if_scx.c revision 1.7 1 /* $NetBSD: if_scx.c,v 1.7 2020/03/24 02:31:59 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #define NOT_MP_SAFE 0
33
34 /*
35 * Socionext SC2A11 SynQuacer NetSec GbE driver
36 *
37 * (possibly incorrect notes to be removed eventually)
38 * - 32 byte descriptor for 64 bit paddr design.
39 * - multiple rings seems available. There are special descriptor fields
40 * to designify ring number from which to arrive or to which go.
41 * - memory mapped EEPROM to hold MAC address. The rest of the area is
42 * occupied by a set of ucode for two DMA engines and one packet engine.
43 * - The size of frame address filter is unknown. Might be 32
44 * - The first slot is my own station address. Always enabled to perform
45 * to identify oneself.
46 * - 1~31 are for supplimental MAC addresses. Independently enabled
47 * for use. Good to catch multicast. Byte-wise selective match available.
48 * Use to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
49 * - The size of multicast hash filter store is unknown. Might be 256 bit.
50 * - Socionext/Linaro "NetSec" code makes many cut shorts. Some constants
51 * are left unexplained. The values should be handled via external
52 * controls like FDT descriptions. Fortunately, Intel/Altera CycloneV PDFs
53 * describe every detail of "such the instance of" DW EMAC IP and
54 * most of them are likely applicable to SC2A11 GbE.
55 */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.7 2020/03/24 02:31:59 nisimura Exp $");
59
60 #include <sys/param.h>
61 #include <sys/bus.h>
62 #include <sys/intr.h>
63 #include <sys/device.h>
64 #include <sys/callout.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/errno.h>
68 #include <sys/rndsource.h>
69 #include <sys/kernel.h>
70 #include <sys/systm.h>
71
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_dl.h>
75 #include <net/if_ether.h>
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 #include <net/bpf.h>
79
80 #include <dev/fdt/fdtvar.h>
81 #include <dev/acpi/acpireg.h>
82 #include <dev/acpi/acpivar.h>
83 #include <dev/acpi/acpi_intr.h>
84
85 #define SWRESET 0x104
86 #define COMINIT 0x120
87 #define INTRST 0x200
88 #define IRQ_RX (1U<<1)
89 #define IRQ_TX (1U<<0)
90 #define INTREN 0x204
91 #define INTR_SET 0x234
92 #define INTR_CLR 0x238
93 #define TXINTST 0x400
94 #define TXINTEN 0x404
95 #define TXINT_SET 0x428
96 #define TXINT_CLR 0x42c
97 #define TXI_NTOWNR (1U<<17)
98 #define TXI_TR_ERR (1U<<16)
99 #define TXI_TXDONE (1U<<15)
100 #define TXI_TMREXP (1U<<14)
101 #define RXINTST 0x440
102 #define RXINTEN 0x444
103 #define RXINT_SET 0x468
104 #define RXINT_CLR 0x46c
105 #define RXI_RC_ERR (1U<<16)
106 #define RXI_PKTCNT (1U<<15)
107 #define RXI_TMREXP (1U<<14)
108 #define TXTIMER 0x41c
109 #define RXTIMER 0x45c
110 #define TXCOUNT 0x410
111 #define RXCOUNT 0x454
112 #define H2MENG 0x210 /* DMAC host2media ucode port */
113 #define M2HENG 0x21c /* DMAC media2host ucode port */
114 #define PKTENG 0x0d0 /* packet engine ucode port */
115 #define HWVER0 0x22c
116 #define HWVER1 0x230
117
118 #define MACSTAT 0x1024 /* gmac status */
119 #define MACDATA 0x11c0 /* gmac rd/wr data */
120 #define MACCMD 0x11c4 /* gmac operation */
121 #define CMD_IOWR (1U<<28) /* write op */
122 #define CMD_BUSY (1U<<31) /* busy bit */
123 #define DESCENG_INIT 0x11fc
124 #define DESCENG_SRST 0x1204
125
126 #define GMACMCR 0x0000 /* MAC configuration */
127 #define MCR_IBN (1U<<30) /* */
128 #define MCR_CST (1U<<25) /* strip CRC */
129 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
130 #define MCR_JE (1U<<20) /* ignore oversized >9018 condition */
131 #define MCR_USEMII (1U<<15) /* 1: RMII/MII, 0: RGMII */
132 #define MCR_SPD100 (1U<<14) /* force speed 100 */
133 #define MCR_USEFDX (1U<<11) /* force full duplex */
134 #define MCR_IPCKEN (1U<<10) /* handle checksum */
135 #define MCR_ACS (1U<<7) /* auto pad strip CRC */
136 #define MCR_TXE (1U<<3) /* start Tx DMA engine */
137 #define MCR_RXE (1U<<2) /* start Rx DMA engine */
138 #define _MCR_FDX 0x0000280c /* XXX TBD */
139 #define _MCR_HDX 0x0001a00c /* XXX TBD */
140 #define GMACAFR 0x0004 /* frame DA/SA address filter */
141 #define AFR_RA (1U<<31) /* receive block all on */
142 #define AFR_HPF (1U<<10) /* activate hash or perfect filter */
143 #define AFR_SAF (1U<<9) /* source address filter */
144 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
145 #define AFR_PCF (3U<<6) /* */
146 #define AFR_RB (1U<<5) /* reject broadcast frame */
147 #define AFR_AM (1U<<4) /* accept all multicast frame */
148 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
149 #define AFR_MHTE (1U<<2) /* use multicast hash table */
150 #define AFR_UHTE (1U<<1) /* use additional MAC addresses */
151 #define AFR_PM (1U<<0) /* run promisc mode */
152 #define _AFR 0x80000001 /* XXX TBD */
153 #define GMACMHTH 0x0008 /* XXX multicast hash table 63:32 */
154 #define GMACMHTL 0x000c /* XXX multicast hash table 31:0 */
155 #define GMACGAR 0x0010 /* MDIO operation */
156 #define GAR_PHY (11) /* mii phy 15:11 */
157 #define GAR_REG (6) /* mii reg 10:6 */
158 #define GAR_CTL (2) /* control 5:2 */
159 #define GAR_IOWR (1U<<1) /* MDIO write op */
160 #define GAR_BUSY (1U) /* busy bit */
161 #define GMACGDR 0x0014 /* MDIO rd/wr data */
162 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
163 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
164 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
165 #define GMACIMPL 0x0020 /* implementation number XXXX.YYYY */
166 #define GMACVTAG 0x001c /* VLAN tag control */
167 #define GMACMAH0 0x0040 /* MAC address 0 47:32 */
168 #define GMACMAL0 0x0044 /* MAC address 0 31:0 */
169 #define GMACMAH(i) ((i)*8+0x40) /* supplimental MAC addr 1 - 15 */
170 #define GMACMAL(i) ((i)*8+0x44)
171 #define GMACMHT0 0x0500 /* multicast hash table 0 - 8*/
172
173 #define GMACBMR 0x1000 /* DMA bus mode control
174 * 24 4PBL
175 * 22:17 RPBL
176 * 16 fix burst
177 * 15:14 priority between Rx and Tx
178 * 3 rxtx41
179 * 2 rxtx31
180 * 1 rxtx21
181 * 0 rxtx11
182 * 13:8 PBL possible DMA burst len
183 * 0 reset op. self clear
184 */
185 #define _BMR 0x00412080 /* XXX TBD */
186 #define _BMR0 0x00020181 /* XXX TBD */
187 #define BMR_RST (1U<<0) /* reset op. self clear when done */
188 #define GMACRDLAR 0x100c /* */
189 #define _RDLAR 0x18000 /* XXX TBD */
190 #define GMACTDLAR 0x1010 /* */
191 #define _TDLAR 0x1c000 /* XXX TBD */
192 #define GMACOMR 0x1018 /* DMA operation */
193 #define OMR_TXE (1U<<13) /* start Tx DMA engine, 0 to stop */
194 #define OMR_RXE (1U<<1) /* start Rx DMA engine, 0 to stop */
195
196 static int get_mdioclk(uint32_t);
197
198 /* descriptor format definition */
199 struct tdes {
200 uint32_t t0, t1, t2, t3;
201 };
202
203 struct rdes {
204 uint32_t r0, r1, r2, r3;
205 };
206
207 #define T0_OWN (1U<<31) /* desc is ready to Tx */
208 #define T0_EOD (1U<<30) /* end of descriptor array */
209 #define T0_DRID (24) /* 29:24 D-RID */
210 #define T0_PT (1U<<21) /* 23:21 PT */
211 #define T0_TRID (16) /* 20:16 T-RID */
212 #define T0_FS (1U<<9) /* first segment of frame */
213 #define T0_LS (1U<<8) /* last segment of frame */
214 #define T0_CSUM (1U<<7) /* enable check sum offload */
215 #define T0_SGOL (1U<<6) /* enable TCP segment offload */
216 #define T0_TRS (1U<<4) /* 5:4 TRS */
217 #define T0_IOC (0) /* XXX TBD interrupt when completed */
218 /* T1 segment address 63:32 */
219 /* T2 segment address 31:0 */
220 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
221 #define R0_OWN (1U<<31) /* desc is empty */
222 #define R0_EOD (1U<<30) /* end of descriptor array */
223 #define R0_SRID (24) /* 29:24 S-RID */
224 #define R0_FR (1U<<23) /* FR */
225 #define R0_ER (1U<<21) /* Rx error indication */
226 #define R0_ERR (3U<<16) /* 18:16 receive error code */
227 #define R0_TDRID (14) /* 15:14 TD-RID */
228 #define R0_FS (1U<<9) /* first segment of frame */
229 #define R0_LS (1U<<8) /* last segment of frame */
230 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
231 #define R0_CERR (2U<<6) /* 0 (undone), 1 (found ok), 2 (bad) */
232 /* R1 frame address 63:32 */
233 /* R2 frame address 31:0 */
234 /* R3 31:16 received frame length, 15:0 buffer length to receive */
235
236 #define MD_NTXSEGS 16 /* fixed */
237 #define MD_TXQUEUELEN 16 /* tunable */
238 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1)
239 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4)
240 #define MD_NTXDESC (MD_TXQUEUELEN * MD_NTXSEGS)
241 #define MD_NTXDESC_MASK (MD_NTXDESC - 1)
242 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK)
243 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK)
244
245 #define MD_NRXDESC 64 /* tunable */
246 #define MD_NRXDESC_MASK (MD_NRXDESC - 1)
247 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK)
248
249 #define SCX_INIT_RXDESC(sc, x) \
250 do { \
251 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
252 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
253 struct mbuf *__m = __rxs->rxs_mbuf; \
254 bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr; \
255 __m->m_data = __m->m_ext.ext_buf; \
256 __rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len; \
257 __rxd->r2 = htole32(BUS_ADDR_LO32(__paddr)); \
258 __rxd->r1 = htole32(BUS_ADDR_HI32(__paddr)); \
259 __rxd->r0 = R0_OWN | R0_FS | R0_LS; \
260 if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD; \
261 } while (/*CONSTCOND*/0)
262
263 struct control_data {
264 struct tdes cd_txdescs[MD_NTXDESC];
265 struct rdes cd_rxdescs[MD_NRXDESC];
266 };
267 #define SCX_CDOFF(x) offsetof(struct control_data, x)
268 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
269 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
270
271 struct scx_txsoft {
272 struct mbuf *txs_mbuf; /* head of our mbuf chain */
273 bus_dmamap_t txs_dmamap; /* our DMA map */
274 int txs_firstdesc; /* first descriptor in packet */
275 int txs_lastdesc; /* last descriptor in packet */
276 int txs_ndesc; /* # of descriptors used */
277 };
278
279 struct scx_rxsoft {
280 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
281 bus_dmamap_t rxs_dmamap; /* our DMA map */
282 };
283
284 struct scx_softc {
285 device_t sc_dev; /* generic device information */
286 bus_space_tag_t sc_st; /* bus space tag */
287 bus_space_handle_t sc_sh; /* bus space handle */
288 bus_size_t sc_sz; /* csr map size */
289 bus_space_handle_t sc_eesh; /* eeprom section handle */
290 bus_size_t sc_eesz; /* eeprom map size */
291 bus_dma_tag_t sc_dmat; /* bus DMA tag */
292 struct ethercom sc_ethercom; /* Ethernet common data */
293 struct mii_data sc_mii; /* MII */
294 callout_t sc_tick_ch; /* PHY monitor callout */
295 bus_dma_segment_t sc_seg; /* descriptor store seg */
296 int sc_nseg; /* descriptor store nseg */
297 void *sc_ih; /* interrupt cookie */
298 int sc_phy_id; /* PHY address */
299 int sc_flowflags; /* 802.3x PAUSE flow control */
300 uint32_t sc_mdclk; /* GAR 5:2 clock selection */
301 uint32_t sc_t0coso; /* T0_CSUM | T0_SGOL to run */
302 int sc_ucodeloaded; /* ucode for H2M/M2H/PKT */
303 int sc_100mii; /* 1<<15 RMII/MII, 0 for RGMII */
304 int sc_phandle; /* fdt phandle */
305
306 bus_dmamap_t sc_cddmamap; /* control data DMA map */
307 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
308
309 struct control_data *sc_control_data;
310 #define sc_txdescs sc_control_data->cd_txdescs
311 #define sc_rxdescs sc_control_data->cd_rxdescs
312
313 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
314 struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
315 int sc_txfree; /* number of free Tx descriptors */
316 int sc_txnext; /* next ready Tx descriptor */
317 int sc_txsfree; /* number of free Tx jobs */
318 int sc_txsnext; /* next ready Tx job */
319 int sc_txsdirty; /* dirty Tx jobs */
320 int sc_rxptr; /* next ready Rx descriptor/descsoft */
321
322 krndsource_t rnd_source; /* random source */
323 };
324
325 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
326 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
327
328 #define SCX_CDTXSYNC(sc, x, n, ops) \
329 do { \
330 int __x, __n; \
331 \
332 __x = (x); \
333 __n = (n); \
334 \
335 /* If it will wrap around, sync to the end of the ring. */ \
336 if ((__x + __n) > MD_NTXDESC) { \
337 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
338 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
339 (MD_NTXDESC - __x), (ops)); \
340 __n -= (MD_NTXDESC - __x); \
341 __x = 0; \
342 } \
343 \
344 /* Now sync whatever is left. */ \
345 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
346 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
347 } while (/*CONSTCOND*/0)
348
349 #define SCX_CDRXSYNC(sc, x, ops) \
350 do { \
351 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
352 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
353 } while (/*CONSTCOND*/0)
354
355 static int scx_fdt_match(device_t, cfdata_t, void *);
356 static void scx_fdt_attach(device_t, device_t, void *);
357 static int scx_acpi_match(device_t, cfdata_t, void *);
358 static void scx_acpi_attach(device_t, device_t, void *);
359
360 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
361 scx_fdt_match, scx_fdt_attach, NULL, NULL);
362
363 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
364 scx_acpi_match, scx_acpi_attach, NULL, NULL);
365
366 static void scx_attach_i(struct scx_softc *);
367 static void scx_reset(struct scx_softc *);
368 static int scx_init(struct ifnet *);
369 static void scx_start(struct ifnet *);
370 static void scx_stop(struct ifnet *, int);
371 static void scx_watchdog(struct ifnet *);
372 static int scx_ioctl(struct ifnet *, u_long, void *);
373 static void scx_set_rcvfilt(struct scx_softc *);
374 static int scx_ifmedia_upd(struct ifnet *);
375 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
376 static void mii_statchg(struct ifnet *);
377 static void phy_tick(void *);
378 static int mii_readreg(device_t, int, int, uint16_t *);
379 static int mii_writereg(device_t, int, int, uint16_t);
380 static int scx_intr(void *);
381 static void txreap(struct scx_softc *);
382 static void rxintr(struct scx_softc *);
383 static int add_rxbuf(struct scx_softc *, int);
384 static int spin_waitfor(struct scx_softc *, int, int);
385 static int mac_read(struct scx_softc *, int);
386 static void mac_write(struct scx_softc *, int, int);
387 static void loaducode(struct scx_softc *);
388 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
389
390 #define CSR_READ(sc,off) \
391 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
392 #define CSR_WRITE(sc,off,val) \
393 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
394 #define EE_READ(sc,off) \
395 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
396
397 static int
398 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
399 {
400 static const char * compatible[] = {
401 "socionext,synquacer-netsec",
402 NULL
403 };
404 struct fdt_attach_args * const faa = aux;
405
406 return of_match_compatible(faa->faa_phandle, compatible);
407 }
408
409 static void
410 scx_fdt_attach(device_t parent, device_t self, void *aux)
411 {
412 struct scx_softc * const sc = device_private(self);
413 struct fdt_attach_args * const faa = aux;
414 const int phandle = faa->faa_phandle;
415 bus_space_tag_t bst = faa->faa_bst;
416 bus_space_handle_t bsh;
417 bus_space_handle_t eebsh;
418 bus_addr_t addr[2];
419 bus_size_t size[2];
420 char intrstr[128];
421 const char *phy_mode;
422
423 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
424 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
425 aprint_error(": unable to map device csr\n");
426 return;
427 }
428 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
429 aprint_error(": failed to decode interrupt\n");
430 goto fail;
431 }
432 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
433 NOT_MP_SAFE, scx_intr, sc);
434 if (sc->sc_ih == NULL) {
435 aprint_error_dev(self, "couldn't establish interrupt\n");
436 goto fail;
437 }
438 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
439 || bus_space_map(faa->faa_bst, addr[0], size[1], 0, &eebsh) != 0) {
440 aprint_error(": unable to map device eeprom\n");
441 goto fail;
442 }
443
444 phy_mode = fdtbus_get_string(phandle, "phy-mode");
445 if (phy_mode == NULL) {
446 aprint_error(": missing 'phy-mode' property\n");
447 phy_mode = "rgmii";
448 }
449
450 aprint_naive("\n");
451 aprint_normal(": Gigabit Ethernet Controller\n");
452 aprint_normal_dev(self, "interrupt on %s\n", intrstr);
453
454 sc->sc_dev = self;
455 sc->sc_st = bst;
456 sc->sc_sh = bsh;
457 sc->sc_sz = size[0];
458 sc->sc_eesh = eebsh;
459 sc->sc_eesz = size[1];
460 sc->sc_dmat = faa->faa_dmat;
461 sc->sc_phandle = phandle;
462 sc->sc_100mii = (strcmp(phy_mode, "rgmii") != 0) ? MCR_USEMII : 0;
463
464 scx_attach_i(sc);
465 return;
466 fail:
467 if (sc->sc_eesz)
468 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
469 if (sc->sc_sz)
470 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
471 return;
472 }
473
474 static int
475 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
476 {
477 static const char * compatible[] = {
478 "SCX0001",
479 NULL
480 };
481 struct acpi_attach_args *aa = aux;
482
483 if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
484 return 0;
485 return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
486 }
487
488 static void
489 scx_acpi_attach(device_t parent, device_t self, void *aux)
490 {
491 struct scx_softc * const sc = device_private(self);
492 struct acpi_attach_args * const aa = aux;
493 ACPI_HANDLE handle = aa->aa_node->ad_handle;
494 bus_space_tag_t bst = aa->aa_memt;
495 bus_space_handle_t bsh, eebsh;
496 struct acpi_resources res;
497 struct acpi_mem *mem;
498 struct acpi_irq *irq;
499 ACPI_STATUS rv;
500
501 rv = acpi_resource_parse(self, handle, "_CRS",
502 &res, &acpi_resource_parse_ops_default);
503 if (ACPI_FAILURE(rv))
504 return;
505 mem = acpi_res_mem(&res, 0);
506 irq = acpi_res_irq(&res, 0);
507 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
508 aprint_error(": incomplete csr resources\n");
509 return;
510 }
511 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
512 aprint_error(": couldn't map registers\n");
513 return;
514 }
515 sc->sc_sz = mem->ar_length;
516 sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
517 NOT_MP_SAFE, scx_intr, sc, device_xname(self));
518 if (sc->sc_ih == NULL) {
519 aprint_error_dev(self, "couldn't establish interrupt\n");
520 goto fail;
521 }
522 mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
523 if (mem == NULL || mem->ar_length == 0) {
524 aprint_error(": incomplete eeprom resources\n");
525 goto fail;
526 }
527 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
528 aprint_error(": couldn't map registers\n");
529 goto fail;
530 }
531 sc->sc_eesz = mem->ar_length;
532
533 aprint_naive("\n");
534 aprint_normal(": Gigabit Ethernet Controller\n");
535
536 sc->sc_dev = self;
537 sc->sc_st = bst;
538 sc->sc_sh = bsh;
539 sc->sc_eesh = eebsh;
540 sc->sc_dmat = aa->aa_dmat64;
541
542 scx_attach_i(sc);
543
544 acpi_resource_cleanup(&res);
545 return;
546 fail:
547 if (sc->sc_eesz > 0)
548 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
549 if (sc->sc_sz > 0)
550 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
551 acpi_resource_cleanup(&res);
552 return;
553 }
554
555 static void
556 scx_attach_i(struct scx_softc *sc)
557 {
558 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
559 struct mii_data * const mii = &sc->sc_mii;
560 struct ifmedia * const ifm = &mii->mii_media;
561 uint32_t hwver, phyfreq;
562 uint8_t enaddr[ETHER_ADDR_LEN];
563 bus_dma_segment_t seg;
564 uint32_t csr;
565 int i, nseg, error = 0;
566
567 hwver = CSR_READ(sc, HWVER1);
568 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
569 enaddr[0] = csr >> 24;
570 enaddr[1] = csr >> 16;
571 enaddr[2] = csr >> 8;
572 enaddr[3] = csr;
573 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
574 enaddr[4] = csr >> 24;
575 enaddr[5] = csr >> 16;
576 csr = CSR_READ(sc, GMACIMPL);
577
578 aprint_normal_dev(sc->sc_dev, "NetSec GbE (%d.%d) impl (%x.%x)\n",
579 hwver >> 16, hwver & 0xffff, csr >> 16, csr & 0xffff);
580 aprint_normal_dev(sc->sc_dev,
581 "Ethernet address %s\n", ether_sprintf(enaddr));
582
583 phyfreq = 0;
584 sc->sc_phy_id = MII_PHY_ANY;
585 sc->sc_mdclk = get_mdioclk(phyfreq); /* 5:2 clk control */
586
587 sc->sc_flowflags = 0;
588
589 if (sc->sc_ucodeloaded == 0)
590 loaducode(sc);
591
592 mii->mii_ifp = ifp;
593 mii->mii_readreg = mii_readreg;
594 mii->mii_writereg = mii_writereg;
595 mii->mii_statchg = mii_statchg;
596
597 sc->sc_ethercom.ec_mii = mii;
598 ifmedia_init(ifm, 0, scx_ifmedia_upd, scx_ifmedia_sts);
599 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
600 MII_OFFSET_ANY, MIIF_DOPAUSE);
601 if (LIST_FIRST(&mii->mii_phys) == NULL) {
602 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
603 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
604 } else
605 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
606 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
607
608 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
609 ifp->if_softc = sc;
610 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
611 ifp->if_ioctl = scx_ioctl;
612 ifp->if_start = scx_start;
613 ifp->if_watchdog = scx_watchdog;
614 ifp->if_init = scx_init;
615 ifp->if_stop = scx_stop;
616 IFQ_SET_READY(&ifp->if_snd);
617
618 if_attach(ifp);
619 if_deferred_start_init(ifp, NULL);
620 ether_ifattach(ifp, enaddr);
621
622 callout_init(&sc->sc_tick_ch, 0);
623 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
624
625 /*
626 * Allocate the control data structures, and create and load the
627 * DMA map for it.
628 */
629 error = bus_dmamem_alloc(sc->sc_dmat,
630 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
631 if (error != 0) {
632 aprint_error_dev(sc->sc_dev,
633 "unable to allocate control data, error = %d\n", error);
634 goto fail_0;
635 }
636 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
637 sizeof(struct control_data), (void **)&sc->sc_control_data,
638 BUS_DMA_COHERENT);
639 if (error != 0) {
640 aprint_error_dev(sc->sc_dev,
641 "unable to map control data, error = %d\n", error);
642 goto fail_1;
643 }
644 error = bus_dmamap_create(sc->sc_dmat,
645 sizeof(struct control_data), 1,
646 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
647 if (error != 0) {
648 aprint_error_dev(sc->sc_dev,
649 "unable to create control data DMA map, "
650 "error = %d\n", error);
651 goto fail_2;
652 }
653 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
654 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
655 if (error != 0) {
656 aprint_error_dev(sc->sc_dev,
657 "unable to load control data DMA map, error = %d\n",
658 error);
659 goto fail_3;
660 }
661 for (i = 0; i < MD_TXQUEUELEN; i++) {
662 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
663 MD_NTXSEGS, MCLBYTES, 0, 0,
664 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
665 aprint_error_dev(sc->sc_dev,
666 "unable to create tx DMA map %d, error = %d\n",
667 i, error);
668 goto fail_4;
669 }
670 }
671 for (i = 0; i < MD_NRXDESC; i++) {
672 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
673 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
674 aprint_error_dev(sc->sc_dev,
675 "unable to create rx DMA map %d, error = %d\n",
676 i, error);
677 goto fail_5;
678 }
679 sc->sc_rxsoft[i].rxs_mbuf = NULL;
680 }
681 sc->sc_seg = seg;
682 sc->sc_nseg = nseg;
683 printf("bus_dmaseg ds_addr %08lx, ds_len %08lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
684
685 if (pmf_device_register(sc->sc_dev, NULL, NULL))
686 pmf_class_network_register(sc->sc_dev, ifp);
687 else
688 aprint_error_dev(sc->sc_dev,
689 "couldn't establish power handler\n");
690
691 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
692 RND_TYPE_NET, RND_FLAG_DEFAULT);
693
694 return;
695
696 fail_5:
697 for (i = 0; i < MD_NRXDESC; i++) {
698 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
699 bus_dmamap_destroy(sc->sc_dmat,
700 sc->sc_rxsoft[i].rxs_dmamap);
701 }
702 fail_4:
703 for (i = 0; i < MD_TXQUEUELEN; i++) {
704 if (sc->sc_txsoft[i].txs_dmamap != NULL)
705 bus_dmamap_destroy(sc->sc_dmat,
706 sc->sc_txsoft[i].txs_dmamap);
707 }
708 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
709 fail_3:
710 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
711 fail_2:
712 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
713 sizeof(struct control_data));
714 fail_1:
715 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
716 fail_0:
717 if (sc->sc_phandle)
718 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
719 else
720 acpi_intr_disestablish(sc->sc_ih);
721 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
722 return;
723 }
724
725 static void
726 scx_reset(struct scx_softc *sc)
727 {
728
729 mac_write(sc, GMACBMR, BMR_RST); /* may take for a while */
730 (void)spin_waitfor(sc, GMACBMR, BMR_RST);
731
732 CSR_WRITE(sc, DESCENG_SRST, 1);
733 CSR_WRITE(sc, DESCENG_INIT, 1);
734 mac_write(sc, GMACBMR, _BMR);
735 mac_write(sc, GMACRDLAR, _RDLAR);
736 mac_write(sc, GMACTDLAR, _TDLAR);
737 mac_write(sc, GMACAFR, _AFR);
738 }
739
740 static int
741 scx_init(struct ifnet *ifp)
742 {
743 struct scx_softc *sc = ifp->if_softc;
744 const uint8_t *ea = CLLADDR(ifp->if_sadl);
745 uint32_t csr;
746 int i;
747
748 /* Cancel pending I/O. */
749 scx_stop(ifp, 0);
750
751 /* Reset the chip to a known state. */
752 scx_reset(sc);
753
754 /* build sane Tx and load Rx descriptors with mbuf */
755 for (i = 0; i < MD_NTXDESC; i++)
756 sc->sc_txdescs[i].t0 = T0_OWN;
757 sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
758 for (i = 0; i < MD_NRXDESC; i++)
759 (void)add_rxbuf(sc, i);
760
761 /* set my address in perfect match slot 0 */
762 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
763 CSR_WRITE(sc, GMACMAL0, csr);
764 csr = (ea[5] << 8) | ea[4];
765 CSR_WRITE(sc, GMACMAH0, csr | 1U<<31); /* always valid? */
766
767 /* accept multicast frame or run promisc mode */
768 scx_set_rcvfilt(sc);
769
770 (void)scx_ifmedia_upd(ifp);
771
772 /* kick to start GMAC engine */
773 csr = mac_read(sc, GMACOMR);
774 CSR_WRITE(sc, RXINT_CLR, ~0);
775 CSR_WRITE(sc, TXINT_CLR, ~0);
776 mac_write(sc, GMACOMR, csr | OMR_RXE | OMR_TXE);
777
778 ifp->if_flags |= IFF_RUNNING;
779 ifp->if_flags &= ~IFF_OACTIVE;
780
781 /* start one second timer */
782 callout_schedule(&sc->sc_tick_ch, hz);
783
784 return 0;
785 }
786
787 static void
788 scx_stop(struct ifnet *ifp, int disable)
789 {
790 struct scx_softc *sc = ifp->if_softc;
791
792 /* Stop the one second clock. */
793 callout_stop(&sc->sc_tick_ch);
794
795 /* Down the MII. */
796 mii_down(&sc->sc_mii);
797
798 /* Mark the interface down and cancel the watchdog timer. */
799 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
800 ifp->if_timer = 0;
801 }
802
803 static void
804 scx_watchdog(struct ifnet *ifp)
805 {
806 struct scx_softc *sc = ifp->if_softc;
807
808 /*
809 * Since we're not interrupting every packet, sweep
810 * up before we report an error.
811 */
812 txreap(sc);
813
814 if (sc->sc_txfree != MD_NTXDESC) {
815 aprint_error_dev(sc->sc_dev,
816 "device timeout (txfree %d txsfree %d txnext %d)\n",
817 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
818 if_statinc(ifp, if_oerrors);
819
820 /* Reset the interface. */
821 scx_init(ifp);
822 }
823
824 scx_start(ifp);
825 }
826
827 static int
828 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
829 {
830 struct scx_softc *sc = ifp->if_softc;
831 struct ifreq *ifr = (struct ifreq *)data;
832 struct ifmedia *ifm;
833 int s, error;
834
835 s = splnet();
836
837 switch (cmd) {
838 case SIOCSIFMEDIA:
839 /* Flow control requires full-duplex mode. */
840 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
841 (ifr->ifr_media & IFM_FDX) == 0)
842 ifr->ifr_media &= ~IFM_ETH_FMASK;
843 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
844 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
845 /* We can do both TXPAUSE and RXPAUSE. */
846 ifr->ifr_media |=
847 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
848 }
849 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
850 }
851 ifm = &sc->sc_mii.mii_media;
852 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
853 break;
854 default:
855 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
856 break;
857
858 error = 0;
859
860 if (cmd == SIOCSIFCAP)
861 error = (*ifp->if_init)(ifp);
862 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
863 ;
864 else if (ifp->if_flags & IFF_RUNNING) {
865 /*
866 * Multicast list has changed; set the hardware filter
867 * accordingly.
868 */
869 scx_set_rcvfilt(sc);
870 }
871 break;
872 }
873
874 splx(s);
875 return error;
876 }
877
878 static void
879 scx_set_rcvfilt(struct scx_softc *sc)
880 {
881 struct ethercom * const ec = &sc->sc_ethercom;
882 struct ifnet * const ifp = &ec->ec_if;
883 struct ether_multistep step;
884 struct ether_multi *enm;
885 uint32_t mchash[8]; /* 8x 32 = 256 bit */
886 uint32_t csr, crc;
887 int i;
888
889 csr = CSR_READ(sc, GMACAFR);
890 csr &= ~(AFR_PM | AFR_AM | AFR_MHTE);
891 CSR_WRITE(sc, GMACAFR, csr);
892
893 ETHER_LOCK(ec);
894 if (ifp->if_flags & IFF_PROMISC) {
895 ec->ec_flags |= ETHER_F_ALLMULTI;
896 ETHER_UNLOCK(ec);
897 goto update;
898 }
899 ec->ec_flags &= ~ETHER_F_ALLMULTI;
900
901 /* clear 15 entry supplimental perfect match filter */
902 for (i = 1; i < 16; i++)
903 CSR_WRITE(sc, GMACMAH(i), 0);
904 /* build 256 bit multicast hash filter */
905 memset(mchash, 0, sizeof(mchash));
906 crc = 0;
907
908 ETHER_FIRST_MULTI(step, ec, enm);
909 i = 1; /* slot 0 is occupied */
910 while (enm != NULL) {
911 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
912 /*
913 * We must listen to a range of multicast addresses.
914 * For now, just accept all multicasts, rather than
915 * trying to set only those filter bits needed to match
916 * the range. (At this time, the only use of address
917 * ranges is for IP multicast routing, for which the
918 * range is big enough to require all bits set.)
919 */
920 ec->ec_flags |= ETHER_F_ALLMULTI;
921 ETHER_UNLOCK(ec);
922 goto update;
923 }
924 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
925 if (i < 16) {
926 /* use 31 entry perfect match filter */
927 uint32_t addr;
928 uint8_t *ep = enm->enm_addrlo;
929 addr = (ep[3] << 24) | (ep[2] << 16)
930 | (ep[1] << 8) | ep[0];
931 CSR_WRITE(sc, GMACMAL(i), addr);
932 addr = (ep[5] << 8) | ep[4];
933 CSR_WRITE(sc, GMACMAH(i), addr | 1U<<31);
934 } else {
935 /* use hash table when too many */
936 /* bit_reserve_32(~crc) !? */
937 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
938 /* 3(31:29) 5(28:24) bit sampling */
939 mchash[crc >> 29] |= 1 << ((crc >> 24) & 0x1f);
940 }
941 ETHER_NEXT_MULTI(step, enm);
942 i++;
943 }
944 ETHER_UNLOCK(ec);
945
946 if (crc)
947 csr |= AFR_MHTE;
948 for (i = 0; i < 8; i++)
949 CSR_WRITE(sc, GMACMHT0 + i * 4, mchash[i]);
950 CSR_WRITE(sc, GMACAFR, csr);
951 return;
952
953 update:
954 /* With PM or AM, MHTE/MHTL/MHTH are never consulted. really? */
955 if (ifp->if_flags & IFF_PROMISC)
956 csr |= AFR_PM; /* run promisc. mode */
957 else
958 csr |= AFR_AM; /* accept all multicast */
959 CSR_WRITE(sc, GMACAFR, csr);
960 return;
961 }
962
963 static int
964 scx_ifmedia_upd(struct ifnet *ifp)
965 {
966 struct scx_softc *sc = ifp->if_softc;
967 struct ifmedia *ifm = &sc->sc_mii.mii_media;
968
969 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
970 ; /* restart AN */
971 ; /* enable AN */
972 ; /* advertise flow control pause */
973 ; /* adv. 100FDX,100HDX,10FDX,10HDX */
974 } else {
975 #if 1 /* XXX not sure to belong here XXX */
976 uint32_t mcr = mac_read(sc, GMACMCR);
977 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_1000_T)
978 mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
979 else {
980 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX
981 && sc->sc_100mii)
982 mcr |= MCR_SPD100;
983 mcr |= MCR_USEMII;
984 }
985 if (ifm->ifm_cur->ifm_media & IFM_FDX)
986 mcr |= MCR_USEFDX;
987 mcr |= MCR_CST | MCR_JE;
988 if (sc->sc_100mii == 0)
989 mcr |= MCR_IBN;
990 mac_write(sc, GMACMCR, mcr);
991 #endif
992 }
993 return 0;
994 }
995
996 static void
997 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
998 {
999 struct scx_softc *sc = ifp->if_softc;
1000 struct mii_data *mii = &sc->sc_mii;
1001
1002 mii_pollstat(mii);
1003 ifmr->ifm_status = mii->mii_media_status;
1004 ifmr->ifm_active = sc->sc_flowflags |
1005 (mii->mii_media_active & ~IFM_ETH_FMASK);
1006 }
1007
1008 void
1009 mii_statchg(struct ifnet *ifp)
1010 {
1011 struct scx_softc *sc = ifp->if_softc;
1012 struct mii_data *mii = &sc->sc_mii;
1013 uint32_t fcr;
1014
1015 /* Get flow control negotiation result. */
1016 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1017 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1018 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1019
1020 /* Adjust PAUSE flow control. */
1021 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1022 if (mii->mii_media_active & IFM_FDX) {
1023 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1024 fcr |= FCR_TFE;
1025 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1026 fcr |= FCR_RFE;
1027 }
1028 mac_write(sc, GMACFCR, fcr);
1029
1030 printf("%ctxfe, %crxfe\n",
1031 (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
1032 }
1033
1034 static void
1035 phy_tick(void *arg)
1036 {
1037 struct scx_softc *sc = arg;
1038 struct mii_data *mii = &sc->sc_mii;
1039 int s;
1040
1041 s = splnet();
1042 mii_tick(mii);
1043 splx(s);
1044
1045 callout_schedule(&sc->sc_tick_ch, hz);
1046 }
1047
1048 static int
1049 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1050 {
1051 struct scx_softc *sc = device_private(self);
1052 uint32_t miia;
1053 int error;
1054
1055 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1056 mac_write(sc, GMACGAR, miia | GAR_BUSY);
1057 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1058 if (error)
1059 return error;
1060 *val = mac_read(sc, GMACGDR);
1061 return 0;
1062 }
1063
1064 static int
1065 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1066 {
1067 struct scx_softc *sc = device_private(self);
1068 uint32_t miia;
1069 uint16_t dummy;
1070 int error;
1071
1072 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1073 mac_write(sc, GMACGDR, val);
1074 mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1075 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1076 if (error)
1077 return error;
1078 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1079 return 0;
1080 }
1081
1082 static void
1083 scx_start(struct ifnet *ifp)
1084 {
1085 struct scx_softc *sc = ifp->if_softc;
1086 struct mbuf *m0, *m;
1087 struct scx_txsoft *txs;
1088 bus_dmamap_t dmamap;
1089 int error, nexttx, lasttx, ofree, seg;
1090 uint32_t tdes0;
1091
1092 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1093 return;
1094
1095 /* Remember the previous number of free descriptors. */
1096 ofree = sc->sc_txfree;
1097
1098 /*
1099 * Loop through the send queue, setting up transmit descriptors
1100 * until we drain the queue, or use up all available transmit
1101 * descriptors.
1102 */
1103 for (;;) {
1104 IFQ_POLL(&ifp->if_snd, m0);
1105 if (m0 == NULL)
1106 break;
1107
1108 if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1109 txreap(sc);
1110 if (sc->sc_txsfree == 0)
1111 break;
1112 }
1113 txs = &sc->sc_txsoft[sc->sc_txsnext];
1114 dmamap = txs->txs_dmamap;
1115
1116 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1117 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1118 if (error) {
1119 if (error == EFBIG) {
1120 aprint_error_dev(sc->sc_dev,
1121 "Tx packet consumes too many "
1122 "DMA segments, dropping...\n");
1123 IFQ_DEQUEUE(&ifp->if_snd, m0);
1124 m_freem(m0);
1125 continue;
1126 }
1127 /* Short on resources, just stop for now. */
1128 break;
1129 }
1130
1131 if (dmamap->dm_nsegs > sc->sc_txfree) {
1132 /*
1133 * Not enough free descriptors to transmit this
1134 * packet. We haven't committed anything yet,
1135 * so just unload the DMA map, put the packet
1136 * back on the queue, and punt. Notify the upper
1137 * layer that there are not more slots left.
1138 */
1139 ifp->if_flags |= IFF_OACTIVE;
1140 bus_dmamap_unload(sc->sc_dmat, dmamap);
1141 break;
1142 }
1143
1144 IFQ_DEQUEUE(&ifp->if_snd, m0);
1145
1146 /*
1147 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1148 */
1149
1150 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1151 BUS_DMASYNC_PREWRITE);
1152
1153 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1154 lasttx = -1;
1155 for (nexttx = sc->sc_txnext, seg = 0;
1156 seg < dmamap->dm_nsegs;
1157 seg++, nexttx = MD_NEXTTX(nexttx)) {
1158 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1159 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1160 /*
1161 * If this is the first descriptor we're
1162 * enqueueing, don't set the OWN bit just
1163 * yet. That could cause a race condition.
1164 * We'll do it below.
1165 */
1166 tdes->t3 = dmamap->dm_segs[seg].ds_len;
1167 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1168 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1169 tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
1170 (15 << T0_TRID) | T0_PT |
1171 sc->sc_t0coso | T0_TRS;
1172 tdes0 = T0_OWN; /* 2nd and other segments */
1173 lasttx = nexttx;
1174 }
1175 /*
1176 * Outgoing NFS mbuf must be unloaded when Tx completed.
1177 * Without T1_IC NFS mbuf is left unack'ed for excessive
1178 * time and NFS stops to proceed until scx_watchdog()
1179 * calls txreap() to reclaim the unack'ed mbuf.
1180 * It's painful to traverse every mbuf chain to determine
1181 * whether someone is waiting for Tx completion.
1182 */
1183 m = m0;
1184 do {
1185 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1186 sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
1187 break;
1188 }
1189 } while ((m = m->m_next) != NULL);
1190
1191 /* Write deferred 1st segment T0_OWN at the final stage */
1192 sc->sc_txdescs[lasttx].t0 |= T0_LS;
1193 sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
1194 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1195 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1196
1197 /* Tell DMA start transmit */
1198 /* CSR_WRITE(sc, MDTSC, 1); */
1199
1200 txs->txs_mbuf = m0;
1201 txs->txs_firstdesc = sc->sc_txnext;
1202 txs->txs_lastdesc = lasttx;
1203 txs->txs_ndesc = dmamap->dm_nsegs;
1204
1205 sc->sc_txfree -= txs->txs_ndesc;
1206 sc->sc_txnext = nexttx;
1207 sc->sc_txsfree--;
1208 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1209 /*
1210 * Pass the packet to any BPF listeners.
1211 */
1212 bpf_mtap(ifp, m0, BPF_D_OUT);
1213 }
1214
1215 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1216 /* No more slots left; notify upper layer. */
1217 ifp->if_flags |= IFF_OACTIVE;
1218 }
1219 if (sc->sc_txfree != ofree) {
1220 /* Set a watchdog timer in case the chip flakes out. */
1221 ifp->if_timer = 5;
1222 }
1223 }
1224
1225 static int
1226 scx_intr(void *arg)
1227 {
1228 struct scx_softc *sc = arg;
1229 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1230
1231 (void)ifp;
1232 rxintr(sc);
1233 txreap(sc);
1234 return 1;
1235 }
1236
1237 static void
1238 txreap(struct scx_softc *sc)
1239 {
1240 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1241 struct scx_txsoft *txs;
1242 uint32_t txstat;
1243 int i;
1244
1245 ifp->if_flags &= ~IFF_OACTIVE;
1246
1247 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1248 i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1249 txs = &sc->sc_txsoft[i];
1250
1251 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1252 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1253
1254 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1255 if (txstat & T0_OWN) /* desc is still in use */
1256 break;
1257
1258 /* There is no way to tell transmission status per frame */
1259
1260 if_statinc(ifp, if_opackets);
1261
1262 sc->sc_txfree += txs->txs_ndesc;
1263 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1264 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1265 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1266 m_freem(txs->txs_mbuf);
1267 txs->txs_mbuf = NULL;
1268 }
1269 sc->sc_txsdirty = i;
1270 if (sc->sc_txsfree == MD_TXQUEUELEN)
1271 ifp->if_timer = 0;
1272 }
1273
1274 static void
1275 rxintr(struct scx_softc *sc)
1276 {
1277 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1278 struct scx_rxsoft *rxs;
1279 struct mbuf *m;
1280 uint32_t rxstat;
1281 int i, len;
1282
1283 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1284 rxs = &sc->sc_rxsoft[i];
1285
1286 SCX_CDRXSYNC(sc, i,
1287 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1288
1289 rxstat = sc->sc_rxdescs[i].r0;
1290 if (rxstat & R0_OWN) /* desc is left empty */
1291 break;
1292
1293 /* R0_FS | R0_LS must have been marked for this desc */
1294
1295 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1296 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1297
1298 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1299 len -= ETHER_CRC_LEN; /* Trim CRC off */
1300 m = rxs->rxs_mbuf;
1301
1302 if (add_rxbuf(sc, i) != 0) {
1303 if_statinc(ifp, if_ierrors);
1304 SCX_INIT_RXDESC(sc, i);
1305 bus_dmamap_sync(sc->sc_dmat,
1306 rxs->rxs_dmamap, 0,
1307 rxs->rxs_dmamap->dm_mapsize,
1308 BUS_DMASYNC_PREREAD);
1309 continue;
1310 }
1311
1312 m_set_rcvif(m, ifp);
1313 m->m_pkthdr.len = m->m_len = len;
1314
1315 if (rxstat & R0_CSUM) {
1316 uint32_t csum = M_CSUM_IPv4;
1317 if (rxstat & R0_CERR)
1318 csum |= M_CSUM_IPv4_BAD;
1319 m->m_pkthdr.csum_flags |= csum;
1320 }
1321 if_percpuq_enqueue(ifp->if_percpuq, m);
1322 }
1323 sc->sc_rxptr = i;
1324 }
1325
1326 static int
1327 add_rxbuf(struct scx_softc *sc, int i)
1328 {
1329 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1330 struct mbuf *m;
1331 int error;
1332
1333 MGETHDR(m, M_DONTWAIT, MT_DATA);
1334 if (m == NULL)
1335 return ENOBUFS;
1336
1337 MCLGET(m, M_DONTWAIT);
1338 if ((m->m_flags & M_EXT) == 0) {
1339 m_freem(m);
1340 return ENOBUFS;
1341 }
1342
1343 if (rxs->rxs_mbuf != NULL)
1344 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1345
1346 rxs->rxs_mbuf = m;
1347
1348 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1349 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1350 if (error) {
1351 aprint_error_dev(sc->sc_dev,
1352 "can't load rx DMA map %d, error = %d\n", i, error);
1353 panic("add_rxbuf");
1354 }
1355
1356 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1357 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1358 SCX_INIT_RXDESC(sc, i);
1359
1360 return 0;
1361 }
1362
1363 static int
1364 spin_waitfor(struct scx_softc *sc, int reg, int exist)
1365 {
1366 int val, loop;
1367
1368 val = CSR_READ(sc, reg);
1369 if ((val & exist) == 0)
1370 return 0;
1371 loop = 3000;
1372 do {
1373 DELAY(10);
1374 val = CSR_READ(sc, reg);
1375 } while (--loop > 0 && (val & exist));
1376 return (loop > 0) ? 0 : ETIMEDOUT;
1377 }
1378
1379 static int
1380 mac_read(struct scx_softc *sc, int reg)
1381 {
1382
1383 CSR_WRITE(sc, MACCMD, reg);
1384 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1385 return CSR_READ(sc, MACDATA);
1386 }
1387
1388 static void
1389 mac_write(struct scx_softc *sc, int reg, int val)
1390 {
1391
1392 CSR_WRITE(sc, MACDATA, val);
1393 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
1394 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1395 }
1396
1397 static int
1398 get_mdioclk(uint32_t freq)
1399 {
1400
1401 const struct {
1402 uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
1403 } mdioclk[] = {
1404 { 35, 2 }, /* 25-35 MHz */
1405 { 60, 3 }, /* 35-60 MHz */
1406 { 100, 0 }, /* 60-100 MHz */
1407 { 150, 1 }, /* 100-150 MHz */
1408 { 250, 4 }, /* 150-250 MHz */
1409 { 300, 5 }, /* 250-300 MHz */
1410 };
1411 int i;
1412
1413 /* convert MDIO clk to a divisor value */
1414 if (freq < mdioclk[0].freq)
1415 return mdioclk[0].bit;
1416 for (i = 1; i < __arraycount(mdioclk); i++) {
1417 if (freq < mdioclk[i].freq)
1418 return mdioclk[i-1].bit;
1419 }
1420 return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
1421 }
1422
1423 static void
1424 loaducode(struct scx_softc *sc)
1425 {
1426 uint32_t up, lo, sz;
1427 uint64_t addr;
1428
1429 sc->sc_ucodeloaded = 1;
1430
1431 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1432 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1433 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1434 sz *= 4;
1435 addr = ((uint64_t)up << 32) | lo;
1436 aprint_normal_dev(sc->sc_dev, "H2M ucode %u\n", sz);
1437 injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
1438
1439 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1440 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1441 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1442 sz *= 4;
1443 addr = ((uint64_t)up << 32) | lo;
1444 injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
1445 aprint_normal_dev(sc->sc_dev, "M2H ucode %u\n", sz);
1446
1447 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1448 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1449 sz *= 4;
1450 injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
1451 aprint_normal_dev(sc->sc_dev, "PKT ucode %u\n", sz);
1452 }
1453
1454 static void
1455 injectucode(struct scx_softc *sc, int port,
1456 bus_addr_t addr, bus_size_t size)
1457 {
1458 bus_space_handle_t bsh;
1459 bus_size_t off;
1460 uint32_t ucode;
1461
1462 if (!bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1463 aprint_error_dev(sc->sc_dev,
1464 "eeprom map failure for ucode port 0x%x\n", port);
1465 return;
1466 }
1467 for (off = 0; off < size; off += 4) {
1468 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1469 CSR_WRITE(sc, port, ucode);
1470 }
1471 bus_space_unmap(sc->sc_st, bsh, size);
1472 }
1473