmf_device_register(sc->sc_dev, NULL, NULL))
681 pmf_class_network_register(sc->sc_dev, ifp);
682 else
683 aprint_error_dev(sc->sc_dev,
684 "couldn't establish power handler\n");
685
686 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
687 RND_TYPE_NET, RND_FLAG_DEFAULT);
688
689 return;
690
691 fail_5:
692 for (i = 0; i < MD_NRXDESC; i++) {
693 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
694 bus_dmamap_destroy(sc->sc_dmat,
695 sc->sc_rxsoft[i].rxs_dmamap);
696 }
697 fail_4:
698 for (i = 0; i < MD_TXQUEUELEN; i++) {
699 if (sc->sc_txsoft[i].txs_dmamap != NULL)
700 bus_dmamap_destroy(sc->sc_dmat,
701 sc->sc_txsoft[i].txs_dmamap);
702 }
703 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
704 fail_3:
705 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
706 fail_2:
707 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
708 sizeof(struct control_data));
709 fail_1:
710 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
711 fail_0:
712 if (sc->sc_phandle)
713 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
714 else
715 acpi_intr_disestablish(sc->sc_ih);
716 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
717 return;
718 }
719
720 static void
721 scx_reset(struct scx_softc *sc)
722 {
723
724 mac_write(sc, GMACBMR, BMR_RST); /* may take for a while */
725 (void)spin_waitfor(sc, GMACBMR, BMR_RST);
726
727 CSR_WRITE(sc, DESCENG_SRST, 1);
728 CSR_WRITE(sc, DESCENG_INIT, 1);
729 mac_write(sc, GMACBMR, _BMR);
730 mac_write(sc, GMACRDLAR, _RDLAR);
731 mac_write(sc, GMACTDLAR, _TDLAR);
732 mac_write(sc, GMACAFR, _AFR);
733 }
734
735 static int
736 scx_init(struct ifnet *ifp)
737 {
738 struct scx_softc *sc = ifp->if_softc;
739 const uint8_t *ea = CLLADDR(ifp->if_sadl);
740 uint32_t csr;
741 int i;
742
743 /* Cancel pending I/O. */
744 scx_stop(ifp, 0);
745
746 /* Reset the chip to a known state. */
747 scx_reset(sc);
748
749 /* build sane Tx and load Rx descriptors with mbuf */
750 for (i = 0; i < MD_NTXDESC; i++)
751 sc->sc_txdescs[i].t0 = T0_OWN;
752 sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
753 for (i = 0; i < MD_NRXDESC; i++)
754 (void)add_rxbuf(sc, i);
755
756 /* set my address in perfect match slot 0 */
757 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
758 CSR_WRITE(sc, GMACMAL0, csr);
759 csr = (ea[5] << 8) | ea[4];
760 CSR_WRITE(sc, GMACMAH0, csr | 1U<<31); /* always valid? */
761
762 /* accept multicast frame or run promisc mode */
763 scx_set_rcvfilt(sc);
764
765 (void)scx_ifmedia_upd(ifp);
766
767 /* kick to start GMAC engine */
768 csr = mac_read(sc, GMACOMR);
769 CSR_WRITE(sc, RXINT_CLR, ~0);
770 CSR_WRITE(sc, TXINT_CLR, ~0);
771 mac_write(sc, GMACOMR, csr | OMR_RXE | OMR_TXE);
772
773 ifp->if_flags |= IFF_RUNNING;
774 ifp->if_flags &= ~IFF_OACTIVE;
775
776 /* start one second timer */
777 callout_schedule(&sc->sc_tick_ch, hz);
778
779 return 0;
780 }
781
782 static void
783 scx_stop(struct ifnet *ifp, int disable)
784 {
785 struct scx_softc *sc = ifp->if_softc;
786
787 /* Stop the one second clock. */
788 callout_stop(&sc->sc_tick_ch);
789
790 /* Down the MII. */
791 mii_down(&sc->sc_mii);
792
793 /* Mark the interface down and cancel the watchdog timer. */
794 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
795 ifp->if_timer = 0;
796 }
797
798 static void
799 scx_watchdog(struct ifnet *ifp)
800 {
801 struct scx_softc *sc = ifp->if_softc;
802
803 /*
804 * Since we're not interrupting every packet, sweep
805 * up before we report an error.
806 */
807 txreap(sc);
808
809 if (sc->sc_txfree != MD_NTXDESC) {
810 aprint_error_dev(sc->sc_dev,
811 "device timeout (txfree %d txsfree %d txnext %d)\n",
812 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
813 if_statinc(ifp, if_oerrors);
814
815 /* Reset the interface. */
816 scx_init(ifp);
817 }
818
819 scx_start(ifp);
820 }
821
822 static int
823 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
824 {
825 struct scx_softc *sc = ifp->if_softc;
826 struct ifreq *ifr = (struct ifreq *)data;
827 struct ifmedia *ifm;
828 int s, error;
829
830 s = splnet();
831
832 switch (cmd) {
833 case SIOCSIFMEDIA:
834 /* Flow control requires full-duplex mode. */
835 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
836 (ifr->ifr_media & IFM_FDX) == 0)
837 ifr->ifr_media &= ~IFM_ETH_FMASK;
838 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
839 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
840 /* We can do both TXPAUSE and RXPAUSE. */
841 ifr->ifr_media |=
842 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
843 }
844 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
845 }
846 ifm = &sc->sc_mii.mii_media;
847 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
848 break;
849 default:
850 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
851 break;
852
853 error = 0;
854
855 if (cmd == SIOCSIFCAP)
856 error = (*ifp->if_init)(ifp);
857 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
858 ;
859 else if (ifp->if_flags & IFF_RUNNING) {
860 /*
861 * Multicast list has changed; set the hardware filter
862 * accordingly.
863 */
864 scx_set_rcvfilt(sc);
865 }
866 break;
867 }
868
869 splx(s);
870 return error;
871 }
872
873 static void
874 scx_set_rcvfilt(struct scx_softc *sc)
875 {
876 struct ethercom * const ec = &sc->sc_ethercom;
877 struct ifnet * const ifp = &ec->ec_if;
878 struct ether_multistep step;
879 struct ether_multi *enm;
880 uint32_t mchash[8]; /* 8x 32 = 256 bit */
881 uint32_t csr, crc;
882 int i;
883
884 csr = CSR_READ(sc, GMACAFR);
885 csr &= ~(AFR_PM | AFR_AM | AFR_MHTE);
886 CSR_WRITE(sc, GMACAFR, csr);
887
888 ETHER_LOCK(ec);
889 if (ifp->if_flags & IFF_PROMISC) {
890 ec->ec_flags |= ETHER_F_ALLMULTI;
891 ETHER_UNLOCK(ec);
892 goto update;
893 }
894 ec->ec_flags &= ~ETHER_F_ALLMULTI;
895
896 /* clear 15 entry supplimental perfect match filter */
897 for (i = 1; i < 16; i++)
898 CSR_WRITE(sc, GMACMAH(i), 0);
899 /* build 256 bit multicast hash filter */
900 memset(mchash, 0, sizeof(mchash));
901 crc = 0;
902
903 ETHER_FIRST_MULTI(step, ec, enm);
904 i = 1; /* slot 0 is occupied */
905 while (enm != NULL) {
906 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
907 /*
908 * We must listen to a range of multicast addresses.
909 * For now, just accept all multicasts, rather than
910 * trying to set only those filter bits needed to match
911 * the range. (At this time, the only use of address
912 * ranges is for IP multicast routing, for which the
913 * range is big enough to require all bits set.)
914 */
915 ec->ec_flags |= ETHER_F_ALLMULTI;
916 ETHER_UNLOCK(ec);
917 goto update;
918 }
919 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
920 if (i < 16) {
921 /* use 31 entry perfect match filter */
922 uint32_t addr;
923 uint8_t *ep = enm->enm_addrlo;
924 addr = (ep[3] << 24) | (ep[2] << 16)
925 | (ep[1] << 8) | ep[0];
926 CSR_WRITE(sc, GMACMAL(i), addr);
927 addr = (ep[5] << 8) | ep[4];
928 CSR_WRITE(sc, GMACMAH(i), addr | 1U<<31);
929 } else {
930 /* use hash table when too many */
931 /* bit_reserve_32(~crc) !? */
932 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
933 /* 3(31:29) 5(28:24) bit sampling */
934 mchash[crc >> 29] |= 1 << ((crc >> 24) & 0x1f);
935 }
936 ETHER_NEXT_MULTI(step, enm);
937 i++;
938 }
939 ETHER_UNLOCK(ec);
940
941 if (crc)
942 csr |= AFR_MHTE;
943 for (i = 0; i < 8; i++)
944 CSR_WRITE(sc, GMACMHT0 + i * 4, mchash[i]);
945 CSR_WRITE(sc, GMACAFR, csr);
946 return;
947
948 update:
949 /* With PM or AM, MHTE/MHTL/MHTH are never consulted. really? */
950 if (ifp->if_flags & IFF_PROMISC)
951 csr |= AFR_PM; /* run promisc. mode */
952 else
953 csr |= AFR_AM; /* accept all multicast */
954 CSR_WRITE(sc, GMACAFR, csr);
955 return;
956 }
957
958 static int
959 scx_ifmedia_upd(struct ifnet *ifp)
960 {
961 struct scx_softc *sc = ifp->if_softc;
962 struct ifmedia *ifm = &sc->sc_mii.mii_media;
963
964 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
965 ; /* restart AN */
966 ; /* enable AN */
967 ; /* advertise flow control pause */
968 ; /* adv. 100FDX,100HDX,10FDX,10HDX */
969 } else {
970 #if 1 /* XXX not sure to belong here XXX */
971 uint32_t mcr = mac_read(sc, GMACMCR);
972 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_1000_T)
973 mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
974 else {
975 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX
976 && sc->sc_100mii)
977 mcr |= MCR_SPD100;
978 mcr |= MCR_USEMII;
979 }
980 if (ifm->ifm_cur->ifm_media & IFM_FDX)
981 mcr |= MCR_USEFDX;
982 mcr |= MCR_CST | MCR_JE;
983 if (sc->sc_100mii == 0)
984 mcr |= MCR_IBN;
985 mac_write(sc, GMACMCR, mcr);
986 #endif
987 }
988 return 0;
989 }
990
991 static void
992 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
993 {
994 struct scx_softc *sc = ifp->if_softc;
995 struct mii_data *mii = &sc->sc_mii;
996
997 mii_pollstat(mii);
998 ifmr->ifm_status = mii->mii_media_status;
999 ifmr->ifm_active = sc->sc_flowflags |
1000 (mii->mii_media_active & ~IFM_ETH_FMASK);
1001 }
1002
1003 void
1004 mii_statchg(struct ifnet *ifp)
1005 {
1006 struct scx_softc *sc = ifp->if_softc;
1007 struct mii_data *mii = &sc->sc_mii;
1008 uint32_t fcr;
1009
1010 /* Get flow control negotiation result. */
1011 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1012 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1013 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1014
1015 /* Adjust PAUSE flow control. */
1016 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1017 if (mii->mii_media_active & IFM_FDX) {
1018 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1019 fcr |= FCR_TFE;
1020 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1021 fcr |= FCR_RFE;
1022 }
1023 mac_write(sc, GMACFCR, fcr);
1024
1025 printf("%ctxfe, %crxfe\n",
1026 (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
1027 }
1028
1029 static void
1030 phy_tick(void *arg)
1031 {
1032 struct scx_softc *sc = arg;
1033 struct mii_data *mii = &sc->sc_mii;
1034 int s;
1035
1036 s = splnet();
1037 mii_tick(mii);
1038 splx(s);
1039
1040 callout_schedule(&sc->sc_tick_ch, hz);
1041 }
1042
1043 static int
1044 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1045 {
1046 struct scx_softc *sc = device_private(self);
1047 uint32_t gar;
1048 int error;
1049
1050 gar = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_gar;
1051 mac_write(sc, GMACGAR, gar | GAR_BUSY);
1052 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1053 if (error)
1054 return error;
1055 *val = mac_read(sc, GMACGDR);
1056 return 0;
1057 }
1058
1059 static int
1060 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1061 {
1062 struct scx_softc *sc = device_private(self);
1063 uint32_t gar;
1064 uint16_t dummy;
1065 int error;
1066
1067 gar = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_gar;
1068 mac_write(sc, GMACGDR, val);
1069 mac_write(sc, GMACGAR, gar | GAR_IOWR | GAR_BUSY);
1070 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1071 if (error)
1072 return error;
1073 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1074 return 0;
1075 }
1076
1077 static void
1078 scx_start(struct ifnet *ifp)
1079 {
1080 struct scx_softc *sc = ifp->if_softc;
1081 struct mbuf *m0, *m;
1082 struct scx_txsoft *txs;
1083 bus_dmamap_t dmamap;
1084 int error, nexttx, lasttx, ofree, seg;
1085 uint32_t tdes0;
1086
1087 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1088 return;
1089
1090 /* Remember the previous number of free descriptors. */
1091 ofree = sc->sc_txfree;
1092
1093 /*
1094 * Loop through the send queue, setting up transmit descriptors
1095 * until we drain the queue, or use up all available transmit
1096 * descriptors.
1097 */
1098 for (;;) {
1099 IFQ_POLL(&ifp->if_snd, m0);
1100 if (m0 == NULL)
1101 break;
1102
1103 if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1104 txreap(sc);
1105 if (sc->sc_txsfree == 0)
1106 break;
1107 }
1108 txs = &sc->sc_txsoft[sc->sc_txsnext];
1109 dmamap = txs->txs_dmamap;
1110
1111 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1112 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1113 if (error) {
1114 if (error == EFBIG) {
1115 aprint_error_dev(sc->sc_dev,
1116 "Tx packet consumes too many "
1117 "DMA segments, dropping...\n");
1118 IFQ_DEQUEUE(&ifp->if_snd, m0);
1119 m_freem(m0);
1120 continue;
1121 }
1122 /* Short on resources, just stop for now. */
1123 break;
1124 }
1125
1126 if (dmamap->dm_nsegs > sc->sc_txfree) {
1127 /*
1128 * Not enough free descriptors to transmit this
1129 * packet. We haven't committed anything yet,
1130 * so just unload the DMA map, put the packet
1131 * back on the queue, and punt. Notify the upper
1132 * layer that there are not more slots left.
1133 */
1134 ifp->if_flags |= IFF_OACTIVE;
1135 bus_dmamap_unload(sc->sc_dmat, dmamap);
1136 break;
1137 }
1138
1139 IFQ_DEQUEUE(&ifp->if_snd, m0);
1140
1141 /*
1142 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1143 */
1144
1145 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1146 BUS_DMASYNC_PREWRITE);
1147
1148 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1149 lasttx = -1;
1150 for (nexttx = sc->sc_txnext, seg = 0;
1151 seg < dmamap->dm_nsegs;
1152 seg++, nexttx = MD_NEXTTX(nexttx)) {
1153 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1154 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1155 /*
1156 * If this is the first descriptor we're
1157 * enqueueing, don't set the OWN bit just
1158 * yet. That could cause a race condition.
1159 * We'll do it below.
1160 */
1161 tdes->t3 = dmamap->dm_segs[seg].ds_len;
1162 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1163 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1164 tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
1165 (15 << T0_TRID) | T0_PT |
1166 sc->sc_t0coso | T0_TRS;
1167 tdes0 = T0_OWN; /* 2nd and other segments */
1168 lasttx = nexttx;
1169 }
1170 /*
1171 * Outgoing NFS mbuf must be unloaded when Tx completed.
1172 * Without T1_IC NFS mbuf is left unack'ed for excessive
1173 * time and NFS stops to proceed until scx_watchdog()
1174 * calls txreap() to reclaim the unack'ed mbuf.
1175 * It's painful to traverse every mbuf chain to determine
1176 * whether someone is waiting for Tx completion.
1177 */
1178 m = m0;
1179 do {
1180 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1181 sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
1182 break;
1183 }
1184 } while ((m = m->m_next) != NULL);
1185
1186 /* Write deferred 1st segment T0_OWN at the final stage */
1187 sc->sc_txdescs[lasttx].t0 |= T0_LS;
1188 sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
1189 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1190 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1191
1192 /* Tell DMA start transmit */
1193 /* CSR_WRITE(sc, MDTSC, 1); */
1194
1195 txs->txs_mbuf = m0;
1196 txs->txs_firstdesc = sc->sc_txnext;
1197 txs->txs_lastdesc = lasttx;
1198 txs->txs_ndesc = dmamap->dm_nsegs;
1199
1200 sc->sc_txfree -= txs->txs_ndesc;
1201 sc->sc_txnext = nexttx;
1202 sc->sc_txsfree--;
1203 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1204 /*
1205 * Pass the packet to any BPF listeners.
1206 */
1207 bpf_mtap(ifp, m0, BPF_D_OUT);
1208 }
1209
1210 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1211 /* No more slots left; notify upper layer. */
1212 ifp->if_flags |= IFF_OACTIVE;
1213 }
1214 if (sc->sc_txfree != ofree) {
1215 /* Set a watchdog timer in case the chip flakes out. */
1216 ifp->if_timer = 5;
1217 }
1218 }
1219
1220 static int
1221 scx_intr(void *arg)
1222 {
1223 struct scx_softc *sc = arg;
1224 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1225
1226 (void)ifp;
1227 rxintr(sc);
1228 txreap(sc);
1229 return 1;
1230 }
1231
1232 static void
1233 txreap(struct scx_softc *sc)
1234 {
1235 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1236 struct scx_txsoft *txs;
1237 uint32_t txstat;
1238 int i;
1239
1240 ifp->if_flags &= ~IFF_OACTIVE;
1241
1242 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1243 i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1244 txs = &sc->sc_txsoft[i];
1245
1246 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1247 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1248
1249 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1250 if (txstat & T0_OWN) /* desc is still in use */
1251 break;
1252
1253 /* There is no way to tell transmission status per frame */
1254
1255 if_statinc(ifp, if_opackets);
1256
1257 sc->sc_txfree += txs->txs_ndesc;
1258 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1259 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1260 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1261 m_freem(txs->txs_mbuf);
1262 txs->txs_mbuf = NULL;
1263 }
1264 sc->sc_txsdirty = i;
1265 if (sc->sc_txsfree == MD_TXQUEUELEN)
1266 ifp->if_timer = 0;
1267 }
1268
1269 static void
1270 rxintr(struct scx_softc *sc)
1271 {
1272 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1273 struct scx_rxsoft *rxs;
1274 struct mbuf *m;
1275 uint32_t rxstat;
1276 int i, len;
1277
1278 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1279 rxs = &sc->sc_rxsoft[i];
1280
1281 SCX_CDRXSYNC(sc, i,
1282 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1283
1284 rxstat = sc->sc_rxdescs[i].r0;
1285 if (rxstat & R0_OWN) /* desc is left empty */
1286 break;
1287
1288 /* R0_FS | R0_LS must have been marked for this desc */
1289
1290 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1291 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1292
1293 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1294 len -= ETHER_CRC_LEN; /* Trim CRC off */
1295 m = rxs->rxs_mbuf;
1296
1297 if (add_rxbuf(sc, i) != 0) {
1298 if_statinc(ifp, if_ierrors);
1299 SCX_INIT_RXDESC(sc, i);
1300 bus_dmamap_sync(sc->sc_dmat,
1301 rxs->rxs_dmamap, 0,
1302 rxs->rxs_dmamap->dm_mapsize,
1303 BUS_DMASYNC_PREREAD);
1304 continue;
1305 }
1306
1307 m_set_rcvif(m, ifp);
1308 m->m_pkthdr.len = m->m_len = len;
1309
1310 if (rxstat & R0_CSUM) {
1311 uint32_t csum = M_CSUM_IPv4;
1312 if (rxstat & R0_CERR)
1313 csum |= M_CSUM_IPv4_BAD;
1314 m->m_pkthdr.csum_flags |= csum;
1315 }
1316 if_percpuq_enqueue(ifp->if_percpuq, m);
1317 }
1318 sc->sc_rxptr = i;
1319 }
1320
1321 static int
1322 add_rxbuf(struct scx_softc *sc, int i)
1323 {
1324 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1325 struct mbuf *m;
1326 int error;
1327
1328 MGETHDR(m, M_DONTWAIT, MT_DATA);
1329 if (m == NULL)
1330 return ENOBUFS;
1331
1332 MCLGET(m, M_DONTWAIT);
1333 if ((m->m_flags & M_EXT) == 0) {
1334 m_freem(m);
1335 return ENOBUFS;
1336 }
1337
1338 if (rxs->rxs_mbuf != NULL)
1339 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1340
1341 rxs->rxs_mbuf = m;
1342
1343 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1344 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1345 if (error) {
1346 aprint_error_dev(sc->sc_dev,
1347 "can't load rx DMA map %d, error = %d\n", i, error);
1348 panic("add_rxbuf");
1349 }
1350
1351 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1352 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1353 SCX_INIT_RXDESC(sc, i);
1354
1355 return 0;
1356 }
1357
1358 static int
1359 spin_waitfor(struct scx_softc *sc, int reg, int exist)
1360 {
1361 int val, loop;
1362
1363 val = CSR_READ(sc, reg);
1364 if ((val & exist) == 0)
1365 return 0;
1366 loop = 3000;
1367 do {
1368 DELAY(10);
1369 val = CSR_READ(sc, reg);
1370 } while (--loop > 0 && (val & exist));
1371 return (loop > 0) ? 0 : ETIMEDOUT;
1372 }
1373
1374 static int
1375 mac_read(struct scx_softc *sc, int reg)
1376 {
1377
1378 CSR_WRITE(sc, MACCMD, reg);
1379 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1380 return CSR_READ(sc, MACDATA);
1381 }
1382
1383 static void
1384 mac_write(struct scx_softc *sc, int reg, int val)
1385 {
1386
1387 CSR_WRITE(sc, MACDATA, val);
1388 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
1389 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1390 }
1391
1392 static int
1393 get_garclk(uint32_t freq)
1394 {
1395
1396 const struct {
1397 uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
1398 } garclk[] = {
1399 { 35, 2 }, /* 25-35 MHz */
1400 { 60, 3 }, /* 35-60 MHz */
1401 { 100, 0 }, /* 60-100 MHz */
1402 { 150, 1 }, /* 100-150 MHz */
1403 { 250, 4 }, /* 150-250 MHz */
1404 { 300, 5 }, /* 250-300 MHz */
1405 };
1406 int i;
1407
1408 /* convert MDIO clk to a divisor value */
1409 if (freq < garclk[0].freq)
1410 return garclk[0].bit;
1411 for (i = 1; i < __arraycount(garclk); i++) {
1412 if (freq < garclk[i].freq)
1413 return garclk[i-1].bit;
1414 }
1415 return garclk[__arraycount(garclk) - 1].bit;
1416 }
1417
1418 static void
1419 loaducode(struct scx_softc *sc)
1420 {
1421 uint32_t up, lo, sz;
1422 uint64_t addr;
1423
1424 sc->sc_ucodeloaded = 1;
1425
1426 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1427 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1428 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1429 sz *= 4;
1430 addr = ((uint64_t)up << 32) | lo;
1431 aprint_normal_dev(sc->sc_dev, "H2M ucode %u\n", sz);
1432 injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
1433
1434 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1435 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1436 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1437 sz *= 4;
1438 addr = ((uint64_t)up << 32) | lo;
1439 injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
1440 aprint_normal_dev(sc->sc_dev, "M2H ucode %u\n", sz);
1441
1442 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1443 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1444 sz *= 4;
1445 injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
1446 aprint_normal_dev(sc->sc_dev, "PKT ucode %u\n", sz);
1447 }
1448
1449 static void
1450 injectucode(struct scx_softc *sc, int port,
1451 bus_addr_t addr, bus_size_t size)
1452 {
1453 bus_space_handle_t bsh;
1454 bus_size_t off;
1455 uint32_t ucode;
1456
1457 if (!bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1458 aprint_error_dev(sc->sc_dev,
1459 "eeprom map failure for ucode port 0x%x\n", port);
1460 return;
1461 }
1462 for (off = 0; off < size; off += 4) {
1463 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1464 CSR_WRITE(sc, port, ucode);
1465 }
1466 bus_space_unmap(sc->sc_st, bsh, size);
1467 }
1468