sun6i_dma.c revision 1.16 1 /* $NetBSD: sun6i_dma.c,v 1.16 2024/08/13 07:20:23 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "opt_ddb.h"
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: sun6i_dma.c,v 1.16 2024/08/13 07:20:23 skrll Exp $");
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/device.h>
37 #include <sys/intr.h>
38 #include <sys/systm.h>
39 #include <sys/mutex.h>
40 #include <sys/bitops.h>
41 #include <sys/kmem.h>
42
43 #include <dev/fdt/fdtvar.h>
44
45 #define DMA_IRQ_EN_REG0_REG 0x0000
46 #define DMA_IRQ_EN_REG1_REG 0x0004
47 #define DMA_IRQ_EN_REG0_QUEUE_IRQ_EN(n) __BIT(n * 4 + 2)
48 #define DMA_IRQ_EN_REG0_PKG_IRQ_EN(n) __BIT(n * 4 + 1)
49 #define DMA_IRQ_EN_REG0_HLAF_IRQ_EN(n) __BIT(n * 4 + 0)
50 #define DMA_IRQ_EN_REG1_QUEUE_IRQ_EN(n) __BIT((n - 8) * 4 + 2)
51 #define DMA_IRQ_EN_REG1_PKG_IRQ_EN(n) __BIT((n - 8) * 4 + 1)
52 #define DMA_IRQ_EN_REG1_HLAF_IRQ_EN(n) __BIT((n - 8) * 4 + 0)
53 #define DMA_IRQ_PEND_REG0_REG 0x0010
54 #define DMA_IRQ_PEND_REG1_REG 0x0014
55 #define DMA_IRQ_QUEUE_MASK 0x4444444444444444ULL
56 #define DMA_IRQ_PKG_MASK 0x2222222222222222ULL
57 #define DMA_IRQ_HF_MASK 0x1111111111111111ULL
58 #define DMA_STA_REG 0x0030
59 #define DMA_EN_REG(n) (0x0100 + (n) * 0x40 + 0x00)
60 #define DMA_EN_EN __BIT(0)
61 #define DMA_PAU_REG(n) (0x0100 + (n) * 0x40 + 0x04)
62 #define DMA_PAU_PAUSE __BIT(0)
63 #define DMA_START_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x08)
64 #define DMA_CFG_REG(n) (0x0100 + (n) * 0x40 + 0x0C)
65 #define DMA_CFG_DEST_DATA_WIDTH __BITS(26,25)
66 #define DMA_CFG_DATA_WIDTH(n) ((n) >> 4)
67 #define DMA_CFG_BST_LEN(n) ((n) == 1 ? 0 : (((n) >> 3) + 1))
68 #define DMA_CFG_DEST_ADDR_MODE __BITS(22,21)
69 #define DMA_CFG_ADDR_MODE_LINEAR 0
70 #define DMA_CFG_ADDR_MODE_IO 1
71 #define DMA_CFG_DEST_DRQ_TYPE __BITS(20,16)
72 #define DMA_CFG_DRQ_TYPE_SDRAM 1
73 #define DMA_CFG_SRC_DATA_WIDTH __BITS(10,9)
74 #define DMA_CFG_SRC_ADDR_MODE __BITS(6,5)
75 #define DMA_CFG_SRC_DRQ_TYPE __BITS(4,0)
76 #define DMA_CUR_SRC_REG(n) (0x0100 + (n) * 0x40 + 0x10)
77 #define DMA_CUR_DEST_REG(n) (0x0100 + (n) * 0x40 + 0x14)
78 #define DMA_BCNT_LEFT_REG(n) (0x0100 + (n) * 0x40 + 0x18)
79 #define DMA_PARA_REG(n) (0x0100 + (n) * 0x40 + 0x1C)
80 #define DMA_PARA_DATA_BLK_SIZE __BITS(15,8)
81 #define DMA_PARA_WAIT_CYC __BITS(7,0)
82 #define DMA_MODE_REG(n) (0x0100 + (n) * 0x40 + 0x28)
83 #define MODE_WAIT 0b0
84 #define MODE_HANDSHAKE 0b1
85 #define DMA_MODE_DST(m) __SHIFTIN((m), __BIT(3))
86 #define DMA_MODE_SRC(m) __SHIFTIN((m), __BIT(2))
87 #define DMA_FDESC_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x2C)
88 #define DMA_PKG_NUM_REG(n) (0x0100 + (n) * 0x40 + 0x30)
89
90 struct sun6idma_desc {
91 uint32_t dma_config;
92 uint32_t dma_srcaddr;
93 uint32_t dma_dstaddr;
94 uint32_t dma_bcnt;
95 uint32_t dma_para;
96 uint32_t dma_next;
97 #define DMA_NULL 0xfffff800
98 };
99
100 struct sun6idma_config {
101 u_int num_channels;
102 bool autogate;
103 uint8_t bursts;
104 uint8_t widths;
105 bus_size_t autogate_reg;
106 uint32_t autogate_mask;
107 uint32_t burst_mask;
108 };
109
110 #define IL2B(x) __BIT(ilog2(x))
111 #define IL2B_RANGE(x, y) __BITS(ilog2(x), ilog2(y))
112 #define WIDTHS_1_2_4 IL2B_RANGE(4, 1)
113 #define WIDTHS_1_2_4_8 IL2B_RANGE(8, 1)
114 #define BURSTS_1_8 (IL2B(8)|IL2B(1))
115 #define BURSTS_1_4_8_16 (IL2B(16)|IL2B(8)|IL2B(4)|IL2B(1))
116
117 static const struct sun6idma_config sun6i_a31_dma_config = {
118 .num_channels = 16,
119 .burst_mask = __BITS(8,7),
120 .bursts = BURSTS_1_8,
121 .widths = WIDTHS_1_2_4,
122 };
123
124 static const struct sun6idma_config sun8i_a83t_dma_config = {
125 .num_channels = 8,
126 .autogate = true,
127 .autogate_reg = 0x20,
128 .autogate_mask = 0x4,
129 .burst_mask = __BITS(8,7),
130 .bursts = BURSTS_1_8,
131 .widths = WIDTHS_1_2_4,
132 };
133
134 static const struct sun6idma_config sun8i_h3_dma_config = {
135 .num_channels = 12,
136 .autogate = true,
137 .autogate_reg = 0x28,
138 .autogate_mask = 0x4,
139 .burst_mask = __BITS(7,6),
140 .bursts = BURSTS_1_4_8_16,
141 .widths = WIDTHS_1_2_4_8,
142 };
143
144 static const struct sun6idma_config sun8i_v3s_dma_config = {
145 .num_channels = 8,
146 .autogate = true,
147 .autogate_reg = 0x20,
148 .autogate_mask = 0x4,
149 .burst_mask = __BITS(8,7),
150 .bursts = BURSTS_1_8,
151 .widths = WIDTHS_1_2_4,
152 };
153
154 static const struct sun6idma_config sun20i_d1_dma_config = {
155 .num_channels = 16,
156 .autogate = true,
157 .autogate_reg = 0x28,
158 .autogate_mask = 0x4,
159 .burst_mask = __BITS(7,6),
160 .bursts = BURSTS_1_4_8_16,
161 .widths = WIDTHS_1_2_4_8,
162 };
163
164 static const struct sun6idma_config sun50i_a64_dma_config = {
165 .num_channels = 8,
166 .autogate = true,
167 .autogate_reg = 0x28,
168 .autogate_mask = 0x4,
169 .burst_mask = __BITS(7,6),
170 .bursts = BURSTS_1_4_8_16,
171 .widths = WIDTHS_1_2_4_8,
172 };
173
174 static const struct device_compatible_entry compat_data[] = {
175 { .compat = "allwinner,sun6i-a31-dma",
176 .data = &sun6i_a31_dma_config },
177 { .compat = "allwinner,sun8i-a83t-dma",
178 .data = &sun8i_a83t_dma_config },
179 { .compat = "allwinner,sun8i-h3-dma",
180 .data = &sun8i_h3_dma_config },
181 { .compat = "allwinner,sun8i-v3s-dma",
182 .data = &sun8i_v3s_dma_config },
183 { .compat = "allwinner,sun20i-d1-dma",
184 .data = &sun20i_d1_dma_config },
185 { .compat = "allwinner,sun50i-a64-dma",
186 .data = &sun50i_a64_dma_config },
187
188 DEVICE_COMPAT_EOL
189 };
190
191 struct sun6idma_channel {
192 uint8_t ch_index;
193 void (*ch_callback)(void *);
194 void *ch_callbackarg;
195 u_int ch_portid;
196 void *ch_dmadesc;
197 };
198
199 struct sun6idma_softc {
200 device_t sc_dev;
201 bus_space_tag_t sc_bst;
202 bus_space_handle_t sc_bsh;
203 bus_dma_tag_t sc_dmat;
204 int sc_phandle;
205 void *sc_ih;
206
207 uint32_t sc_burst_mask;
208
209 kmutex_t sc_lock;
210
211 struct sun6idma_channel *sc_chan;
212 u_int sc_nchan;
213 u_int sc_ndesc_ch;
214 uint8_t sc_widths;
215 uint8_t sc_bursts;
216
217 bus_dma_segment_t sc_dmasegs[1];
218 bus_dmamap_t sc_dmamap;
219 void *sc_dmadescs;
220 };
221
222 #define DMA_READ(sc, reg) \
223 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
224 #define DMA_WRITE(sc, reg, val) \
225 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
226
227 #define DESC_NUM ((MAXPHYS / MIN_PAGE_SIZE + 1) + 1)
228 #define DESC_LEN(n) \
229 (sizeof(struct sun6idma_desc) * (n))
230 #define DESC_OFFS(ch, n) \
231 ((ch) * roundup2(DESC_LEN(DESC_NUM), COHERENCY_UNIT) + DESC_LEN(n))
232 #define DESC_ADDR(sc, chp, n) \
233 ((sc)->sc_dmamap->dm_segs[0].ds_addr + DESC_OFFS((chp)->ch_index, (n)))
234
235 static void *
236 sun6idma_acquire(device_t dev, const void *data, size_t len,
237 void (*cb)(void *), void *cbarg)
238 {
239 struct sun6idma_softc *sc = device_private(dev);
240 struct sun6idma_channel *ch = NULL;
241 uint32_t irqen;
242 uint8_t index;
243
244 if (len != 4)
245 return NULL;
246
247 const u_int portid = be32dec(data);
248 if (portid > __SHIFTOUT_MASK(DMA_CFG_SRC_DRQ_TYPE))
249 return NULL;
250
251 mutex_enter(&sc->sc_lock);
252
253 for (index = 0; index < sc->sc_nchan; index++) {
254 if (sc->sc_chan[index].ch_callback == NULL) {
255 ch = &sc->sc_chan[index];
256 ch->ch_callback = cb;
257 ch->ch_callbackarg = cbarg;
258 ch->ch_portid = portid;
259
260 irqen = DMA_READ(sc, index < 8 ?
261 DMA_IRQ_EN_REG0_REG :
262 DMA_IRQ_EN_REG1_REG);
263 irqen |= (index < 8 ?
264 DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) :
265 DMA_IRQ_EN_REG1_PKG_IRQ_EN(index));
266 DMA_WRITE(sc, index < 8 ?
267 DMA_IRQ_EN_REG0_REG :
268 DMA_IRQ_EN_REG1_REG, irqen);
269
270 break;
271 }
272 }
273
274 mutex_exit(&sc->sc_lock);
275
276 return ch;
277 }
278
279 static void
280 sun6idma_release(device_t dev, void *priv)
281 {
282 struct sun6idma_softc *sc = device_private(dev);
283 struct sun6idma_channel *ch = priv;
284 uint32_t irqen;
285 uint8_t index = ch->ch_index;
286
287 mutex_enter(&sc->sc_lock);
288
289 irqen = DMA_READ(sc, index < 8 ?
290 DMA_IRQ_EN_REG0_REG :
291 DMA_IRQ_EN_REG1_REG);
292 irqen &= ~(index < 8 ?
293 DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) :
294 DMA_IRQ_EN_REG1_PKG_IRQ_EN(index));
295 DMA_WRITE(sc, index < 8 ?
296 DMA_IRQ_EN_REG0_REG :
297 DMA_IRQ_EN_REG1_REG, irqen);
298
299 ch->ch_callback = NULL;
300 ch->ch_callbackarg = NULL;
301
302 mutex_exit(&sc->sc_lock);
303 }
304
305 static int
306 sun6idma_transfer(device_t dev, void *priv, struct fdtbus_dma_req *req)
307 {
308 struct sun6idma_softc *sc = device_private(dev);
309 struct sun6idma_channel *ch = priv;
310 struct sun6idma_desc *desc = ch->ch_dmadesc;
311 uint32_t src, dst, len, cfg, mem_cfg, dev_cfg;
312 uint32_t mem_width, dev_width, mem_burst, dev_burst;
313
314 if (req->dreq_nsegs > sc->sc_ndesc_ch)
315 return EINVAL;
316
317 if ((sc->sc_widths &
318 IL2B(req->dreq_mem_opt.opt_bus_width/NBBY)) == 0)
319 return EINVAL;
320 if ((sc->sc_widths &
321 IL2B(req->dreq_dev_opt.opt_bus_width/NBBY)) == 0)
322 return EINVAL;
323 if ((sc->sc_bursts &
324 IL2B(req->dreq_mem_opt.opt_burst_len)) == 0)
325 return EINVAL;
326 if ((sc->sc_bursts &
327 IL2B(req->dreq_dev_opt.opt_burst_len)) == 0)
328 return EINVAL;
329
330 mem_width = DMA_CFG_DATA_WIDTH(req->dreq_mem_opt.opt_bus_width);
331 dev_width = DMA_CFG_DATA_WIDTH(req->dreq_dev_opt.opt_bus_width);
332 mem_burst = DMA_CFG_BST_LEN(req->dreq_mem_opt.opt_burst_len);
333 dev_burst = DMA_CFG_BST_LEN(req->dreq_dev_opt.opt_burst_len);
334
335 mem_cfg = __SHIFTIN(mem_width, DMA_CFG_SRC_DATA_WIDTH) |
336 __SHIFTIN(mem_burst, sc->sc_burst_mask) |
337 __SHIFTIN(DMA_CFG_ADDR_MODE_LINEAR, DMA_CFG_SRC_ADDR_MODE) |
338 __SHIFTIN(DMA_CFG_DRQ_TYPE_SDRAM, DMA_CFG_SRC_DRQ_TYPE);
339 dev_cfg = __SHIFTIN(dev_width, DMA_CFG_SRC_DATA_WIDTH) |
340 __SHIFTIN(dev_burst, sc->sc_burst_mask) |
341 __SHIFTIN(DMA_CFG_ADDR_MODE_IO, DMA_CFG_SRC_ADDR_MODE) |
342 __SHIFTIN(ch->ch_portid, DMA_CFG_SRC_DRQ_TYPE);
343
344 for (size_t j = 0; j < req->dreq_nsegs; j++) {
345 if (req->dreq_dir == FDT_DMA_READ) {
346 src = req->dreq_dev_phys;
347 dst = req->dreq_segs[j].ds_addr;
348 cfg = mem_cfg << 16 | dev_cfg;
349 } else {
350 src = req->dreq_segs[j].ds_addr;
351 dst = req->dreq_dev_phys;
352 cfg = dev_cfg << 16 | mem_cfg;
353 }
354 len = req->dreq_segs[j].ds_len;
355
356 desc[j].dma_config = htole32(cfg);
357 desc[j].dma_srcaddr = htole32(src);
358 desc[j].dma_dstaddr = htole32(dst);
359 desc[j].dma_bcnt = htole32(len);
360 desc[j].dma_para = htole32(0);
361 if (j < req->dreq_nsegs - 1)
362 desc[j].dma_next = htole32(DESC_ADDR(sc, ch, j + 1));
363 else
364 desc[j].dma_next = htole32(DMA_NULL);
365 }
366
367 #if notyet && maybenever
368 DMA_WRITE(sc, DMA_MODE_REG(ch->ch_index),
369 DMA_MODE_DST(MODE_HANDSHAKE)|DMA_MODE_SRC(MODE_HANDSHAKE));
370 #endif
371
372 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, DESC_OFFS(ch->ch_index, 0),
373 DESC_LEN(req->dreq_nsegs), BUS_DMASYNC_PREWRITE);
374
375 DMA_WRITE(sc, DMA_START_ADDR_REG(ch->ch_index),
376 DESC_ADDR(sc, ch, 0));
377 DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), DMA_EN_EN);
378
379 if ((DMA_READ(sc, DMA_EN_REG(ch->ch_index)) & DMA_EN_EN) == 0) {
380 aprint_error_dev(sc->sc_dev,
381 "DMA Channel %u failed to start\n", ch->ch_index);
382 return EIO;
383 }
384
385 return 0;
386 }
387
388 static void
389 sun6idma_halt(device_t dev, void *priv)
390 {
391 struct sun6idma_softc *sc = device_private(dev);
392 struct sun6idma_channel *ch = priv;
393
394 DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), 0);
395 }
396
397 static const struct fdtbus_dma_controller_func sun6idma_funcs = {
398 .acquire = sun6idma_acquire,
399 .release = sun6idma_release,
400 .transfer = sun6idma_transfer,
401 .halt = sun6idma_halt
402 };
403
404 static int
405 sun6idma_intr(void *priv)
406 {
407 struct sun6idma_softc *sc = priv;
408 uint32_t pend0, pend1, bit;
409 uint64_t pend, mask;
410 uint8_t index;
411
412 pend0 = DMA_READ(sc, DMA_IRQ_PEND_REG0_REG);
413 pend1 = DMA_READ(sc, DMA_IRQ_PEND_REG1_REG);
414 if (!pend0 && !pend1)
415 return 0;
416
417 DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, pend0);
418 DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, pend1);
419
420 pend = pend0 | ((uint64_t)pend1 << 32);
421
422 while ((bit = ffs64(pend & DMA_IRQ_PKG_MASK)) != 0) {
423 mask = __BIT(bit - 1);
424 pend &= ~mask;
425 index = (bit - 1) / 4;
426
427 if (sc->sc_chan[index].ch_callback == NULL)
428 continue;
429 sc->sc_chan[index].ch_callback(
430 sc->sc_chan[index].ch_callbackarg);
431 }
432
433 return 1;
434 }
435
436 static int
437 sun6idma_match(device_t parent, cfdata_t cf, void *aux)
438 {
439 struct fdt_attach_args * const faa = aux;
440
441 return of_compatible_match(faa->faa_phandle, compat_data);
442 }
443
444 static void
445 sun6idma_attach(device_t parent, device_t self, void *aux)
446 {
447 struct sun6idma_softc * const sc = device_private(self);
448 struct fdt_attach_args * const faa = aux;
449 const int phandle = faa->faa_phandle;
450 size_t desclen;
451 const struct sun6idma_config *conf;
452 struct fdtbus_reset *rst;
453 struct clk *clk;
454 char intrstr[128];
455 bus_addr_t addr;
456 bus_size_t size;
457 int error, nsegs;
458 u_int index;
459
460 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
461 aprint_error(": couldn't get registers\n");
462 return;
463 }
464
465 if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL ||
466 clk_enable(clk) != 0) {
467 aprint_error(": couldn't enable clock\n");
468 return;
469 }
470 if ((rst = fdtbus_reset_get_index(phandle, 0)) == NULL ||
471 fdtbus_reset_deassert(rst) != 0) {
472 aprint_error(": couldn't de-assert reset\n");
473 return;
474 }
475
476 sc->sc_dev = self;
477 sc->sc_phandle = phandle;
478 sc->sc_dmat = faa->faa_dmat;
479 sc->sc_bst = faa->faa_bst;
480 if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
481 aprint_error(": couldn't map registers\n");
482 return;
483 }
484 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED);
485
486 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
487 aprint_error(": failed to decode interrupt\n");
488 return;
489 }
490
491 conf = of_compatible_lookup(phandle, compat_data)->data;
492
493 sc->sc_burst_mask = conf->burst_mask;
494 sc->sc_nchan = conf->num_channels;
495 sc->sc_widths = conf->widths;
496 sc->sc_bursts = conf->bursts;
497 sc->sc_chan = kmem_alloc(sizeof(*sc->sc_chan) * sc->sc_nchan, KM_SLEEP);
498 desclen = DESC_OFFS(sc->sc_nchan, 0);
499 sc->sc_ndesc_ch = DESC_OFFS(1, 0) / sizeof(struct sun6idma_desc);
500
501 aprint_naive("\n");
502 aprint_normal(": DMA controller (%u channels)\n", sc->sc_nchan);
503
504 DMA_WRITE(sc, DMA_IRQ_EN_REG0_REG, 0);
505 DMA_WRITE(sc, DMA_IRQ_EN_REG1_REG, 0);
506 DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, ~0);
507 DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, ~0);
508
509 error = bus_dmamem_alloc(sc->sc_dmat, desclen, 0, 0,
510 sc->sc_dmasegs, 1, &nsegs, BUS_DMA_WAITOK);
511 if (error)
512 panic("bus_dmamem_alloc failed: %d", error);
513 error = bus_dmamem_map(sc->sc_dmat, sc->sc_dmasegs, nsegs,
514 desclen, (void **)&sc->sc_dmadescs, BUS_DMA_WAITOK);
515 if (error)
516 panic("bus_dmamem_map failed: %d", error);
517 error = bus_dmamap_create(sc->sc_dmat, desclen, 1, desclen, 0,
518 BUS_DMA_WAITOK, &sc->sc_dmamap);
519 if (error)
520 panic("bus_dmamap_create failed: %d", error);
521 error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
522 sc->sc_dmadescs, desclen, NULL, BUS_DMA_WAITOK);
523 if (error)
524 panic("bus_dmamap_load failed: %d", error);
525
526 for (index = 0; index < sc->sc_nchan; index++) {
527 struct sun6idma_channel *ch = &sc->sc_chan[index];
528 ch->ch_index = index;
529 ch->ch_dmadesc = (void *)((uintptr_t)sc->sc_dmadescs + DESC_OFFS(index, 0));
530 ch->ch_callback = NULL;
531 ch->ch_callbackarg = NULL;
532
533 DMA_WRITE(sc, DMA_EN_REG(index), 0);
534 }
535
536 if (conf->autogate)
537 DMA_WRITE(sc, conf->autogate_reg, conf->autogate_mask);
538
539 sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_SCHED,
540 FDT_INTR_MPSAFE, sun6idma_intr, sc, device_xname(sc->sc_dev));
541 if (sc->sc_ih == NULL) {
542 aprint_error_dev(sc->sc_dev,
543 "couldn't establish interrupt on %s\n", intrstr);
544 return;
545 }
546 aprint_normal_dev(sc->sc_dev, "interrupting on %s\n", intrstr);
547
548 fdtbus_register_dma_controller(self, phandle, &sun6idma_funcs);
549 }
550
551 CFATTACH_DECL_NEW(sun6i_dma, sizeof(struct sun6idma_softc),
552 sun6idma_match, sun6idma_attach, NULL, NULL);
553
554 #ifdef DDB
555 void sun6idma_dump(void);
556
557 void
558 sun6idma_dump(void)
559 {
560 struct sun6idma_softc *sc;
561 device_t dev;
562 u_int index;
563
564 dev = device_find_by_driver_unit("sun6idma", 0);
565 if (dev == NULL)
566 return;
567 sc = device_private(dev);
568
569 device_printf(dev, "DMA_IRQ_EN_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG0_REG));
570 device_printf(dev, "DMA_IRQ_EN_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG1_REG));
571 device_printf(dev, "DMA_IRQ_PEND_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG0_REG));
572 device_printf(dev, "DMA_IRQ_PEND_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG1_REG));
573 device_printf(dev, "DMA_STA_REG: %08x\n", DMA_READ(sc, DMA_STA_REG));
574
575 for (index = 0; index < sc->sc_nchan; index++) {
576 struct sun6idma_channel *ch = &sc->sc_chan[index];
577 if (ch->ch_callback == NULL)
578 continue;
579 device_printf(dev, " %2d: DMA_EN_REG: %08x\n", index, DMA_READ(sc, DMA_EN_REG(index)));
580 device_printf(dev, " %2d: DMA_PAU_REG: %08x\n", index, DMA_READ(sc, DMA_PAU_REG(index)));
581 device_printf(dev, " %2d: DMA_START_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_START_ADDR_REG(index)));
582 device_printf(dev, " %2d: DMA_CFG_REG: %08x\n", index, DMA_READ(sc, DMA_CFG_REG(index)));
583 device_printf(dev, " %2d: DMA_CUR_SRC_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_SRC_REG(index)));
584 device_printf(dev, " %2d: DMA_CUR_DEST_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_DEST_REG(index)));
585 device_printf(dev, " %2d: DMA_BCNT_LEFT_REG: %08x\n", index, DMA_READ(sc, DMA_BCNT_LEFT_REG(index)));
586 device_printf(dev, " %2d: DMA_PARA_REG: %08x\n", index, DMA_READ(sc, DMA_PARA_REG(index)));
587 device_printf(dev, " %2d: DMA_MODE_REG: %08x\n", index, DMA_READ(sc, DMA_MODE_REG(index)));
588 device_printf(dev, " %2d: DMA_FDESC_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_FDESC_ADDR_REG(index)));
589 device_printf(dev, " %2d: DMA_PKG_NUM_REG: %08x\n", index, DMA_READ(sc, DMA_PKG_NUM_REG(index)));
590 }
591 }
592 #endif
593