sun6i_dma.c revision 1.13 1 1.13 thorpej /* $NetBSD: sun6i_dma.c,v 1.13 2021/01/27 02:09:39 thorpej Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2014-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.2 jmcneill #include "opt_ddb.h"
30 1.2 jmcneill
31 1.1 jmcneill #include <sys/cdefs.h>
32 1.13 thorpej __KERNEL_RCSID(0, "$NetBSD: sun6i_dma.c,v 1.13 2021/01/27 02:09:39 thorpej Exp $");
33 1.1 jmcneill
34 1.1 jmcneill #include <sys/param.h>
35 1.1 jmcneill #include <sys/bus.h>
36 1.1 jmcneill #include <sys/device.h>
37 1.1 jmcneill #include <sys/intr.h>
38 1.1 jmcneill #include <sys/systm.h>
39 1.1 jmcneill #include <sys/mutex.h>
40 1.1 jmcneill #include <sys/bitops.h>
41 1.1 jmcneill #include <sys/kmem.h>
42 1.1 jmcneill
43 1.1 jmcneill #include <dev/fdt/fdtvar.h>
44 1.1 jmcneill
45 1.1 jmcneill #define DMA_IRQ_EN_REG0_REG 0x0000
46 1.1 jmcneill #define DMA_IRQ_EN_REG1_REG 0x0004
47 1.1 jmcneill #define DMA_IRQ_EN_REG0_QUEUE_IRQ_EN(n) __BIT(n * 4 + 2)
48 1.1 jmcneill #define DMA_IRQ_EN_REG0_PKG_IRQ_EN(n) __BIT(n * 4 + 1)
49 1.1 jmcneill #define DMA_IRQ_EN_REG0_HLAF_IRQ_EN(n) __BIT(n * 4 + 0)
50 1.1 jmcneill #define DMA_IRQ_EN_REG1_QUEUE_IRQ_EN(n) __BIT((n - 8) * 4 + 2)
51 1.1 jmcneill #define DMA_IRQ_EN_REG1_PKG_IRQ_EN(n) __BIT((n - 8) * 4 + 1)
52 1.1 jmcneill #define DMA_IRQ_EN_REG1_HLAF_IRQ_EN(n) __BIT((n - 8) * 4 + 0)
53 1.1 jmcneill #define DMA_IRQ_PEND_REG0_REG 0x0010
54 1.1 jmcneill #define DMA_IRQ_PEND_REG1_REG 0x0014
55 1.1 jmcneill #define DMA_IRQ_QUEUE_MASK 0x4444444444444444ULL
56 1.1 jmcneill #define DMA_IRQ_PKG_MASK 0x2222222222222222ULL
57 1.1 jmcneill #define DMA_IRQ_HF_MASK 0x1111111111111111ULL
58 1.1 jmcneill #define DMA_STA_REG 0x0030
59 1.1 jmcneill #define DMA_EN_REG(n) (0x0100 + (n) * 0x40 + 0x00)
60 1.1 jmcneill #define DMA_EN_EN __BIT(0)
61 1.1 jmcneill #define DMA_PAU_REG(n) (0x0100 + (n) * 0x40 + 0x04)
62 1.1 jmcneill #define DMA_PAU_PAUSE __BIT(0)
63 1.1 jmcneill #define DMA_START_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x08)
64 1.1 jmcneill #define DMA_CFG_REG(n) (0x0100 + (n) * 0x40 + 0x0C)
65 1.1 jmcneill #define DMA_CFG_DEST_DATA_WIDTH __BITS(26,25)
66 1.1 jmcneill #define DMA_CFG_DATA_WIDTH(n) ((n) >> 4)
67 1.1 jmcneill #define DMA_CFG_BST_LEN(n) ((n) == 1 ? 0 : (((n) >> 3) + 1))
68 1.1 jmcneill #define DMA_CFG_DEST_ADDR_MODE __BITS(22,21)
69 1.1 jmcneill #define DMA_CFG_ADDR_MODE_LINEAR 0
70 1.1 jmcneill #define DMA_CFG_ADDR_MODE_IO 1
71 1.1 jmcneill #define DMA_CFG_DEST_DRQ_TYPE __BITS(20,16)
72 1.1 jmcneill #define DMA_CFG_DRQ_TYPE_SDRAM 1
73 1.1 jmcneill #define DMA_CFG_SRC_DATA_WIDTH __BITS(10,9)
74 1.1 jmcneill #define DMA_CFG_SRC_ADDR_MODE __BITS(6,5)
75 1.1 jmcneill #define DMA_CFG_SRC_DRQ_TYPE __BITS(4,0)
76 1.1 jmcneill #define DMA_CUR_SRC_REG(n) (0x0100 + (n) * 0x40 + 0x10)
77 1.1 jmcneill #define DMA_CUR_DEST_REG(n) (0x0100 + (n) * 0x40 + 0x14)
78 1.1 jmcneill #define DMA_BCNT_LEFT_REG(n) (0x0100 + (n) * 0x40 + 0x18)
79 1.1 jmcneill #define DMA_PARA_REG(n) (0x0100 + (n) * 0x40 + 0x1C)
80 1.1 jmcneill #define DMA_PARA_DATA_BLK_SIZE __BITS(15,8)
81 1.1 jmcneill #define DMA_PARA_WAIT_CYC __BITS(7,0)
82 1.8 jakllsch #define DMA_MODE_REG(n) (0x0100 + (n) * 0x40 + 0x28)
83 1.8 jakllsch #define MODE_WAIT 0b0
84 1.8 jakllsch #define MODE_HANDSHAKE 0b1
85 1.8 jakllsch #define DMA_MODE_DST(m) __SHIFTIN((m), __BIT(3))
86 1.8 jakllsch #define DMA_MODE_SRC(m) __SHIFTIN((m), __BIT(2))
87 1.8 jakllsch #define DMA_FDESC_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x2C)
88 1.8 jakllsch #define DMA_PKG_NUM_REG(n) (0x0100 + (n) * 0x40 + 0x30)
89 1.1 jmcneill
90 1.1 jmcneill struct sun6idma_desc {
91 1.1 jmcneill uint32_t dma_config;
92 1.1 jmcneill uint32_t dma_srcaddr;
93 1.1 jmcneill uint32_t dma_dstaddr;
94 1.1 jmcneill uint32_t dma_bcnt;
95 1.1 jmcneill uint32_t dma_para;
96 1.1 jmcneill uint32_t dma_next;
97 1.1 jmcneill #define DMA_NULL 0xfffff800
98 1.1 jmcneill };
99 1.1 jmcneill
100 1.4 jmcneill struct sun6idma_config {
101 1.4 jmcneill u_int num_channels;
102 1.4 jmcneill bool autogate;
103 1.8 jakllsch uint8_t bursts;
104 1.8 jakllsch uint8_t widths;
105 1.4 jmcneill bus_size_t autogate_reg;
106 1.4 jmcneill uint32_t autogate_mask;
107 1.6 jmcneill uint32_t burst_mask;
108 1.4 jmcneill };
109 1.4 jmcneill
110 1.8 jakllsch #define IL2B(x) __BIT(ilog2(x))
111 1.8 jakllsch #define IL2B_RANGE(x, y) __BITS(ilog2(x), ilog2(y))
112 1.8 jakllsch #define WIDTHS_1_2_4 IL2B_RANGE(4, 1)
113 1.8 jakllsch #define WIDTHS_1_2_4_8 IL2B_RANGE(8, 1)
114 1.8 jakllsch #define BURSTS_1_8 (IL2B(8)|IL2B(1))
115 1.8 jakllsch #define BURSTS_1_4_8_16 (IL2B(16)|IL2B(8)|IL2B(4)|IL2B(1))
116 1.8 jakllsch
117 1.4 jmcneill static const struct sun6idma_config sun6i_a31_dma_config = {
118 1.6 jmcneill .num_channels = 16,
119 1.6 jmcneill .burst_mask = __BITS(8,7),
120 1.8 jakllsch .bursts = BURSTS_1_8,
121 1.8 jakllsch .widths = WIDTHS_1_2_4,
122 1.4 jmcneill };
123 1.4 jmcneill
124 1.4 jmcneill static const struct sun6idma_config sun8i_a83t_dma_config = {
125 1.4 jmcneill .num_channels = 8,
126 1.4 jmcneill .autogate = true,
127 1.4 jmcneill .autogate_reg = 0x20,
128 1.4 jmcneill .autogate_mask = 0x4,
129 1.6 jmcneill .burst_mask = __BITS(8,7),
130 1.8 jakllsch .bursts = BURSTS_1_8,
131 1.8 jakllsch .widths = WIDTHS_1_2_4,
132 1.4 jmcneill };
133 1.4 jmcneill
134 1.4 jmcneill static const struct sun6idma_config sun8i_h3_dma_config = {
135 1.4 jmcneill .num_channels = 12,
136 1.4 jmcneill .autogate = true,
137 1.4 jmcneill .autogate_reg = 0x28,
138 1.4 jmcneill .autogate_mask = 0x4,
139 1.6 jmcneill .burst_mask = __BITS(7,6),
140 1.8 jakllsch .bursts = BURSTS_1_4_8_16,
141 1.8 jakllsch .widths = WIDTHS_1_2_4_8,
142 1.4 jmcneill };
143 1.4 jmcneill
144 1.4 jmcneill static const struct sun6idma_config sun50i_a64_dma_config = {
145 1.4 jmcneill .num_channels = 8,
146 1.4 jmcneill .autogate = true,
147 1.4 jmcneill .autogate_reg = 0x28,
148 1.4 jmcneill .autogate_mask = 0x4,
149 1.6 jmcneill .burst_mask = __BITS(7,6),
150 1.8 jakllsch .bursts = BURSTS_1_4_8_16,
151 1.8 jakllsch .widths = WIDTHS_1_2_4_8,
152 1.4 jmcneill };
153 1.4 jmcneill
154 1.11 thorpej static const struct device_compatible_entry compat_data[] = {
155 1.11 thorpej { .compat = "allwinner,sun6i-a31-dma",
156 1.11 thorpej .data = &sun6i_a31_dma_config },
157 1.11 thorpej { .compat = "allwinner,sun8i-a83t-dma",
158 1.11 thorpej .data = &sun8i_a83t_dma_config },
159 1.11 thorpej { .compat = "allwinner,sun8i-h3-dma",
160 1.11 thorpej .data = &sun8i_h3_dma_config },
161 1.11 thorpej { .compat = "allwinner,sun50i-a64-dma",
162 1.11 thorpej .data = &sun50i_a64_dma_config },
163 1.11 thorpej
164 1.13 thorpej DEVICE_COMPAT_EOL
165 1.1 jmcneill };
166 1.1 jmcneill
167 1.1 jmcneill struct sun6idma_channel {
168 1.1 jmcneill uint8_t ch_index;
169 1.1 jmcneill void (*ch_callback)(void *);
170 1.1 jmcneill void *ch_callbackarg;
171 1.1 jmcneill u_int ch_portid;
172 1.1 jmcneill void *ch_dmadesc;
173 1.1 jmcneill };
174 1.1 jmcneill
175 1.1 jmcneill struct sun6idma_softc {
176 1.1 jmcneill device_t sc_dev;
177 1.1 jmcneill bus_space_tag_t sc_bst;
178 1.1 jmcneill bus_space_handle_t sc_bsh;
179 1.1 jmcneill bus_dma_tag_t sc_dmat;
180 1.1 jmcneill int sc_phandle;
181 1.1 jmcneill void *sc_ih;
182 1.1 jmcneill
183 1.6 jmcneill uint32_t sc_burst_mask;
184 1.6 jmcneill
185 1.1 jmcneill kmutex_t sc_lock;
186 1.1 jmcneill
187 1.1 jmcneill struct sun6idma_channel *sc_chan;
188 1.1 jmcneill u_int sc_nchan;
189 1.7 jakllsch u_int sc_ndesc_ch;
190 1.8 jakllsch uint8_t sc_widths;
191 1.8 jakllsch uint8_t sc_bursts;
192 1.7 jakllsch
193 1.7 jakllsch bus_dma_segment_t sc_dmasegs[1];
194 1.7 jakllsch bus_dmamap_t sc_dmamap;
195 1.7 jakllsch void *sc_dmadescs;
196 1.1 jmcneill };
197 1.1 jmcneill
198 1.1 jmcneill #define DMA_READ(sc, reg) \
199 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
200 1.1 jmcneill #define DMA_WRITE(sc, reg, val) \
201 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
202 1.1 jmcneill
203 1.7 jakllsch #define DESC_NUM ((MAXPHYS / MIN_PAGE_SIZE + 1) + 1)
204 1.7 jakllsch #define DESC_LEN(n) \
205 1.7 jakllsch (sizeof(struct sun6idma_desc) * (n))
206 1.7 jakllsch #define DESC_OFFS(ch, n) \
207 1.7 jakllsch ((ch) * roundup2(DESC_LEN(DESC_NUM), COHERENCY_UNIT) + DESC_LEN(n))
208 1.7 jakllsch #define DESC_ADDR(sc, chp, n) \
209 1.7 jakllsch ((sc)->sc_dmamap->dm_segs[0].ds_addr + DESC_OFFS((chp)->ch_index, (n)))
210 1.7 jakllsch
211 1.1 jmcneill static void *
212 1.1 jmcneill sun6idma_acquire(device_t dev, const void *data, size_t len,
213 1.1 jmcneill void (*cb)(void *), void *cbarg)
214 1.1 jmcneill {
215 1.1 jmcneill struct sun6idma_softc *sc = device_private(dev);
216 1.1 jmcneill struct sun6idma_channel *ch = NULL;
217 1.1 jmcneill uint32_t irqen;
218 1.1 jmcneill uint8_t index;
219 1.1 jmcneill
220 1.1 jmcneill if (len != 4)
221 1.1 jmcneill return NULL;
222 1.1 jmcneill
223 1.1 jmcneill const u_int portid = be32dec(data);
224 1.1 jmcneill if (portid > __SHIFTOUT_MASK(DMA_CFG_SRC_DRQ_TYPE))
225 1.1 jmcneill return NULL;
226 1.1 jmcneill
227 1.1 jmcneill mutex_enter(&sc->sc_lock);
228 1.1 jmcneill
229 1.1 jmcneill for (index = 0; index < sc->sc_nchan; index++) {
230 1.1 jmcneill if (sc->sc_chan[index].ch_callback == NULL) {
231 1.1 jmcneill ch = &sc->sc_chan[index];
232 1.1 jmcneill ch->ch_callback = cb;
233 1.1 jmcneill ch->ch_callbackarg = cbarg;
234 1.1 jmcneill ch->ch_portid = portid;
235 1.1 jmcneill
236 1.1 jmcneill irqen = DMA_READ(sc, index < 8 ?
237 1.1 jmcneill DMA_IRQ_EN_REG0_REG :
238 1.1 jmcneill DMA_IRQ_EN_REG1_REG);
239 1.1 jmcneill irqen |= (index < 8 ?
240 1.1 jmcneill DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) :
241 1.1 jmcneill DMA_IRQ_EN_REG1_PKG_IRQ_EN(index));
242 1.1 jmcneill DMA_WRITE(sc, index < 8 ?
243 1.1 jmcneill DMA_IRQ_EN_REG0_REG :
244 1.1 jmcneill DMA_IRQ_EN_REG1_REG, irqen);
245 1.1 jmcneill
246 1.1 jmcneill break;
247 1.1 jmcneill }
248 1.1 jmcneill }
249 1.1 jmcneill
250 1.1 jmcneill mutex_exit(&sc->sc_lock);
251 1.1 jmcneill
252 1.1 jmcneill return ch;
253 1.1 jmcneill }
254 1.1 jmcneill
255 1.1 jmcneill static void
256 1.1 jmcneill sun6idma_release(device_t dev, void *priv)
257 1.1 jmcneill {
258 1.1 jmcneill struct sun6idma_softc *sc = device_private(dev);
259 1.1 jmcneill struct sun6idma_channel *ch = priv;
260 1.1 jmcneill uint32_t irqen;
261 1.1 jmcneill uint8_t index = ch->ch_index;
262 1.1 jmcneill
263 1.1 jmcneill mutex_enter(&sc->sc_lock);
264 1.1 jmcneill
265 1.1 jmcneill irqen = DMA_READ(sc, index < 8 ?
266 1.1 jmcneill DMA_IRQ_EN_REG0_REG :
267 1.1 jmcneill DMA_IRQ_EN_REG1_REG);
268 1.1 jmcneill irqen &= ~(index < 8 ?
269 1.1 jmcneill DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) :
270 1.1 jmcneill DMA_IRQ_EN_REG1_PKG_IRQ_EN(index));
271 1.1 jmcneill DMA_WRITE(sc, index < 8 ?
272 1.1 jmcneill DMA_IRQ_EN_REG0_REG :
273 1.1 jmcneill DMA_IRQ_EN_REG1_REG, irqen);
274 1.1 jmcneill
275 1.1 jmcneill ch->ch_callback = NULL;
276 1.1 jmcneill ch->ch_callbackarg = NULL;
277 1.1 jmcneill
278 1.1 jmcneill mutex_exit(&sc->sc_lock);
279 1.1 jmcneill }
280 1.1 jmcneill
281 1.1 jmcneill static int
282 1.1 jmcneill sun6idma_transfer(device_t dev, void *priv, struct fdtbus_dma_req *req)
283 1.1 jmcneill {
284 1.1 jmcneill struct sun6idma_softc *sc = device_private(dev);
285 1.1 jmcneill struct sun6idma_channel *ch = priv;
286 1.1 jmcneill struct sun6idma_desc *desc = ch->ch_dmadesc;
287 1.1 jmcneill uint32_t src, dst, len, cfg, mem_cfg, dev_cfg;
288 1.1 jmcneill uint32_t mem_width, dev_width, mem_burst, dev_burst;
289 1.1 jmcneill
290 1.7 jakllsch if (req->dreq_nsegs > sc->sc_ndesc_ch)
291 1.1 jmcneill return EINVAL;
292 1.1 jmcneill
293 1.8 jakllsch if ((sc->sc_widths &
294 1.8 jakllsch IL2B(req->dreq_mem_opt.opt_bus_width/NBBY)) == 0)
295 1.8 jakllsch return EINVAL;
296 1.8 jakllsch if ((sc->sc_widths &
297 1.8 jakllsch IL2B(req->dreq_dev_opt.opt_bus_width/NBBY)) == 0)
298 1.8 jakllsch return EINVAL;
299 1.8 jakllsch if ((sc->sc_bursts &
300 1.8 jakllsch IL2B(req->dreq_mem_opt.opt_burst_len)) == 0)
301 1.8 jakllsch return EINVAL;
302 1.8 jakllsch if ((sc->sc_bursts &
303 1.8 jakllsch IL2B(req->dreq_dev_opt.opt_burst_len)) == 0)
304 1.8 jakllsch return EINVAL;
305 1.8 jakllsch
306 1.1 jmcneill mem_width = DMA_CFG_DATA_WIDTH(req->dreq_mem_opt.opt_bus_width);
307 1.1 jmcneill dev_width = DMA_CFG_DATA_WIDTH(req->dreq_dev_opt.opt_bus_width);
308 1.2 jmcneill mem_burst = DMA_CFG_BST_LEN(req->dreq_mem_opt.opt_burst_len);
309 1.2 jmcneill dev_burst = DMA_CFG_BST_LEN(req->dreq_dev_opt.opt_burst_len);
310 1.1 jmcneill
311 1.1 jmcneill mem_cfg = __SHIFTIN(mem_width, DMA_CFG_SRC_DATA_WIDTH) |
312 1.6 jmcneill __SHIFTIN(mem_burst, sc->sc_burst_mask) |
313 1.1 jmcneill __SHIFTIN(DMA_CFG_ADDR_MODE_LINEAR, DMA_CFG_SRC_ADDR_MODE) |
314 1.1 jmcneill __SHIFTIN(DMA_CFG_DRQ_TYPE_SDRAM, DMA_CFG_SRC_DRQ_TYPE);
315 1.1 jmcneill dev_cfg = __SHIFTIN(dev_width, DMA_CFG_SRC_DATA_WIDTH) |
316 1.6 jmcneill __SHIFTIN(dev_burst, sc->sc_burst_mask) |
317 1.1 jmcneill __SHIFTIN(DMA_CFG_ADDR_MODE_IO, DMA_CFG_SRC_ADDR_MODE) |
318 1.1 jmcneill __SHIFTIN(ch->ch_portid, DMA_CFG_SRC_DRQ_TYPE);
319 1.1 jmcneill
320 1.7 jakllsch for (size_t j = 0; j < req->dreq_nsegs; j++) {
321 1.7 jakllsch if (req->dreq_dir == FDT_DMA_READ) {
322 1.7 jakllsch src = req->dreq_dev_phys;
323 1.7 jakllsch dst = req->dreq_segs[j].ds_addr;
324 1.7 jakllsch cfg = mem_cfg << 16 | dev_cfg;
325 1.7 jakllsch } else {
326 1.7 jakllsch src = req->dreq_segs[j].ds_addr;
327 1.7 jakllsch dst = req->dreq_dev_phys;
328 1.7 jakllsch cfg = dev_cfg << 16 | mem_cfg;
329 1.7 jakllsch }
330 1.7 jakllsch len = req->dreq_segs[j].ds_len;
331 1.7 jakllsch
332 1.7 jakllsch desc[j].dma_config = htole32(cfg);
333 1.7 jakllsch desc[j].dma_srcaddr = htole32(src);
334 1.7 jakllsch desc[j].dma_dstaddr = htole32(dst);
335 1.7 jakllsch desc[j].dma_bcnt = htole32(len);
336 1.7 jakllsch desc[j].dma_para = htole32(0);
337 1.7 jakllsch if (j < req->dreq_nsegs - 1)
338 1.7 jakllsch desc[j].dma_next = htole32(DESC_ADDR(sc, ch, j + 1));
339 1.7 jakllsch else
340 1.7 jakllsch desc[j].dma_next = htole32(DMA_NULL);
341 1.7 jakllsch }
342 1.1 jmcneill
343 1.9 jakllsch #if notyet && maybenever
344 1.8 jakllsch DMA_WRITE(sc, DMA_MODE_REG(ch->ch_index),
345 1.8 jakllsch DMA_MODE_DST(MODE_HANDSHAKE)|DMA_MODE_SRC(MODE_HANDSHAKE));
346 1.8 jakllsch #endif
347 1.8 jakllsch
348 1.7 jakllsch bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, DESC_OFFS(ch->ch_index, 0),
349 1.7 jakllsch DESC_LEN(req->dreq_nsegs), BUS_DMASYNC_PREWRITE);
350 1.1 jmcneill
351 1.1 jmcneill DMA_WRITE(sc, DMA_START_ADDR_REG(ch->ch_index),
352 1.7 jakllsch DESC_ADDR(sc, ch, 0));
353 1.1 jmcneill DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), DMA_EN_EN);
354 1.1 jmcneill
355 1.2 jmcneill if ((DMA_READ(sc, DMA_EN_REG(ch->ch_index)) & DMA_EN_EN) == 0) {
356 1.2 jmcneill aprint_error_dev(sc->sc_dev,
357 1.2 jmcneill "DMA Channel %u failed to start\n", ch->ch_index);
358 1.2 jmcneill return EIO;
359 1.2 jmcneill }
360 1.2 jmcneill
361 1.1 jmcneill return 0;
362 1.1 jmcneill }
363 1.1 jmcneill
364 1.1 jmcneill static void
365 1.1 jmcneill sun6idma_halt(device_t dev, void *priv)
366 1.1 jmcneill {
367 1.1 jmcneill struct sun6idma_softc *sc = device_private(dev);
368 1.1 jmcneill struct sun6idma_channel *ch = priv;
369 1.1 jmcneill
370 1.1 jmcneill DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), 0);
371 1.1 jmcneill }
372 1.1 jmcneill
373 1.1 jmcneill static const struct fdtbus_dma_controller_func sun6idma_funcs = {
374 1.1 jmcneill .acquire = sun6idma_acquire,
375 1.1 jmcneill .release = sun6idma_release,
376 1.1 jmcneill .transfer = sun6idma_transfer,
377 1.1 jmcneill .halt = sun6idma_halt
378 1.1 jmcneill };
379 1.1 jmcneill
380 1.1 jmcneill static int
381 1.1 jmcneill sun6idma_intr(void *priv)
382 1.1 jmcneill {
383 1.1 jmcneill struct sun6idma_softc *sc = priv;
384 1.1 jmcneill uint32_t pend0, pend1, bit;
385 1.1 jmcneill uint64_t pend, mask;
386 1.1 jmcneill uint8_t index;
387 1.1 jmcneill
388 1.1 jmcneill pend0 = DMA_READ(sc, DMA_IRQ_PEND_REG0_REG);
389 1.1 jmcneill pend1 = DMA_READ(sc, DMA_IRQ_PEND_REG1_REG);
390 1.1 jmcneill if (!pend0 && !pend1)
391 1.1 jmcneill return 0;
392 1.1 jmcneill
393 1.1 jmcneill DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, pend0);
394 1.1 jmcneill DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, pend1);
395 1.1 jmcneill
396 1.1 jmcneill pend = pend0 | ((uint64_t)pend1 << 32);
397 1.1 jmcneill
398 1.1 jmcneill while ((bit = ffs64(pend & DMA_IRQ_PKG_MASK)) != 0) {
399 1.1 jmcneill mask = __BIT(bit - 1);
400 1.1 jmcneill pend &= ~mask;
401 1.1 jmcneill index = (bit - 1) / 4;
402 1.1 jmcneill
403 1.1 jmcneill if (sc->sc_chan[index].ch_callback == NULL)
404 1.1 jmcneill continue;
405 1.1 jmcneill sc->sc_chan[index].ch_callback(
406 1.1 jmcneill sc->sc_chan[index].ch_callbackarg);
407 1.1 jmcneill }
408 1.1 jmcneill
409 1.1 jmcneill return 1;
410 1.1 jmcneill }
411 1.1 jmcneill
412 1.1 jmcneill static int
413 1.1 jmcneill sun6idma_match(device_t parent, cfdata_t cf, void *aux)
414 1.1 jmcneill {
415 1.1 jmcneill struct fdt_attach_args * const faa = aux;
416 1.1 jmcneill
417 1.1 jmcneill return of_match_compat_data(faa->faa_phandle, compat_data);
418 1.1 jmcneill }
419 1.1 jmcneill
420 1.1 jmcneill static void
421 1.1 jmcneill sun6idma_attach(device_t parent, device_t self, void *aux)
422 1.1 jmcneill {
423 1.1 jmcneill struct sun6idma_softc * const sc = device_private(self);
424 1.1 jmcneill struct fdt_attach_args * const faa = aux;
425 1.1 jmcneill const int phandle = faa->faa_phandle;
426 1.7 jakllsch size_t desclen;
427 1.4 jmcneill const struct sun6idma_config *conf;
428 1.1 jmcneill struct fdtbus_reset *rst;
429 1.1 jmcneill struct clk *clk;
430 1.1 jmcneill char intrstr[128];
431 1.1 jmcneill bus_addr_t addr;
432 1.1 jmcneill bus_size_t size;
433 1.1 jmcneill int error, nsegs;
434 1.1 jmcneill u_int index;
435 1.1 jmcneill
436 1.1 jmcneill if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
437 1.1 jmcneill aprint_error(": couldn't get registers\n");
438 1.1 jmcneill return;
439 1.1 jmcneill }
440 1.1 jmcneill
441 1.1 jmcneill if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL ||
442 1.1 jmcneill clk_enable(clk) != 0) {
443 1.1 jmcneill aprint_error(": couldn't enable clock\n");
444 1.1 jmcneill return;
445 1.1 jmcneill }
446 1.1 jmcneill if ((rst = fdtbus_reset_get_index(phandle, 0)) == NULL ||
447 1.1 jmcneill fdtbus_reset_deassert(rst) != 0) {
448 1.1 jmcneill aprint_error(": couldn't de-assert reset\n");
449 1.1 jmcneill return;
450 1.1 jmcneill }
451 1.1 jmcneill
452 1.1 jmcneill sc->sc_dev = self;
453 1.1 jmcneill sc->sc_phandle = phandle;
454 1.1 jmcneill sc->sc_dmat = faa->faa_dmat;
455 1.1 jmcneill sc->sc_bst = faa->faa_bst;
456 1.1 jmcneill if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
457 1.1 jmcneill aprint_error(": couldn't map registers\n");
458 1.1 jmcneill return;
459 1.1 jmcneill }
460 1.1 jmcneill mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED);
461 1.1 jmcneill
462 1.1 jmcneill if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
463 1.1 jmcneill aprint_error(": failed to decode interrupt\n");
464 1.1 jmcneill return;
465 1.1 jmcneill }
466 1.1 jmcneill
467 1.11 thorpej conf = of_search_compatible(phandle, compat_data)->data;
468 1.4 jmcneill
469 1.6 jmcneill sc->sc_burst_mask = conf->burst_mask;
470 1.4 jmcneill sc->sc_nchan = conf->num_channels;
471 1.8 jakllsch sc->sc_widths = conf->widths;
472 1.8 jakllsch sc->sc_bursts = conf->bursts;
473 1.1 jmcneill sc->sc_chan = kmem_alloc(sizeof(*sc->sc_chan) * sc->sc_nchan, KM_SLEEP);
474 1.7 jakllsch desclen = DESC_OFFS(sc->sc_nchan, 0);
475 1.7 jakllsch sc->sc_ndesc_ch = DESC_OFFS(1, 0) / sizeof(struct sun6idma_desc);
476 1.1 jmcneill
477 1.1 jmcneill aprint_naive("\n");
478 1.1 jmcneill aprint_normal(": DMA controller (%u channels)\n", sc->sc_nchan);
479 1.1 jmcneill
480 1.1 jmcneill DMA_WRITE(sc, DMA_IRQ_EN_REG0_REG, 0);
481 1.1 jmcneill DMA_WRITE(sc, DMA_IRQ_EN_REG1_REG, 0);
482 1.1 jmcneill DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, ~0);
483 1.1 jmcneill DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, ~0);
484 1.1 jmcneill
485 1.7 jakllsch error = bus_dmamem_alloc(sc->sc_dmat, desclen, 0, 0,
486 1.7 jakllsch sc->sc_dmasegs, 1, &nsegs, BUS_DMA_WAITOK);
487 1.7 jakllsch if (error)
488 1.7 jakllsch panic("bus_dmamem_alloc failed: %d", error);
489 1.7 jakllsch error = bus_dmamem_map(sc->sc_dmat, sc->sc_dmasegs, nsegs,
490 1.7 jakllsch desclen, (void **)&sc->sc_dmadescs, BUS_DMA_WAITOK);
491 1.7 jakllsch if (error)
492 1.7 jakllsch panic("bus_dmamem_map failed: %d", error);
493 1.7 jakllsch error = bus_dmamap_create(sc->sc_dmat, desclen, 1, desclen, 0,
494 1.7 jakllsch BUS_DMA_WAITOK, &sc->sc_dmamap);
495 1.7 jakllsch if (error)
496 1.7 jakllsch panic("bus_dmamap_create failed: %d", error);
497 1.7 jakllsch error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
498 1.7 jakllsch sc->sc_dmadescs, desclen, NULL, BUS_DMA_WAITOK);
499 1.7 jakllsch if (error)
500 1.7 jakllsch panic("bus_dmamap_load failed: %d", error);
501 1.7 jakllsch
502 1.1 jmcneill for (index = 0; index < sc->sc_nchan; index++) {
503 1.1 jmcneill struct sun6idma_channel *ch = &sc->sc_chan[index];
504 1.1 jmcneill ch->ch_index = index;
505 1.7 jakllsch ch->ch_dmadesc = (void *)((uintptr_t)sc->sc_dmadescs + DESC_OFFS(index, 0));
506 1.1 jmcneill ch->ch_callback = NULL;
507 1.1 jmcneill ch->ch_callbackarg = NULL;
508 1.1 jmcneill
509 1.1 jmcneill DMA_WRITE(sc, DMA_EN_REG(index), 0);
510 1.1 jmcneill }
511 1.1 jmcneill
512 1.4 jmcneill if (conf->autogate)
513 1.4 jmcneill DMA_WRITE(sc, conf->autogate_reg, conf->autogate_mask);
514 1.4 jmcneill
515 1.10 jmcneill sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_SCHED,
516 1.10 jmcneill FDT_INTR_MPSAFE, sun6idma_intr, sc, device_xname(sc->sc_dev));
517 1.1 jmcneill if (sc->sc_ih == NULL) {
518 1.1 jmcneill aprint_error_dev(sc->sc_dev,
519 1.1 jmcneill "couldn't establish interrupt on %s\n", intrstr);
520 1.1 jmcneill return;
521 1.1 jmcneill }
522 1.1 jmcneill aprint_normal_dev(sc->sc_dev, "interrupting on %s\n", intrstr);
523 1.1 jmcneill
524 1.1 jmcneill fdtbus_register_dma_controller(self, phandle, &sun6idma_funcs);
525 1.1 jmcneill }
526 1.1 jmcneill
527 1.1 jmcneill CFATTACH_DECL_NEW(sun6i_dma, sizeof(struct sun6idma_softc),
528 1.1 jmcneill sun6idma_match, sun6idma_attach, NULL, NULL);
529 1.2 jmcneill
530 1.2 jmcneill #ifdef DDB
531 1.2 jmcneill void sun6idma_dump(void);
532 1.2 jmcneill
533 1.2 jmcneill void
534 1.2 jmcneill sun6idma_dump(void)
535 1.2 jmcneill {
536 1.2 jmcneill struct sun6idma_softc *sc;
537 1.2 jmcneill device_t dev;
538 1.2 jmcneill u_int index;
539 1.2 jmcneill
540 1.2 jmcneill dev = device_find_by_driver_unit("sun6idma", 0);
541 1.2 jmcneill if (dev == NULL)
542 1.2 jmcneill return;
543 1.2 jmcneill sc = device_private(dev);
544 1.2 jmcneill
545 1.2 jmcneill device_printf(dev, "DMA_IRQ_EN_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG0_REG));
546 1.2 jmcneill device_printf(dev, "DMA_IRQ_EN_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG1_REG));
547 1.2 jmcneill device_printf(dev, "DMA_IRQ_PEND_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG0_REG));
548 1.2 jmcneill device_printf(dev, "DMA_IRQ_PEND_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG1_REG));
549 1.2 jmcneill device_printf(dev, "DMA_STA_REG: %08x\n", DMA_READ(sc, DMA_STA_REG));
550 1.2 jmcneill
551 1.2 jmcneill for (index = 0; index < sc->sc_nchan; index++) {
552 1.2 jmcneill struct sun6idma_channel *ch = &sc->sc_chan[index];
553 1.2 jmcneill if (ch->ch_callback == NULL)
554 1.2 jmcneill continue;
555 1.2 jmcneill device_printf(dev, " %2d: DMA_EN_REG: %08x\n", index, DMA_READ(sc, DMA_EN_REG(index)));
556 1.2 jmcneill device_printf(dev, " %2d: DMA_PAU_REG: %08x\n", index, DMA_READ(sc, DMA_PAU_REG(index)));
557 1.2 jmcneill device_printf(dev, " %2d: DMA_START_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_START_ADDR_REG(index)));
558 1.2 jmcneill device_printf(dev, " %2d: DMA_CFG_REG: %08x\n", index, DMA_READ(sc, DMA_CFG_REG(index)));
559 1.2 jmcneill device_printf(dev, " %2d: DMA_CUR_SRC_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_SRC_REG(index)));
560 1.2 jmcneill device_printf(dev, " %2d: DMA_CUR_DEST_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_DEST_REG(index)));
561 1.2 jmcneill device_printf(dev, " %2d: DMA_BCNT_LEFT_REG: %08x\n", index, DMA_READ(sc, DMA_BCNT_LEFT_REG(index)));
562 1.2 jmcneill device_printf(dev, " %2d: DMA_PARA_REG: %08x\n", index, DMA_READ(sc, DMA_PARA_REG(index)));
563 1.8 jakllsch device_printf(dev, " %2d: DMA_MODE_REG: %08x\n", index, DMA_READ(sc, DMA_MODE_REG(index)));
564 1.8 jakllsch device_printf(dev, " %2d: DMA_FDESC_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_FDESC_ADDR_REG(index)));
565 1.8 jakllsch device_printf(dev, " %2d: DMA_PKG_NUM_REG: %08x\n", index, DMA_READ(sc, DMA_PKG_NUM_REG(index)));
566 1.2 jmcneill }
567 1.2 jmcneill }
568 1.2 jmcneill #endif
569