if_scx.c revision 1.9 1 /* $NetBSD: if_scx.c,v 1.9 2020/03/24 10:47:03 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #define NOT_MP_SAFE 0
33
34 /*
35 * Socionext SC2A11 SynQuacer NetSec GbE driver
36 *
37 * (possibly incorrect notes to be removed eventually)
38 * - 32 byte descriptor for 64 bit paddr design.
39 * - multiple rings seems available. There are special descriptor fields
40 * to designify ring number from which to arrive or to which go.
41 * - memory mapped EEPROM to hold MAC address. The rest of the area is
42 * occupied by a set of ucode for two DMA engines and one packet engine.
43 * - The size of frame address filter is unknown. Might be 16 or even 128.
44 * - The first slot is my own station address. Always enabled to perform
45 * to identify oneself.
46 * - 1~16 are for supplimental MAC addresses. Independently enabled for
47 * use. Good to catch multicast. Byte-wise selective match available.
48 * Use the mask to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
49 * - 16~128 might be exact match without byte-mask.
50 * - The size of multicast hash filter store is unknown. Might be 256 bit.
51 * - Socionext/Linaro "NetSec" code makes many cut shorts. Some constants
52 * are left unexplained. The values should be handled via external
53 * controls like FDT descriptions. Fortunately, Intel/Altera CycloneV PDFs
54 * describe every detail of "such the instance of" DW EMAC IP and
55 * most of them are likely applicable to SC2A11 GbE.
56 */
57
58 #include <sys/cdefs.h>
59 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.9 2020/03/24 10:47:03 nisimura Exp $");
60
61 #include <sys/param.h>
62 #include <sys/bus.h>
63 #include <sys/intr.h>
64 #include <sys/device.h>
65 #include <sys/callout.h>
66 #include <sys/mbuf.h>
67 #include <sys/malloc.h>
68 #include <sys/errno.h>
69 #include <sys/rndsource.h>
70 #include <sys/kernel.h>
71 #include <sys/systm.h>
72
73 #include <net/if.h>
74 #include <net/if_media.h>
75 #include <net/if_dl.h>
76 #include <net/if_ether.h>
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <net/bpf.h>
80
81 #include <dev/fdt/fdtvar.h>
82 #include <dev/acpi/acpireg.h>
83 #include <dev/acpi/acpivar.h>
84 #include <dev/acpi/acpi_intr.h>
85
86 #define SWRESET 0x104
87 #define COMINIT 0x120
88 #define INTRST 0x200
89 #define IRQ_RX (1U<<1)
90 #define IRQ_TX (1U<<0)
91 #define INTREN 0x204
92 #define INTR_SET 0x234
93 #define INTR_CLR 0x238
94 #define TXINTST 0x400
95 #define TXINTEN 0x404
96 #define TXINT_SET 0x428
97 #define TXINT_CLR 0x42c
98 #define TXI_NTOWNR (1U<<17)
99 #define TXI_TR_ERR (1U<<16)
100 #define TXI_TXDONE (1U<<15)
101 #define TXI_TMREXP (1U<<14)
102 #define RXINTST 0x440
103 #define RXINTEN 0x444
104 #define RXINT_SET 0x468
105 #define RXINT_CLR 0x46c
106 #define RXI_RC_ERR (1U<<16)
107 #define RXI_PKTCNT (1U<<15)
108 #define RXI_TMREXP (1U<<14)
109 #define TXTIMER 0x41c
110 #define RXTIMER 0x45c
111 #define TXCOUNT 0x410
112 #define RXCOUNT 0x454
113 #define H2MENG 0x210 /* DMAC host2media ucode port */
114 #define M2HENG 0x21c /* DMAC media2host ucode port */
115 #define PKTENG 0x0d0 /* packet engine ucode port */
116 #define HWVER0 0x22c
117 #define HWVER1 0x230
118
119 #define MACSTAT 0x1024 /* gmac status */
120 #define MACDATA 0x11c0 /* gmac rd/wr data */
121 #define MACCMD 0x11c4 /* gmac operation */
122 #define CMD_IOWR (1U<<28) /* write op */
123 #define CMD_BUSY (1U<<31) /* busy bit */
124 #define DESCENG_INIT 0x11fc
125 #define DESCENG_SRST 0x1204
126
127 #define GMACMCR 0x0000 /* MAC configuration */
128 #define MCR_IBN (1U<<30) /* */
129 #define MCR_CST (1U<<25) /* strip CRC */
130 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */
131 #define MCR_JE (1U<<20) /* ignore oversized >9018 condition */
132 #define MCR_USEMII (1U<<15) /* 1: RMII/MII, 0: RGMII */
133 #define MCR_SPD100 (1U<<14) /* force speed 100 */
134 #define MCR_USEFDX (1U<<11) /* force full duplex */
135 #define MCR_IPCKEN (1U<<10) /* handle checksum */
136 #define MCR_ACS (1U<<7) /* auto pad strip CRC */
137 #define MCR_TXE (1U<<3) /* start Tx DMA engine */
138 #define MCR_RXE (1U<<2) /* start Rx DMA engine */
139 #define _MCR_FDX 0x0000280c /* XXX TBD */
140 #define _MCR_HDX 0x0001a00c /* XXX TBD */
141 #define GMACAFR 0x0004 /* frame DA/SA address filter */
142 #define AFR_RA (1U<<31) /* receive block all on */
143 #define AFR_HPF (1U<<10) /* activate hash or perfect filter */
144 #define AFR_SAF (1U<<9) /* source address filter */
145 #define AFR_SAIF (1U<<8) /* SA inverse filtering */
146 #define AFR_PCF (3U<<6) /* */
147 #define AFR_RB (1U<<5) /* reject broadcast frame */
148 #define AFR_AM (1U<<4) /* accept all multicast frame */
149 #define AFR_DAIF (1U<<3) /* DA inverse filtering */
150 #define AFR_MHTE (1U<<2) /* use multicast hash table */
151 #define AFR_UHTE (1U<<1) /* use additional MAC addresses */
152 #define AFR_PM (1U<<0) /* run promisc mode */
153 #define _AFR 0x80000001 /* XXX TBD */
154 #define GMACMHTH 0x0008 /* XXX multicast hash table 63:32 */
155 #define GMACMHTL 0x000c /* XXX multicast hash table 31:0 */
156 #define GMACGAR 0x0010 /* MDIO operation */
157 #define GAR_PHY (11) /* mii phy 15:11 */
158 #define GAR_REG (6) /* mii reg 10:6 */
159 #define GAR_CTL (2) /* control 5:2 */
160 #define GAR_IOWR (1U<<1) /* MDIO write op */
161 #define GAR_BUSY (1U) /* busy bit */
162 #define GMACGDR 0x0014 /* MDIO rd/wr data */
163 #define GMACFCR 0x0018 /* 802.3x flowcontrol */
164 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */
165 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */
166 #define GMACVTAG 0x001c /* VLAN tag control */
167 #define GMACIMPL 0x0020 /* implementation number XXXX.YYYY */
168 #define GMACMAH0 0x0040 /* MAC address 0 47:32 */
169 #define GMACMAL0 0x0044 /* MAC address 0 31:0 */
170 #define GMACMAH(i) ((i)*8+0x40) /* supplimental MAC addr 1 - 15 */
171 #define GMACMAL(i) ((i)*8+0x44)
172 #define GMACMHT0 0x0500 /* multicast hash table 0 - 7 */
173 #define GMACMHT(i) ((i)*4+0500)
174
175 #define GMACBMR 0x1000 /* DMA bus mode control
176 * 24 4PBL
177 * 22:17 RPBL
178 * 16 fix burst
179 * 15:14 priority between Rx and Tx
180 * 3 rxtx41
181 * 2 rxtx31
182 * 1 rxtx21
183 * 0 rxtx11
184 * 13:8 PBL possible DMA burst len
185 * 0 reset op. self clear
186 */
187 #define _BMR 0x00412080 /* XXX TBD */
188 #define _BMR0 0x00020181 /* XXX TBD */
189 #define BMR_RST (1U<<0) /* reset op. self clear when done */
190 #define GMACRDLAR 0x100c /* */
191 #define _RDLAR 0x18000 /* XXX TBD */
192 #define GMACTDLAR 0x1010 /* */
193 #define _TDLAR 0x1c000 /* XXX TBD */
194 #define GMACOMR 0x1018 /* DMA operation */
195 #define OMR_TXE (1U<<13) /* start Tx DMA engine, 0 to stop */
196 #define OMR_RXE (1U<<1) /* start Rx DMA engine, 0 to stop */
197
198 static int get_mdioclk(uint32_t);
199
200 /* descriptor format definition */
201 struct tdes {
202 uint32_t t0, t1, t2, t3;
203 };
204
205 struct rdes {
206 uint32_t r0, r1, r2, r3;
207 };
208
209 #define T0_OWN (1U<<31) /* desc is ready to Tx */
210 #define T0_EOD (1U<<30) /* end of descriptor array */
211 #define T0_DRID (24) /* 29:24 D-RID */
212 #define T0_PT (1U<<21) /* 23:21 PT */
213 #define T0_TRID (16) /* 20:16 T-RID */
214 #define T0_FS (1U<<9) /* first segment of frame */
215 #define T0_LS (1U<<8) /* last segment of frame */
216 #define T0_CSUM (1U<<7) /* enable check sum offload */
217 #define T0_SGOL (1U<<6) /* enable TCP segment offload */
218 #define T0_TRS (1U<<4) /* 5:4 TRS */
219 #define T0_IOC (0) /* XXX TBD interrupt when completed */
220 /* T1 segment address 63:32 */
221 /* T2 segment address 31:0 */
222 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
223 #define R0_OWN (1U<<31) /* desc is empty */
224 #define R0_EOD (1U<<30) /* end of descriptor array */
225 #define R0_SRID (24) /* 29:24 S-RID */
226 #define R0_FR (1U<<23) /* FR */
227 #define R0_ER (1U<<21) /* Rx error indication */
228 #define R0_ERR (3U<<16) /* 18:16 receive error code */
229 #define R0_TDRID (14) /* 15:14 TD-RID */
230 #define R0_FS (1U<<9) /* first segment of frame */
231 #define R0_LS (1U<<8) /* last segment of frame */
232 #define R0_CSUM (3U<<6) /* 7:6 checksum status */
233 #define R0_CERR (2U<<6) /* 0 (undone), 1 (found ok), 2 (bad) */
234 /* R1 frame address 63:32 */
235 /* R2 frame address 31:0 */
236 /* R3 31:16 received frame length, 15:0 buffer length to receive */
237
238 #define MD_NTXSEGS 16 /* fixed */
239 #define MD_TXQUEUELEN 16 /* tunable */
240 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1)
241 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4)
242 #define MD_NTXDESC (MD_TXQUEUELEN * MD_NTXSEGS)
243 #define MD_NTXDESC_MASK (MD_NTXDESC - 1)
244 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK)
245 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK)
246
247 #define MD_NRXDESC 64 /* tunable */
248 #define MD_NRXDESC_MASK (MD_NRXDESC - 1)
249 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK)
250
251 #define SCX_INIT_RXDESC(sc, x) \
252 do { \
253 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
254 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
255 struct mbuf *__m = __rxs->rxs_mbuf; \
256 bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr; \
257 __m->m_data = __m->m_ext.ext_buf; \
258 __rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len; \
259 __rxd->r2 = htole32(BUS_ADDR_LO32(__paddr)); \
260 __rxd->r1 = htole32(BUS_ADDR_HI32(__paddr)); \
261 __rxd->r0 = R0_OWN | R0_FS | R0_LS; \
262 if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD; \
263 } while (/*CONSTCOND*/0)
264
265 struct control_data {
266 struct tdes cd_txdescs[MD_NTXDESC];
267 struct rdes cd_rxdescs[MD_NRXDESC];
268 };
269 #define SCX_CDOFF(x) offsetof(struct control_data, x)
270 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)])
271 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)])
272
273 struct scx_txsoft {
274 struct mbuf *txs_mbuf; /* head of our mbuf chain */
275 bus_dmamap_t txs_dmamap; /* our DMA map */
276 int txs_firstdesc; /* first descriptor in packet */
277 int txs_lastdesc; /* last descriptor in packet */
278 int txs_ndesc; /* # of descriptors used */
279 };
280
281 struct scx_rxsoft {
282 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
283 bus_dmamap_t rxs_dmamap; /* our DMA map */
284 };
285
286 struct scx_softc {
287 device_t sc_dev; /* generic device information */
288 bus_space_tag_t sc_st; /* bus space tag */
289 bus_space_handle_t sc_sh; /* bus space handle */
290 bus_size_t sc_sz; /* csr map size */
291 bus_space_handle_t sc_eesh; /* eeprom section handle */
292 bus_size_t sc_eesz; /* eeprom map size */
293 bus_dma_tag_t sc_dmat; /* bus DMA tag */
294 struct ethercom sc_ethercom; /* Ethernet common data */
295 struct mii_data sc_mii; /* MII */
296 callout_t sc_tick_ch; /* PHY monitor callout */
297 bus_dma_segment_t sc_seg; /* descriptor store seg */
298 int sc_nseg; /* descriptor store nseg */
299 void *sc_ih; /* interrupt cookie */
300 int sc_phy_id; /* PHY address */
301 int sc_flowflags; /* 802.3x PAUSE flow control */
302 uint32_t sc_mdclk; /* GAR 5:2 clock selection */
303 uint32_t sc_t0coso; /* T0_CSUM | T0_SGOL to run */
304 int sc_ucodeloaded; /* ucode for H2M/M2H/PKT */
305 int sc_100mii; /* 1 for RMII/MII, 0 for RGMII */
306 int sc_phandle; /* fdt phandle */
307
308 bus_dmamap_t sc_cddmamap; /* control data DMA map */
309 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
310
311 struct control_data *sc_control_data;
312 #define sc_txdescs sc_control_data->cd_txdescs
313 #define sc_rxdescs sc_control_data->cd_rxdescs
314
315 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
316 struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
317 int sc_txfree; /* number of free Tx descriptors */
318 int sc_txnext; /* next ready Tx descriptor */
319 int sc_txsfree; /* number of free Tx jobs */
320 int sc_txsnext; /* next ready Tx job */
321 int sc_txsdirty; /* dirty Tx jobs */
322 int sc_rxptr; /* next ready Rx descriptor/descsoft */
323
324 krndsource_t rnd_source; /* random source */
325 };
326
327 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x)))
328 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x)))
329
330 #define SCX_CDTXSYNC(sc, x, n, ops) \
331 do { \
332 int __x, __n; \
333 \
334 __x = (x); \
335 __n = (n); \
336 \
337 /* If it will wrap around, sync to the end of the ring. */ \
338 if ((__x + __n) > MD_NTXDESC) { \
339 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
340 SCX_CDTXOFF(__x), sizeof(struct tdes) * \
341 (MD_NTXDESC - __x), (ops)); \
342 __n -= (MD_NTXDESC - __x); \
343 __x = 0; \
344 } \
345 \
346 /* Now sync whatever is left. */ \
347 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
348 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
349 } while (/*CONSTCOND*/0)
350
351 #define SCX_CDRXSYNC(sc, x, ops) \
352 do { \
353 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
354 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
355 } while (/*CONSTCOND*/0)
356
357 static int scx_fdt_match(device_t, cfdata_t, void *);
358 static void scx_fdt_attach(device_t, device_t, void *);
359 static int scx_acpi_match(device_t, cfdata_t, void *);
360 static void scx_acpi_attach(device_t, device_t, void *);
361
362 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
363 scx_fdt_match, scx_fdt_attach, NULL, NULL);
364
365 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
366 scx_acpi_match, scx_acpi_attach, NULL, NULL);
367
368 static void scx_attach_i(struct scx_softc *);
369 static void scx_reset(struct scx_softc *);
370 static int scx_init(struct ifnet *);
371 static void scx_start(struct ifnet *);
372 static void scx_stop(struct ifnet *, int);
373 static void scx_watchdog(struct ifnet *);
374 static int scx_ioctl(struct ifnet *, u_long, void *);
375 static void scx_set_rcvfilt(struct scx_softc *);
376 static int scx_ifmedia_upd(struct ifnet *);
377 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
378 static void mii_statchg(struct ifnet *);
379 static void phy_tick(void *);
380 static int mii_readreg(device_t, int, int, uint16_t *);
381 static int mii_writereg(device_t, int, int, uint16_t);
382 static int scx_intr(void *);
383 static void txreap(struct scx_softc *);
384 static void rxintr(struct scx_softc *);
385 static int add_rxbuf(struct scx_softc *, int);
386 static int spin_waitfor(struct scx_softc *, int, int);
387 static int mac_read(struct scx_softc *, int);
388 static void mac_write(struct scx_softc *, int, int);
389 static void loaducode(struct scx_softc *);
390 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
391
392 #define CSR_READ(sc,off) \
393 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
394 #define CSR_WRITE(sc,off,val) \
395 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
396 #define EE_READ(sc,off) \
397 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
398
399 static int
400 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
401 {
402 static const char * compatible[] = {
403 "socionext,synquacer-netsec",
404 NULL
405 };
406 struct fdt_attach_args * const faa = aux;
407
408 return of_match_compatible(faa->faa_phandle, compatible);
409 }
410
411 static void
412 scx_fdt_attach(device_t parent, device_t self, void *aux)
413 {
414 struct scx_softc * const sc = device_private(self);
415 struct fdt_attach_args * const faa = aux;
416 const int phandle = faa->faa_phandle;
417 bus_space_tag_t bst = faa->faa_bst;
418 bus_space_handle_t bsh;
419 bus_space_handle_t eebsh;
420 bus_addr_t addr[2];
421 bus_size_t size[2];
422 char intrstr[128];
423 const char *phy_mode;
424
425 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
426 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
427 aprint_error(": unable to map device csr\n");
428 return;
429 }
430 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
431 aprint_error(": failed to decode interrupt\n");
432 goto fail;
433 }
434 sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
435 NOT_MP_SAFE, scx_intr, sc);
436 if (sc->sc_ih == NULL) {
437 aprint_error_dev(self, "couldn't establish interrupt\n");
438 goto fail;
439 }
440 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
441 || bus_space_map(faa->faa_bst, addr[0], size[1], 0, &eebsh) != 0) {
442 aprint_error(": unable to map device eeprom\n");
443 goto fail;
444 }
445
446 phy_mode = fdtbus_get_string(phandle, "phy-mode");
447 if (phy_mode == NULL) {
448 aprint_error(": missing 'phy-mode' property\n");
449 phy_mode = "rgmii";
450 }
451
452 aprint_naive("\n");
453 aprint_normal(": Gigabit Ethernet Controller\n");
454 aprint_normal_dev(self, "interrupt on %s\n", intrstr);
455
456 sc->sc_dev = self;
457 sc->sc_st = bst;
458 sc->sc_sh = bsh;
459 sc->sc_sz = size[0];
460 sc->sc_eesh = eebsh;
461 sc->sc_eesz = size[1];
462 sc->sc_dmat = faa->faa_dmat;
463 sc->sc_phandle = phandle;
464 sc->sc_100mii = (strcmp(phy_mode, "rgmii") != 0);
465
466 scx_attach_i(sc);
467 return;
468 fail:
469 if (sc->sc_eesz)
470 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
471 if (sc->sc_sz)
472 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
473 return;
474 }
475
476 static int
477 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
478 {
479 static const char * compatible[] = {
480 "SCX0001",
481 NULL
482 };
483 struct acpi_attach_args *aa = aux;
484
485 if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
486 return 0;
487 return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
488 }
489
490 static void
491 scx_acpi_attach(device_t parent, device_t self, void *aux)
492 {
493 struct scx_softc * const sc = device_private(self);
494 struct acpi_attach_args * const aa = aux;
495 ACPI_HANDLE handle = aa->aa_node->ad_handle;
496 bus_space_tag_t bst = aa->aa_memt;
497 bus_space_handle_t bsh, eebsh;
498 struct acpi_resources res;
499 struct acpi_mem *mem;
500 struct acpi_irq *irq;
501 ACPI_STATUS rv;
502
503 rv = acpi_resource_parse(self, handle, "_CRS",
504 &res, &acpi_resource_parse_ops_default);
505 if (ACPI_FAILURE(rv))
506 return;
507 mem = acpi_res_mem(&res, 0);
508 irq = acpi_res_irq(&res, 0);
509 if (mem == NULL || irq == NULL || mem->ar_length == 0) {
510 aprint_error(": incomplete csr resources\n");
511 return;
512 }
513 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
514 aprint_error(": couldn't map registers\n");
515 return;
516 }
517 sc->sc_sz = mem->ar_length;
518 sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
519 NOT_MP_SAFE, scx_intr, sc, device_xname(self));
520 if (sc->sc_ih == NULL) {
521 aprint_error_dev(self, "couldn't establish interrupt\n");
522 goto fail;
523 }
524 mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
525 if (mem == NULL || mem->ar_length == 0) {
526 aprint_error(": incomplete eeprom resources\n");
527 goto fail;
528 }
529 if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
530 aprint_error(": couldn't map registers\n");
531 goto fail;
532 }
533 sc->sc_eesz = mem->ar_length;
534
535 aprint_naive("\n");
536 aprint_normal(": Gigabit Ethernet Controller\n");
537
538 sc->sc_dev = self;
539 sc->sc_st = bst;
540 sc->sc_sh = bsh;
541 sc->sc_eesh = eebsh;
542 sc->sc_dmat = aa->aa_dmat64;
543
544 scx_attach_i(sc);
545
546 acpi_resource_cleanup(&res);
547 return;
548 fail:
549 if (sc->sc_eesz > 0)
550 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
551 if (sc->sc_sz > 0)
552 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
553 acpi_resource_cleanup(&res);
554 return;
555 }
556
557 static void
558 scx_attach_i(struct scx_softc *sc)
559 {
560 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
561 struct mii_data * const mii = &sc->sc_mii;
562 struct ifmedia * const ifm = &mii->mii_media;
563 uint32_t hwver, phyfreq;
564 uint8_t enaddr[ETHER_ADDR_LEN];
565 bus_dma_segment_t seg;
566 uint32_t csr;
567 int i, nseg, error = 0;
568
569 hwver = CSR_READ(sc, HWVER1);
570 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
571 enaddr[0] = csr >> 24;
572 enaddr[1] = csr >> 16;
573 enaddr[2] = csr >> 8;
574 enaddr[3] = csr;
575 csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
576 enaddr[4] = csr >> 24;
577 enaddr[5] = csr >> 16;
578 csr = CSR_READ(sc, GMACIMPL);
579
580 aprint_normal_dev(sc->sc_dev, "NetSec GbE (%d.%d) impl (%x.%x)\n",
581 hwver >> 16, hwver & 0xffff, csr >> 16, csr & 0xffff);
582 aprint_normal_dev(sc->sc_dev,
583 "Ethernet address %s\n", ether_sprintf(enaddr));
584
585 phyfreq = 0;
586 sc->sc_phy_id = MII_PHY_ANY;
587 sc->sc_mdclk = get_mdioclk(phyfreq); /* 5:2 clk control */
588
589 sc->sc_flowflags = 0;
590
591 if (sc->sc_ucodeloaded == 0)
592 loaducode(sc);
593
594 mii->mii_ifp = ifp;
595 mii->mii_readreg = mii_readreg;
596 mii->mii_writereg = mii_writereg;
597 mii->mii_statchg = mii_statchg;
598
599 sc->sc_ethercom.ec_mii = mii;
600 ifmedia_init(ifm, 0, scx_ifmedia_upd, scx_ifmedia_sts);
601 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
602 MII_OFFSET_ANY, MIIF_DOPAUSE);
603 if (LIST_FIRST(&mii->mii_phys) == NULL) {
604 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
605 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
606 } else
607 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
608 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
609
610 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
611 ifp->if_softc = sc;
612 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
613 ifp->if_ioctl = scx_ioctl;
614 ifp->if_start = scx_start;
615 ifp->if_watchdog = scx_watchdog;
616 ifp->if_init = scx_init;
617 ifp->if_stop = scx_stop;
618 IFQ_SET_READY(&ifp->if_snd);
619
620 if_attach(ifp);
621 if_deferred_start_init(ifp, NULL);
622 ether_ifattach(ifp, enaddr);
623
624 callout_init(&sc->sc_tick_ch, 0);
625 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
626
627 /*
628 * Allocate the control data structures, and create and load the
629 * DMA map for it.
630 */
631 error = bus_dmamem_alloc(sc->sc_dmat,
632 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
633 if (error != 0) {
634 aprint_error_dev(sc->sc_dev,
635 "unable to allocate control data, error = %d\n", error);
636 goto fail_0;
637 }
638 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
639 sizeof(struct control_data), (void **)&sc->sc_control_data,
640 BUS_DMA_COHERENT);
641 if (error != 0) {
642 aprint_error_dev(sc->sc_dev,
643 "unable to map control data, error = %d\n", error);
644 goto fail_1;
645 }
646 error = bus_dmamap_create(sc->sc_dmat,
647 sizeof(struct control_data), 1,
648 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
649 if (error != 0) {
650 aprint_error_dev(sc->sc_dev,
651 "unable to create control data DMA map, "
652 "error = %d\n", error);
653 goto fail_2;
654 }
655 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
656 sc->sc_control_data, sizeof(struct control_data), NULL, 0);
657 if (error != 0) {
658 aprint_error_dev(sc->sc_dev,
659 "unable to load control data DMA map, error = %d\n",
660 error);
661 goto fail_3;
662 }
663 for (i = 0; i < MD_TXQUEUELEN; i++) {
664 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
665 MD_NTXSEGS, MCLBYTES, 0, 0,
666 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
667 aprint_error_dev(sc->sc_dev,
668 "unable to create tx DMA map %d, error = %d\n",
669 i, error);
670 goto fail_4;
671 }
672 }
673 for (i = 0; i < MD_NRXDESC; i++) {
674 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
675 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
676 aprint_error_dev(sc->sc_dev,
677 "unable to create rx DMA map %d, error = %d\n",
678 i, error);
679 goto fail_5;
680 }
681 sc->sc_rxsoft[i].rxs_mbuf = NULL;
682 }
683 sc->sc_seg = seg;
684 sc->sc_nseg = nseg;
685 printf("bus_dmaseg ds_addr %08lx, ds_len %08lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
686
687 if (pmf_device_register(sc->sc_dev, NULL, NULL))
688 pmf_class_network_register(sc->sc_dev, ifp);
689 else
690 aprint_error_dev(sc->sc_dev,
691 "couldn't establish power handler\n");
692
693 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
694 RND_TYPE_NET, RND_FLAG_DEFAULT);
695
696 return;
697
698 fail_5:
699 for (i = 0; i < MD_NRXDESC; i++) {
700 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
701 bus_dmamap_destroy(sc->sc_dmat,
702 sc->sc_rxsoft[i].rxs_dmamap);
703 }
704 fail_4:
705 for (i = 0; i < MD_TXQUEUELEN; i++) {
706 if (sc->sc_txsoft[i].txs_dmamap != NULL)
707 bus_dmamap_destroy(sc->sc_dmat,
708 sc->sc_txsoft[i].txs_dmamap);
709 }
710 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
711 fail_3:
712 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
713 fail_2:
714 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
715 sizeof(struct control_data));
716 fail_1:
717 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
718 fail_0:
719 if (sc->sc_phandle)
720 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
721 else
722 acpi_intr_disestablish(sc->sc_ih);
723 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
724 return;
725 }
726
727 static void
728 scx_reset(struct scx_softc *sc)
729 {
730
731 mac_write(sc, GMACBMR, BMR_RST); /* may take for a while */
732 (void)spin_waitfor(sc, GMACBMR, BMR_RST);
733
734 CSR_WRITE(sc, DESCENG_SRST, 1);
735 CSR_WRITE(sc, DESCENG_INIT, 1);
736 mac_write(sc, GMACBMR, _BMR);
737 mac_write(sc, GMACRDLAR, _RDLAR);
738 mac_write(sc, GMACTDLAR, _TDLAR);
739 mac_write(sc, GMACAFR, _AFR);
740 }
741
742 static int
743 scx_init(struct ifnet *ifp)
744 {
745 struct scx_softc *sc = ifp->if_softc;
746 const uint8_t *ea = CLLADDR(ifp->if_sadl);
747 uint32_t csr;
748 int i;
749
750 /* Cancel pending I/O. */
751 scx_stop(ifp, 0);
752
753 /* Reset the chip to a known state. */
754 scx_reset(sc);
755
756 /* build sane Tx and load Rx descriptors with mbuf */
757 for (i = 0; i < MD_NTXDESC; i++)
758 sc->sc_txdescs[i].t0 = T0_OWN;
759 sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
760 for (i = 0; i < MD_NRXDESC; i++)
761 (void)add_rxbuf(sc, i);
762
763 /* set my address in perfect match slot 0 */
764 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0];
765 CSR_WRITE(sc, GMACMAL0, csr);
766 csr = (ea[5] << 8) | ea[4];
767 CSR_WRITE(sc, GMACMAH0, csr | 1U<<31); /* always valid? */
768
769 /* accept multicast frame or run promisc mode */
770 scx_set_rcvfilt(sc);
771
772 (void)scx_ifmedia_upd(ifp);
773
774 /* kick to start GMAC engine */
775 csr = mac_read(sc, GMACOMR);
776 CSR_WRITE(sc, RXINT_CLR, ~0);
777 CSR_WRITE(sc, TXINT_CLR, ~0);
778 mac_write(sc, GMACOMR, csr | OMR_RXE | OMR_TXE);
779
780 ifp->if_flags |= IFF_RUNNING;
781 ifp->if_flags &= ~IFF_OACTIVE;
782
783 /* start one second timer */
784 callout_schedule(&sc->sc_tick_ch, hz);
785
786 return 0;
787 }
788
789 static void
790 scx_stop(struct ifnet *ifp, int disable)
791 {
792 struct scx_softc *sc = ifp->if_softc;
793
794 /* Stop the one second clock. */
795 callout_stop(&sc->sc_tick_ch);
796
797 /* Down the MII. */
798 mii_down(&sc->sc_mii);
799
800 /* Mark the interface down and cancel the watchdog timer. */
801 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
802 ifp->if_timer = 0;
803 }
804
805 static void
806 scx_watchdog(struct ifnet *ifp)
807 {
808 struct scx_softc *sc = ifp->if_softc;
809
810 /*
811 * Since we're not interrupting every packet, sweep
812 * up before we report an error.
813 */
814 txreap(sc);
815
816 if (sc->sc_txfree != MD_NTXDESC) {
817 aprint_error_dev(sc->sc_dev,
818 "device timeout (txfree %d txsfree %d txnext %d)\n",
819 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
820 if_statinc(ifp, if_oerrors);
821
822 /* Reset the interface. */
823 scx_init(ifp);
824 }
825
826 scx_start(ifp);
827 }
828
829 static int
830 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
831 {
832 struct scx_softc *sc = ifp->if_softc;
833 struct ifreq *ifr = (struct ifreq *)data;
834 struct ifmedia *ifm;
835 int s, error;
836
837 s = splnet();
838
839 switch (cmd) {
840 case SIOCSIFMEDIA:
841 /* Flow control requires full-duplex mode. */
842 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
843 (ifr->ifr_media & IFM_FDX) == 0)
844 ifr->ifr_media &= ~IFM_ETH_FMASK;
845 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
846 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
847 /* We can do both TXPAUSE and RXPAUSE. */
848 ifr->ifr_media |=
849 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
850 }
851 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
852 }
853 ifm = &sc->sc_mii.mii_media;
854 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
855 break;
856 default:
857 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
858 break;
859
860 error = 0;
861
862 if (cmd == SIOCSIFCAP)
863 error = (*ifp->if_init)(ifp);
864 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
865 ;
866 else if (ifp->if_flags & IFF_RUNNING) {
867 /*
868 * Multicast list has changed; set the hardware filter
869 * accordingly.
870 */
871 scx_set_rcvfilt(sc);
872 }
873 break;
874 }
875
876 splx(s);
877 return error;
878 }
879
880 static void
881 scx_set_rcvfilt(struct scx_softc *sc)
882 {
883 struct ethercom * const ec = &sc->sc_ethercom;
884 struct ifnet * const ifp = &ec->ec_if;
885 struct ether_multistep step;
886 struct ether_multi *enm;
887 uint32_t mchash[8]; /* 8x 32 = 256 bit */
888 uint32_t csr, crc;
889 int i;
890
891 csr = CSR_READ(sc, GMACAFR);
892 csr &= ~(AFR_PM | AFR_AM | AFR_MHTE);
893 CSR_WRITE(sc, GMACAFR, csr);
894
895 ETHER_LOCK(ec);
896 if (ifp->if_flags & IFF_PROMISC) {
897 ec->ec_flags |= ETHER_F_ALLMULTI;
898 ETHER_UNLOCK(ec);
899 goto update;
900 }
901 ec->ec_flags &= ~ETHER_F_ALLMULTI;
902
903 /* clear 15 entry supplimental perfect match filter */
904 for (i = 1; i < 16; i++)
905 CSR_WRITE(sc, GMACMAH(i), 0);
906 /* build 256 bit multicast hash filter */
907 memset(mchash, 0, sizeof(mchash));
908 crc = 0;
909
910 ETHER_FIRST_MULTI(step, ec, enm);
911 i = 1; /* slot 0 is occupied */
912 while (enm != NULL) {
913 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
914 /*
915 * We must listen to a range of multicast addresses.
916 * For now, just accept all multicasts, rather than
917 * trying to set only those filter bits needed to match
918 * the range. (At this time, the only use of address
919 * ranges is for IP multicast routing, for which the
920 * range is big enough to require all bits set.)
921 */
922 ec->ec_flags |= ETHER_F_ALLMULTI;
923 ETHER_UNLOCK(ec);
924 goto update;
925 }
926 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
927 if (i < 16) {
928 /* use 15 entry perfect match filter */
929 uint32_t addr;
930 uint8_t *ep = enm->enm_addrlo;
931 addr = (ep[3] << 24) | (ep[2] << 16)
932 | (ep[1] << 8) | ep[0];
933 CSR_WRITE(sc, GMACMAL(i), addr);
934 addr = (ep[5] << 8) | ep[4];
935 CSR_WRITE(sc, GMACMAH(i), addr | 1U<<31);
936 } else {
937 /* use hash table when too many */
938 /* bit_reserve_32(~crc) !? */
939 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
940 /* 3(31:29) 5(28:24) bit sampling */
941 mchash[crc >> 29] |= 1 << ((crc >> 24) & 0x1f);
942 }
943 ETHER_NEXT_MULTI(step, enm);
944 i++;
945 }
946 ETHER_UNLOCK(ec);
947
948 if (crc)
949 csr |= AFR_MHTE;
950 for (i = 0; i < __arraycount(mchash); i++)
951 CSR_WRITE(sc, GMACMHT(i), mchash[i]);
952 CSR_WRITE(sc, GMACAFR, csr);
953 return;
954
955 update:
956 /* With PM or AM, MHTE/MHT0-7 are never consulted. really? */
957 if (ifp->if_flags & IFF_PROMISC)
958 csr |= AFR_PM; /* run promisc. mode */
959 else
960 csr |= AFR_AM; /* accept all multicast */
961 CSR_WRITE(sc, GMACAFR, csr);
962 return;
963 }
964
965 static int
966 scx_ifmedia_upd(struct ifnet *ifp)
967 {
968 struct scx_softc *sc = ifp->if_softc;
969 struct ifmedia *ifm = &sc->sc_mii.mii_media;
970
971 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
972 ; /* restart AN */
973 ; /* enable AN */
974 ; /* advertise flow control pause */
975 ; /* adv. 100FDX,100HDX,10FDX,10HDX */
976 } else {
977 #if 1 /* XXX not sure to belong here XXX */
978 uint32_t mcr = mac_read(sc, GMACMCR);
979 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_1000_T)
980 mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
981 else {
982 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX
983 && sc->sc_100mii)
984 mcr |= MCR_SPD100;
985 mcr |= MCR_USEMII;
986 }
987 if (ifm->ifm_cur->ifm_media & IFM_FDX)
988 mcr |= MCR_USEFDX;
989 mcr |= MCR_CST | MCR_JE;
990 if (sc->sc_100mii == 0)
991 mcr |= MCR_IBN;
992 mac_write(sc, GMACMCR, mcr);
993 #endif
994 }
995 return 0;
996 }
997
998 static void
999 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1000 {
1001 struct scx_softc *sc = ifp->if_softc;
1002 struct mii_data *mii = &sc->sc_mii;
1003
1004 mii_pollstat(mii);
1005 ifmr->ifm_status = mii->mii_media_status;
1006 ifmr->ifm_active = sc->sc_flowflags |
1007 (mii->mii_media_active & ~IFM_ETH_FMASK);
1008 }
1009
1010 void
1011 mii_statchg(struct ifnet *ifp)
1012 {
1013 struct scx_softc *sc = ifp->if_softc;
1014 struct mii_data *mii = &sc->sc_mii;
1015 uint32_t fcr;
1016
1017 /* Get flow control negotiation result. */
1018 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1019 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1020 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1021
1022 /* Adjust PAUSE flow control. */
1023 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1024 if (mii->mii_media_active & IFM_FDX) {
1025 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1026 fcr |= FCR_TFE;
1027 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1028 fcr |= FCR_RFE;
1029 }
1030 mac_write(sc, GMACFCR, fcr);
1031
1032 printf("%ctxfe, %crxfe\n",
1033 (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
1034 }
1035
1036 static void
1037 phy_tick(void *arg)
1038 {
1039 struct scx_softc *sc = arg;
1040 struct mii_data *mii = &sc->sc_mii;
1041 int s;
1042
1043 s = splnet();
1044 mii_tick(mii);
1045 splx(s);
1046
1047 callout_schedule(&sc->sc_tick_ch, hz);
1048 }
1049
1050 static int
1051 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1052 {
1053 struct scx_softc *sc = device_private(self);
1054 uint32_t miia;
1055 int error;
1056
1057 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1058 mac_write(sc, GMACGAR, miia | GAR_BUSY);
1059 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1060 if (error)
1061 return error;
1062 *val = mac_read(sc, GMACGDR);
1063 return 0;
1064 }
1065
1066 static int
1067 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1068 {
1069 struct scx_softc *sc = device_private(self);
1070 uint32_t miia;
1071 uint16_t dummy;
1072 int error;
1073
1074 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1075 mac_write(sc, GMACGDR, val);
1076 mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1077 error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1078 if (error)
1079 return error;
1080 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1081 return 0;
1082 }
1083
1084 static void
1085 scx_start(struct ifnet *ifp)
1086 {
1087 struct scx_softc *sc = ifp->if_softc;
1088 struct mbuf *m0, *m;
1089 struct scx_txsoft *txs;
1090 bus_dmamap_t dmamap;
1091 int error, nexttx, lasttx, ofree, seg;
1092 uint32_t tdes0;
1093
1094 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1095 return;
1096
1097 /* Remember the previous number of free descriptors. */
1098 ofree = sc->sc_txfree;
1099
1100 /*
1101 * Loop through the send queue, setting up transmit descriptors
1102 * until we drain the queue, or use up all available transmit
1103 * descriptors.
1104 */
1105 for (;;) {
1106 IFQ_POLL(&ifp->if_snd, m0);
1107 if (m0 == NULL)
1108 break;
1109
1110 if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1111 txreap(sc);
1112 if (sc->sc_txsfree == 0)
1113 break;
1114 }
1115 txs = &sc->sc_txsoft[sc->sc_txsnext];
1116 dmamap = txs->txs_dmamap;
1117
1118 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1119 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1120 if (error) {
1121 if (error == EFBIG) {
1122 aprint_error_dev(sc->sc_dev,
1123 "Tx packet consumes too many "
1124 "DMA segments, dropping...\n");
1125 IFQ_DEQUEUE(&ifp->if_snd, m0);
1126 m_freem(m0);
1127 continue;
1128 }
1129 /* Short on resources, just stop for now. */
1130 break;
1131 }
1132
1133 if (dmamap->dm_nsegs > sc->sc_txfree) {
1134 /*
1135 * Not enough free descriptors to transmit this
1136 * packet. We haven't committed anything yet,
1137 * so just unload the DMA map, put the packet
1138 * back on the queue, and punt. Notify the upper
1139 * layer that there are not more slots left.
1140 */
1141 ifp->if_flags |= IFF_OACTIVE;
1142 bus_dmamap_unload(sc->sc_dmat, dmamap);
1143 break;
1144 }
1145
1146 IFQ_DEQUEUE(&ifp->if_snd, m0);
1147
1148 /*
1149 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1150 */
1151
1152 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1153 BUS_DMASYNC_PREWRITE);
1154
1155 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1156 lasttx = -1;
1157 for (nexttx = sc->sc_txnext, seg = 0;
1158 seg < dmamap->dm_nsegs;
1159 seg++, nexttx = MD_NEXTTX(nexttx)) {
1160 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1161 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1162 /*
1163 * If this is the first descriptor we're
1164 * enqueueing, don't set the OWN bit just
1165 * yet. That could cause a race condition.
1166 * We'll do it below.
1167 */
1168 tdes->t3 = dmamap->dm_segs[seg].ds_len;
1169 tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1170 tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1171 tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
1172 (15 << T0_TRID) | T0_PT |
1173 sc->sc_t0coso | T0_TRS;
1174 tdes0 = T0_OWN; /* 2nd and other segments */
1175 lasttx = nexttx;
1176 }
1177 /*
1178 * Outgoing NFS mbuf must be unloaded when Tx completed.
1179 * Without T1_IC NFS mbuf is left unack'ed for excessive
1180 * time and NFS stops to proceed until scx_watchdog()
1181 * calls txreap() to reclaim the unack'ed mbuf.
1182 * It's painful to traverse every mbuf chain to determine
1183 * whether someone is waiting for Tx completion.
1184 */
1185 m = m0;
1186 do {
1187 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1188 sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
1189 break;
1190 }
1191 } while ((m = m->m_next) != NULL);
1192
1193 /* Write deferred 1st segment T0_OWN at the final stage */
1194 sc->sc_txdescs[lasttx].t0 |= T0_LS;
1195 sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
1196 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1197 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1198
1199 /* Tell DMA start transmit */
1200 /* CSR_WRITE(sc, MDTSC, 1); */
1201
1202 txs->txs_mbuf = m0;
1203 txs->txs_firstdesc = sc->sc_txnext;
1204 txs->txs_lastdesc = lasttx;
1205 txs->txs_ndesc = dmamap->dm_nsegs;
1206
1207 sc->sc_txfree -= txs->txs_ndesc;
1208 sc->sc_txnext = nexttx;
1209 sc->sc_txsfree--;
1210 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1211 /*
1212 * Pass the packet to any BPF listeners.
1213 */
1214 bpf_mtap(ifp, m0, BPF_D_OUT);
1215 }
1216
1217 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1218 /* No more slots left; notify upper layer. */
1219 ifp->if_flags |= IFF_OACTIVE;
1220 }
1221 if (sc->sc_txfree != ofree) {
1222 /* Set a watchdog timer in case the chip flakes out. */
1223 ifp->if_timer = 5;
1224 }
1225 }
1226
1227 static int
1228 scx_intr(void *arg)
1229 {
1230 struct scx_softc *sc = arg;
1231 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1232
1233 (void)ifp;
1234 rxintr(sc);
1235 txreap(sc);
1236 return 1;
1237 }
1238
1239 static void
1240 txreap(struct scx_softc *sc)
1241 {
1242 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1243 struct scx_txsoft *txs;
1244 uint32_t txstat;
1245 int i;
1246
1247 ifp->if_flags &= ~IFF_OACTIVE;
1248
1249 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1250 i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1251 txs = &sc->sc_txsoft[i];
1252
1253 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1254 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1255
1256 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1257 if (txstat & T0_OWN) /* desc is still in use */
1258 break;
1259
1260 /* There is no way to tell transmission status per frame */
1261
1262 if_statinc(ifp, if_opackets);
1263
1264 sc->sc_txfree += txs->txs_ndesc;
1265 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1266 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1267 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1268 m_freem(txs->txs_mbuf);
1269 txs->txs_mbuf = NULL;
1270 }
1271 sc->sc_txsdirty = i;
1272 if (sc->sc_txsfree == MD_TXQUEUELEN)
1273 ifp->if_timer = 0;
1274 }
1275
1276 static void
1277 rxintr(struct scx_softc *sc)
1278 {
1279 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1280 struct scx_rxsoft *rxs;
1281 struct mbuf *m;
1282 uint32_t rxstat;
1283 int i, len;
1284
1285 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1286 rxs = &sc->sc_rxsoft[i];
1287
1288 SCX_CDRXSYNC(sc, i,
1289 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1290
1291 rxstat = sc->sc_rxdescs[i].r0;
1292 if (rxstat & R0_OWN) /* desc is left empty */
1293 break;
1294
1295 /* R0_FS | R0_LS must have been marked for this desc */
1296
1297 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1298 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1299
1300 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1301 len -= ETHER_CRC_LEN; /* Trim CRC off */
1302 m = rxs->rxs_mbuf;
1303
1304 if (add_rxbuf(sc, i) != 0) {
1305 if_statinc(ifp, if_ierrors);
1306 SCX_INIT_RXDESC(sc, i);
1307 bus_dmamap_sync(sc->sc_dmat,
1308 rxs->rxs_dmamap, 0,
1309 rxs->rxs_dmamap->dm_mapsize,
1310 BUS_DMASYNC_PREREAD);
1311 continue;
1312 }
1313
1314 m_set_rcvif(m, ifp);
1315 m->m_pkthdr.len = m->m_len = len;
1316
1317 if (rxstat & R0_CSUM) {
1318 uint32_t csum = M_CSUM_IPv4;
1319 if (rxstat & R0_CERR)
1320 csum |= M_CSUM_IPv4_BAD;
1321 m->m_pkthdr.csum_flags |= csum;
1322 }
1323 if_percpuq_enqueue(ifp->if_percpuq, m);
1324 }
1325 sc->sc_rxptr = i;
1326 }
1327
1328 static int
1329 add_rxbuf(struct scx_softc *sc, int i)
1330 {
1331 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1332 struct mbuf *m;
1333 int error;
1334
1335 MGETHDR(m, M_DONTWAIT, MT_DATA);
1336 if (m == NULL)
1337 return ENOBUFS;
1338
1339 MCLGET(m, M_DONTWAIT);
1340 if ((m->m_flags & M_EXT) == 0) {
1341 m_freem(m);
1342 return ENOBUFS;
1343 }
1344
1345 if (rxs->rxs_mbuf != NULL)
1346 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1347
1348 rxs->rxs_mbuf = m;
1349
1350 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1351 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1352 if (error) {
1353 aprint_error_dev(sc->sc_dev,
1354 "can't load rx DMA map %d, error = %d\n", i, error);
1355 panic("add_rxbuf");
1356 }
1357
1358 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1359 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1360 SCX_INIT_RXDESC(sc, i);
1361
1362 return 0;
1363 }
1364
1365 static int
1366 spin_waitfor(struct scx_softc *sc, int reg, int exist)
1367 {
1368 int val, loop;
1369
1370 val = CSR_READ(sc, reg);
1371 if ((val & exist) == 0)
1372 return 0;
1373 loop = 3000;
1374 do {
1375 DELAY(10);
1376 val = CSR_READ(sc, reg);
1377 } while (--loop > 0 && (val & exist));
1378 return (loop > 0) ? 0 : ETIMEDOUT;
1379 }
1380
1381 static int
1382 mac_read(struct scx_softc *sc, int reg)
1383 {
1384
1385 CSR_WRITE(sc, MACCMD, reg);
1386 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1387 return CSR_READ(sc, MACDATA);
1388 }
1389
1390 static void
1391 mac_write(struct scx_softc *sc, int reg, int val)
1392 {
1393
1394 CSR_WRITE(sc, MACDATA, val);
1395 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
1396 (void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1397 }
1398
1399 static int
1400 get_mdioclk(uint32_t freq)
1401 {
1402
1403 const struct {
1404 uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
1405 } mdioclk[] = {
1406 { 35, 2 }, /* 25-35 MHz */
1407 { 60, 3 }, /* 35-60 MHz */
1408 { 100, 0 }, /* 60-100 MHz */
1409 { 150, 1 }, /* 100-150 MHz */
1410 { 250, 4 }, /* 150-250 MHz */
1411 { 300, 5 }, /* 250-300 MHz */
1412 };
1413 int i;
1414
1415 /* convert MDIO clk to a divisor value */
1416 if (freq < mdioclk[0].freq)
1417 return mdioclk[0].bit;
1418 for (i = 1; i < __arraycount(mdioclk); i++) {
1419 if (freq < mdioclk[i].freq)
1420 return mdioclk[i-1].bit;
1421 }
1422 return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
1423 }
1424
1425 static void
1426 loaducode(struct scx_softc *sc)
1427 {
1428 uint32_t up, lo, sz;
1429 uint64_t addr;
1430
1431 sc->sc_ucodeloaded = 1;
1432
1433 up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1434 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1435 sz = EE_READ(sc, 0x10); /* H->M ucode size */
1436 sz *= 4;
1437 addr = ((uint64_t)up << 32) | lo;
1438 aprint_normal_dev(sc->sc_dev, "H2M ucode %u\n", sz);
1439 injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
1440
1441 up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1442 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1443 sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1444 sz *= 4;
1445 addr = ((uint64_t)up << 32) | lo;
1446 injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
1447 aprint_normal_dev(sc->sc_dev, "M2H ucode %u\n", sz);
1448
1449 lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1450 sz = EE_READ(sc, 0x24); /* PKT ucode size */
1451 sz *= 4;
1452 injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
1453 aprint_normal_dev(sc->sc_dev, "PKT ucode %u\n", sz);
1454 }
1455
1456 static void
1457 injectucode(struct scx_softc *sc, int port,
1458 bus_addr_t addr, bus_size_t size)
1459 {
1460 bus_space_handle_t bsh;
1461 bus_size_t off;
1462 uint32_t ucode;
1463
1464 if (!bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1465 aprint_error_dev(sc->sc_dev,
1466 "eeprom map failure for ucode port 0x%x\n", port);
1467 return;
1468 }
1469 for (off = 0; off < size; off += 4) {
1470 ucode = bus_space_read_4(sc->sc_st, bsh, off);
1471 CSR_WRITE(sc, port, ucode);
1472 }
1473 bus_space_unmap(sc->sc_st, bsh, size);
1474 }
1475