sun6i_dma.c revision 1.15 1 /* $NetBSD: sun6i_dma.c,v 1.15 2021/05/05 10:24:04 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "opt_ddb.h"
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: sun6i_dma.c,v 1.15 2021/05/05 10:24:04 jmcneill Exp $");
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/device.h>
37 #include <sys/intr.h>
38 #include <sys/systm.h>
39 #include <sys/mutex.h>
40 #include <sys/bitops.h>
41 #include <sys/kmem.h>
42
43 #include <dev/fdt/fdtvar.h>
44
45 #define DMA_IRQ_EN_REG0_REG 0x0000
46 #define DMA_IRQ_EN_REG1_REG 0x0004
47 #define DMA_IRQ_EN_REG0_QUEUE_IRQ_EN(n) __BIT(n * 4 + 2)
48 #define DMA_IRQ_EN_REG0_PKG_IRQ_EN(n) __BIT(n * 4 + 1)
49 #define DMA_IRQ_EN_REG0_HLAF_IRQ_EN(n) __BIT(n * 4 + 0)
50 #define DMA_IRQ_EN_REG1_QUEUE_IRQ_EN(n) __BIT((n - 8) * 4 + 2)
51 #define DMA_IRQ_EN_REG1_PKG_IRQ_EN(n) __BIT((n - 8) * 4 + 1)
52 #define DMA_IRQ_EN_REG1_HLAF_IRQ_EN(n) __BIT((n - 8) * 4 + 0)
53 #define DMA_IRQ_PEND_REG0_REG 0x0010
54 #define DMA_IRQ_PEND_REG1_REG 0x0014
55 #define DMA_IRQ_QUEUE_MASK 0x4444444444444444ULL
56 #define DMA_IRQ_PKG_MASK 0x2222222222222222ULL
57 #define DMA_IRQ_HF_MASK 0x1111111111111111ULL
58 #define DMA_STA_REG 0x0030
59 #define DMA_EN_REG(n) (0x0100 + (n) * 0x40 + 0x00)
60 #define DMA_EN_EN __BIT(0)
61 #define DMA_PAU_REG(n) (0x0100 + (n) * 0x40 + 0x04)
62 #define DMA_PAU_PAUSE __BIT(0)
63 #define DMA_START_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x08)
64 #define DMA_CFG_REG(n) (0x0100 + (n) * 0x40 + 0x0C)
65 #define DMA_CFG_DEST_DATA_WIDTH __BITS(26,25)
66 #define DMA_CFG_DATA_WIDTH(n) ((n) >> 4)
67 #define DMA_CFG_BST_LEN(n) ((n) == 1 ? 0 : (((n) >> 3) + 1))
68 #define DMA_CFG_DEST_ADDR_MODE __BITS(22,21)
69 #define DMA_CFG_ADDR_MODE_LINEAR 0
70 #define DMA_CFG_ADDR_MODE_IO 1
71 #define DMA_CFG_DEST_DRQ_TYPE __BITS(20,16)
72 #define DMA_CFG_DRQ_TYPE_SDRAM 1
73 #define DMA_CFG_SRC_DATA_WIDTH __BITS(10,9)
74 #define DMA_CFG_SRC_ADDR_MODE __BITS(6,5)
75 #define DMA_CFG_SRC_DRQ_TYPE __BITS(4,0)
76 #define DMA_CUR_SRC_REG(n) (0x0100 + (n) * 0x40 + 0x10)
77 #define DMA_CUR_DEST_REG(n) (0x0100 + (n) * 0x40 + 0x14)
78 #define DMA_BCNT_LEFT_REG(n) (0x0100 + (n) * 0x40 + 0x18)
79 #define DMA_PARA_REG(n) (0x0100 + (n) * 0x40 + 0x1C)
80 #define DMA_PARA_DATA_BLK_SIZE __BITS(15,8)
81 #define DMA_PARA_WAIT_CYC __BITS(7,0)
82 #define DMA_MODE_REG(n) (0x0100 + (n) * 0x40 + 0x28)
83 #define MODE_WAIT 0b0
84 #define MODE_HANDSHAKE 0b1
85 #define DMA_MODE_DST(m) __SHIFTIN((m), __BIT(3))
86 #define DMA_MODE_SRC(m) __SHIFTIN((m), __BIT(2))
87 #define DMA_FDESC_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x2C)
88 #define DMA_PKG_NUM_REG(n) (0x0100 + (n) * 0x40 + 0x30)
89
90 struct sun6idma_desc {
91 uint32_t dma_config;
92 uint32_t dma_srcaddr;
93 uint32_t dma_dstaddr;
94 uint32_t dma_bcnt;
95 uint32_t dma_para;
96 uint32_t dma_next;
97 #define DMA_NULL 0xfffff800
98 };
99
100 struct sun6idma_config {
101 u_int num_channels;
102 bool autogate;
103 uint8_t bursts;
104 uint8_t widths;
105 bus_size_t autogate_reg;
106 uint32_t autogate_mask;
107 uint32_t burst_mask;
108 };
109
110 #define IL2B(x) __BIT(ilog2(x))
111 #define IL2B_RANGE(x, y) __BITS(ilog2(x), ilog2(y))
112 #define WIDTHS_1_2_4 IL2B_RANGE(4, 1)
113 #define WIDTHS_1_2_4_8 IL2B_RANGE(8, 1)
114 #define BURSTS_1_8 (IL2B(8)|IL2B(1))
115 #define BURSTS_1_4_8_16 (IL2B(16)|IL2B(8)|IL2B(4)|IL2B(1))
116
117 static const struct sun6idma_config sun6i_a31_dma_config = {
118 .num_channels = 16,
119 .burst_mask = __BITS(8,7),
120 .bursts = BURSTS_1_8,
121 .widths = WIDTHS_1_2_4,
122 };
123
124 static const struct sun6idma_config sun8i_a83t_dma_config = {
125 .num_channels = 8,
126 .autogate = true,
127 .autogate_reg = 0x20,
128 .autogate_mask = 0x4,
129 .burst_mask = __BITS(8,7),
130 .bursts = BURSTS_1_8,
131 .widths = WIDTHS_1_2_4,
132 };
133
134 static const struct sun6idma_config sun8i_h3_dma_config = {
135 .num_channels = 12,
136 .autogate = true,
137 .autogate_reg = 0x28,
138 .autogate_mask = 0x4,
139 .burst_mask = __BITS(7,6),
140 .bursts = BURSTS_1_4_8_16,
141 .widths = WIDTHS_1_2_4_8,
142 };
143
144 static const struct sun6idma_config sun8i_v3s_dma_config = {
145 .num_channels = 8,
146 .autogate = true,
147 .autogate_reg = 0x20,
148 .autogate_mask = 0x4,
149 .burst_mask = __BITS(8,7),
150 .bursts = BURSTS_1_8,
151 .widths = WIDTHS_1_2_4,
152 };
153
154 static const struct sun6idma_config sun50i_a64_dma_config = {
155 .num_channels = 8,
156 .autogate = true,
157 .autogate_reg = 0x28,
158 .autogate_mask = 0x4,
159 .burst_mask = __BITS(7,6),
160 .bursts = BURSTS_1_4_8_16,
161 .widths = WIDTHS_1_2_4_8,
162 };
163
164 static const struct device_compatible_entry compat_data[] = {
165 { .compat = "allwinner,sun6i-a31-dma",
166 .data = &sun6i_a31_dma_config },
167 { .compat = "allwinner,sun8i-a83t-dma",
168 .data = &sun8i_a83t_dma_config },
169 { .compat = "allwinner,sun8i-h3-dma",
170 .data = &sun8i_h3_dma_config },
171 { .compat = "allwinner,sun8i-v3s-dma",
172 .data = &sun8i_v3s_dma_config },
173 { .compat = "allwinner,sun50i-a64-dma",
174 .data = &sun50i_a64_dma_config },
175
176 DEVICE_COMPAT_EOL
177 };
178
179 struct sun6idma_channel {
180 uint8_t ch_index;
181 void (*ch_callback)(void *);
182 void *ch_callbackarg;
183 u_int ch_portid;
184 void *ch_dmadesc;
185 };
186
187 struct sun6idma_softc {
188 device_t sc_dev;
189 bus_space_tag_t sc_bst;
190 bus_space_handle_t sc_bsh;
191 bus_dma_tag_t sc_dmat;
192 int sc_phandle;
193 void *sc_ih;
194
195 uint32_t sc_burst_mask;
196
197 kmutex_t sc_lock;
198
199 struct sun6idma_channel *sc_chan;
200 u_int sc_nchan;
201 u_int sc_ndesc_ch;
202 uint8_t sc_widths;
203 uint8_t sc_bursts;
204
205 bus_dma_segment_t sc_dmasegs[1];
206 bus_dmamap_t sc_dmamap;
207 void *sc_dmadescs;
208 };
209
210 #define DMA_READ(sc, reg) \
211 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
212 #define DMA_WRITE(sc, reg, val) \
213 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
214
215 #define DESC_NUM ((MAXPHYS / MIN_PAGE_SIZE + 1) + 1)
216 #define DESC_LEN(n) \
217 (sizeof(struct sun6idma_desc) * (n))
218 #define DESC_OFFS(ch, n) \
219 ((ch) * roundup2(DESC_LEN(DESC_NUM), COHERENCY_UNIT) + DESC_LEN(n))
220 #define DESC_ADDR(sc, chp, n) \
221 ((sc)->sc_dmamap->dm_segs[0].ds_addr + DESC_OFFS((chp)->ch_index, (n)))
222
223 static void *
224 sun6idma_acquire(device_t dev, const void *data, size_t len,
225 void (*cb)(void *), void *cbarg)
226 {
227 struct sun6idma_softc *sc = device_private(dev);
228 struct sun6idma_channel *ch = NULL;
229 uint32_t irqen;
230 uint8_t index;
231
232 if (len != 4)
233 return NULL;
234
235 const u_int portid = be32dec(data);
236 if (portid > __SHIFTOUT_MASK(DMA_CFG_SRC_DRQ_TYPE))
237 return NULL;
238
239 mutex_enter(&sc->sc_lock);
240
241 for (index = 0; index < sc->sc_nchan; index++) {
242 if (sc->sc_chan[index].ch_callback == NULL) {
243 ch = &sc->sc_chan[index];
244 ch->ch_callback = cb;
245 ch->ch_callbackarg = cbarg;
246 ch->ch_portid = portid;
247
248 irqen = DMA_READ(sc, index < 8 ?
249 DMA_IRQ_EN_REG0_REG :
250 DMA_IRQ_EN_REG1_REG);
251 irqen |= (index < 8 ?
252 DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) :
253 DMA_IRQ_EN_REG1_PKG_IRQ_EN(index));
254 DMA_WRITE(sc, index < 8 ?
255 DMA_IRQ_EN_REG0_REG :
256 DMA_IRQ_EN_REG1_REG, irqen);
257
258 break;
259 }
260 }
261
262 mutex_exit(&sc->sc_lock);
263
264 return ch;
265 }
266
267 static void
268 sun6idma_release(device_t dev, void *priv)
269 {
270 struct sun6idma_softc *sc = device_private(dev);
271 struct sun6idma_channel *ch = priv;
272 uint32_t irqen;
273 uint8_t index = ch->ch_index;
274
275 mutex_enter(&sc->sc_lock);
276
277 irqen = DMA_READ(sc, index < 8 ?
278 DMA_IRQ_EN_REG0_REG :
279 DMA_IRQ_EN_REG1_REG);
280 irqen &= ~(index < 8 ?
281 DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) :
282 DMA_IRQ_EN_REG1_PKG_IRQ_EN(index));
283 DMA_WRITE(sc, index < 8 ?
284 DMA_IRQ_EN_REG0_REG :
285 DMA_IRQ_EN_REG1_REG, irqen);
286
287 ch->ch_callback = NULL;
288 ch->ch_callbackarg = NULL;
289
290 mutex_exit(&sc->sc_lock);
291 }
292
293 static int
294 sun6idma_transfer(device_t dev, void *priv, struct fdtbus_dma_req *req)
295 {
296 struct sun6idma_softc *sc = device_private(dev);
297 struct sun6idma_channel *ch = priv;
298 struct sun6idma_desc *desc = ch->ch_dmadesc;
299 uint32_t src, dst, len, cfg, mem_cfg, dev_cfg;
300 uint32_t mem_width, dev_width, mem_burst, dev_burst;
301
302 if (req->dreq_nsegs > sc->sc_ndesc_ch)
303 return EINVAL;
304
305 if ((sc->sc_widths &
306 IL2B(req->dreq_mem_opt.opt_bus_width/NBBY)) == 0)
307 return EINVAL;
308 if ((sc->sc_widths &
309 IL2B(req->dreq_dev_opt.opt_bus_width/NBBY)) == 0)
310 return EINVAL;
311 if ((sc->sc_bursts &
312 IL2B(req->dreq_mem_opt.opt_burst_len)) == 0)
313 return EINVAL;
314 if ((sc->sc_bursts &
315 IL2B(req->dreq_dev_opt.opt_burst_len)) == 0)
316 return EINVAL;
317
318 mem_width = DMA_CFG_DATA_WIDTH(req->dreq_mem_opt.opt_bus_width);
319 dev_width = DMA_CFG_DATA_WIDTH(req->dreq_dev_opt.opt_bus_width);
320 mem_burst = DMA_CFG_BST_LEN(req->dreq_mem_opt.opt_burst_len);
321 dev_burst = DMA_CFG_BST_LEN(req->dreq_dev_opt.opt_burst_len);
322
323 mem_cfg = __SHIFTIN(mem_width, DMA_CFG_SRC_DATA_WIDTH) |
324 __SHIFTIN(mem_burst, sc->sc_burst_mask) |
325 __SHIFTIN(DMA_CFG_ADDR_MODE_LINEAR, DMA_CFG_SRC_ADDR_MODE) |
326 __SHIFTIN(DMA_CFG_DRQ_TYPE_SDRAM, DMA_CFG_SRC_DRQ_TYPE);
327 dev_cfg = __SHIFTIN(dev_width, DMA_CFG_SRC_DATA_WIDTH) |
328 __SHIFTIN(dev_burst, sc->sc_burst_mask) |
329 __SHIFTIN(DMA_CFG_ADDR_MODE_IO, DMA_CFG_SRC_ADDR_MODE) |
330 __SHIFTIN(ch->ch_portid, DMA_CFG_SRC_DRQ_TYPE);
331
332 for (size_t j = 0; j < req->dreq_nsegs; j++) {
333 if (req->dreq_dir == FDT_DMA_READ) {
334 src = req->dreq_dev_phys;
335 dst = req->dreq_segs[j].ds_addr;
336 cfg = mem_cfg << 16 | dev_cfg;
337 } else {
338 src = req->dreq_segs[j].ds_addr;
339 dst = req->dreq_dev_phys;
340 cfg = dev_cfg << 16 | mem_cfg;
341 }
342 len = req->dreq_segs[j].ds_len;
343
344 desc[j].dma_config = htole32(cfg);
345 desc[j].dma_srcaddr = htole32(src);
346 desc[j].dma_dstaddr = htole32(dst);
347 desc[j].dma_bcnt = htole32(len);
348 desc[j].dma_para = htole32(0);
349 if (j < req->dreq_nsegs - 1)
350 desc[j].dma_next = htole32(DESC_ADDR(sc, ch, j + 1));
351 else
352 desc[j].dma_next = htole32(DMA_NULL);
353 }
354
355 #if notyet && maybenever
356 DMA_WRITE(sc, DMA_MODE_REG(ch->ch_index),
357 DMA_MODE_DST(MODE_HANDSHAKE)|DMA_MODE_SRC(MODE_HANDSHAKE));
358 #endif
359
360 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, DESC_OFFS(ch->ch_index, 0),
361 DESC_LEN(req->dreq_nsegs), BUS_DMASYNC_PREWRITE);
362
363 DMA_WRITE(sc, DMA_START_ADDR_REG(ch->ch_index),
364 DESC_ADDR(sc, ch, 0));
365 DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), DMA_EN_EN);
366
367 if ((DMA_READ(sc, DMA_EN_REG(ch->ch_index)) & DMA_EN_EN) == 0) {
368 aprint_error_dev(sc->sc_dev,
369 "DMA Channel %u failed to start\n", ch->ch_index);
370 return EIO;
371 }
372
373 return 0;
374 }
375
376 static void
377 sun6idma_halt(device_t dev, void *priv)
378 {
379 struct sun6idma_softc *sc = device_private(dev);
380 struct sun6idma_channel *ch = priv;
381
382 DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), 0);
383 }
384
385 static const struct fdtbus_dma_controller_func sun6idma_funcs = {
386 .acquire = sun6idma_acquire,
387 .release = sun6idma_release,
388 .transfer = sun6idma_transfer,
389 .halt = sun6idma_halt
390 };
391
392 static int
393 sun6idma_intr(void *priv)
394 {
395 struct sun6idma_softc *sc = priv;
396 uint32_t pend0, pend1, bit;
397 uint64_t pend, mask;
398 uint8_t index;
399
400 pend0 = DMA_READ(sc, DMA_IRQ_PEND_REG0_REG);
401 pend1 = DMA_READ(sc, DMA_IRQ_PEND_REG1_REG);
402 if (!pend0 && !pend1)
403 return 0;
404
405 DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, pend0);
406 DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, pend1);
407
408 pend = pend0 | ((uint64_t)pend1 << 32);
409
410 while ((bit = ffs64(pend & DMA_IRQ_PKG_MASK)) != 0) {
411 mask = __BIT(bit - 1);
412 pend &= ~mask;
413 index = (bit - 1) / 4;
414
415 if (sc->sc_chan[index].ch_callback == NULL)
416 continue;
417 sc->sc_chan[index].ch_callback(
418 sc->sc_chan[index].ch_callbackarg);
419 }
420
421 return 1;
422 }
423
424 static int
425 sun6idma_match(device_t parent, cfdata_t cf, void *aux)
426 {
427 struct fdt_attach_args * const faa = aux;
428
429 return of_compatible_match(faa->faa_phandle, compat_data);
430 }
431
432 static void
433 sun6idma_attach(device_t parent, device_t self, void *aux)
434 {
435 struct sun6idma_softc * const sc = device_private(self);
436 struct fdt_attach_args * const faa = aux;
437 const int phandle = faa->faa_phandle;
438 size_t desclen;
439 const struct sun6idma_config *conf;
440 struct fdtbus_reset *rst;
441 struct clk *clk;
442 char intrstr[128];
443 bus_addr_t addr;
444 bus_size_t size;
445 int error, nsegs;
446 u_int index;
447
448 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
449 aprint_error(": couldn't get registers\n");
450 return;
451 }
452
453 if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL ||
454 clk_enable(clk) != 0) {
455 aprint_error(": couldn't enable clock\n");
456 return;
457 }
458 if ((rst = fdtbus_reset_get_index(phandle, 0)) == NULL ||
459 fdtbus_reset_deassert(rst) != 0) {
460 aprint_error(": couldn't de-assert reset\n");
461 return;
462 }
463
464 sc->sc_dev = self;
465 sc->sc_phandle = phandle;
466 sc->sc_dmat = faa->faa_dmat;
467 sc->sc_bst = faa->faa_bst;
468 if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
469 aprint_error(": couldn't map registers\n");
470 return;
471 }
472 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED);
473
474 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
475 aprint_error(": failed to decode interrupt\n");
476 return;
477 }
478
479 conf = of_compatible_lookup(phandle, compat_data)->data;
480
481 sc->sc_burst_mask = conf->burst_mask;
482 sc->sc_nchan = conf->num_channels;
483 sc->sc_widths = conf->widths;
484 sc->sc_bursts = conf->bursts;
485 sc->sc_chan = kmem_alloc(sizeof(*sc->sc_chan) * sc->sc_nchan, KM_SLEEP);
486 desclen = DESC_OFFS(sc->sc_nchan, 0);
487 sc->sc_ndesc_ch = DESC_OFFS(1, 0) / sizeof(struct sun6idma_desc);
488
489 aprint_naive("\n");
490 aprint_normal(": DMA controller (%u channels)\n", sc->sc_nchan);
491
492 DMA_WRITE(sc, DMA_IRQ_EN_REG0_REG, 0);
493 DMA_WRITE(sc, DMA_IRQ_EN_REG1_REG, 0);
494 DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, ~0);
495 DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, ~0);
496
497 error = bus_dmamem_alloc(sc->sc_dmat, desclen, 0, 0,
498 sc->sc_dmasegs, 1, &nsegs, BUS_DMA_WAITOK);
499 if (error)
500 panic("bus_dmamem_alloc failed: %d", error);
501 error = bus_dmamem_map(sc->sc_dmat, sc->sc_dmasegs, nsegs,
502 desclen, (void **)&sc->sc_dmadescs, BUS_DMA_WAITOK);
503 if (error)
504 panic("bus_dmamem_map failed: %d", error);
505 error = bus_dmamap_create(sc->sc_dmat, desclen, 1, desclen, 0,
506 BUS_DMA_WAITOK, &sc->sc_dmamap);
507 if (error)
508 panic("bus_dmamap_create failed: %d", error);
509 error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
510 sc->sc_dmadescs, desclen, NULL, BUS_DMA_WAITOK);
511 if (error)
512 panic("bus_dmamap_load failed: %d", error);
513
514 for (index = 0; index < sc->sc_nchan; index++) {
515 struct sun6idma_channel *ch = &sc->sc_chan[index];
516 ch->ch_index = index;
517 ch->ch_dmadesc = (void *)((uintptr_t)sc->sc_dmadescs + DESC_OFFS(index, 0));
518 ch->ch_callback = NULL;
519 ch->ch_callbackarg = NULL;
520
521 DMA_WRITE(sc, DMA_EN_REG(index), 0);
522 }
523
524 if (conf->autogate)
525 DMA_WRITE(sc, conf->autogate_reg, conf->autogate_mask);
526
527 sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_SCHED,
528 FDT_INTR_MPSAFE, sun6idma_intr, sc, device_xname(sc->sc_dev));
529 if (sc->sc_ih == NULL) {
530 aprint_error_dev(sc->sc_dev,
531 "couldn't establish interrupt on %s\n", intrstr);
532 return;
533 }
534 aprint_normal_dev(sc->sc_dev, "interrupting on %s\n", intrstr);
535
536 fdtbus_register_dma_controller(self, phandle, &sun6idma_funcs);
537 }
538
539 CFATTACH_DECL_NEW(sun6i_dma, sizeof(struct sun6idma_softc),
540 sun6idma_match, sun6idma_attach, NULL, NULL);
541
542 #ifdef DDB
543 void sun6idma_dump(void);
544
545 void
546 sun6idma_dump(void)
547 {
548 struct sun6idma_softc *sc;
549 device_t dev;
550 u_int index;
551
552 dev = device_find_by_driver_unit("sun6idma", 0);
553 if (dev == NULL)
554 return;
555 sc = device_private(dev);
556
557 device_printf(dev, "DMA_IRQ_EN_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG0_REG));
558 device_printf(dev, "DMA_IRQ_EN_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG1_REG));
559 device_printf(dev, "DMA_IRQ_PEND_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG0_REG));
560 device_printf(dev, "DMA_IRQ_PEND_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG1_REG));
561 device_printf(dev, "DMA_STA_REG: %08x\n", DMA_READ(sc, DMA_STA_REG));
562
563 for (index = 0; index < sc->sc_nchan; index++) {
564 struct sun6idma_channel *ch = &sc->sc_chan[index];
565 if (ch->ch_callback == NULL)
566 continue;
567 device_printf(dev, " %2d: DMA_EN_REG: %08x\n", index, DMA_READ(sc, DMA_EN_REG(index)));
568 device_printf(dev, " %2d: DMA_PAU_REG: %08x\n", index, DMA_READ(sc, DMA_PAU_REG(index)));
569 device_printf(dev, " %2d: DMA_START_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_START_ADDR_REG(index)));
570 device_printf(dev, " %2d: DMA_CFG_REG: %08x\n", index, DMA_READ(sc, DMA_CFG_REG(index)));
571 device_printf(dev, " %2d: DMA_CUR_SRC_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_SRC_REG(index)));
572 device_printf(dev, " %2d: DMA_CUR_DEST_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_DEST_REG(index)));
573 device_printf(dev, " %2d: DMA_BCNT_LEFT_REG: %08x\n", index, DMA_READ(sc, DMA_BCNT_LEFT_REG(index)));
574 device_printf(dev, " %2d: DMA_PARA_REG: %08x\n", index, DMA_READ(sc, DMA_PARA_REG(index)));
575 device_printf(dev, " %2d: DMA_MODE_REG: %08x\n", index, DMA_READ(sc, DMA_MODE_REG(index)));
576 device_printf(dev, " %2d: DMA_FDESC_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_FDESC_ADDR_REG(index)));
577 device_printf(dev, " %2d: DMA_PKG_NUM_REG: %08x\n", index, DMA_READ(sc, DMA_PKG_NUM_REG(index)));
578 }
579 }
580 #endif
581