1 1.11 thorpej /* $NetBSD: sun6i_spi.c,v 1.11 2025/09/10 01:55:07 thorpej Exp $ */ 2 1.1 jakllsch 3 1.1 jakllsch /* 4 1.3 tnn * Copyright (c) 2019 Tobias Nygren 5 1.1 jakllsch * Copyright (c) 2018 Jonathan A. Kollasch 6 1.1 jakllsch * All rights reserved. 7 1.1 jakllsch * 8 1.1 jakllsch * Redistribution and use in source and binary forms, with or without 9 1.1 jakllsch * modification, are permitted provided that the following conditions 10 1.1 jakllsch * are met: 11 1.1 jakllsch * 1. Redistributions of source code must retain the above copyright 12 1.1 jakllsch * notice, this list of conditions and the following disclaimer. 13 1.1 jakllsch * 2. Redistributions in binary form must reproduce the above copyright 14 1.1 jakllsch * notice, this list of conditions and the following disclaimer in the 15 1.1 jakllsch * documentation and/or other materials provided with the distribution. 16 1.1 jakllsch * 17 1.1 jakllsch * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 1.1 jakllsch * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 19 1.1 jakllsch * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 20 1.1 jakllsch * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 21 1.1 jakllsch * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 22 1.1 jakllsch * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 23 1.1 jakllsch * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 24 1.1 jakllsch * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 25 1.1 jakllsch * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 26 1.1 jakllsch * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 27 1.1 jakllsch * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 1.1 jakllsch */ 29 1.1 jakllsch 30 1.1 jakllsch #include <sys/cdefs.h> 31 1.11 thorpej __KERNEL_RCSID(0, "$NetBSD: sun6i_spi.c,v 1.11 2025/09/10 01:55:07 thorpej Exp $"); 32 1.1 jakllsch 33 1.1 jakllsch #include <sys/param.h> 34 1.1 jakllsch #include <sys/device.h> 35 1.1 jakllsch #include <sys/systm.h> 36 1.1 jakllsch #include <sys/bus.h> 37 1.1 jakllsch #include <sys/intr.h> 38 1.1 jakllsch #include <sys/kernel.h> 39 1.1 jakllsch 40 1.1 jakllsch #include <sys/bitops.h> 41 1.1 jakllsch #include <dev/spi/spivar.h> 42 1.1 jakllsch 43 1.1 jakllsch #include <arm/sunxi/sun6i_spireg.h> 44 1.1 jakllsch 45 1.1 jakllsch #include <dev/fdt/fdtvar.h> 46 1.1 jakllsch 47 1.1 jakllsch #include <arm/fdt/arm_fdtvar.h> 48 1.1 jakllsch 49 1.1 jakllsch #define SPI_IER_DEFAULT (SPI_IER_TC_INT_EN | SPI_IER_TF_UDR_INT_EN | \ 50 1.1 jakllsch SPI_IER_TF_OVF_INT_EN | SPI_IER_RF_UDR_INT_EN | SPI_IER_RF_OVF_INT_EN) 51 1.1 jakllsch 52 1.1 jakllsch struct sun6ispi_softc { 53 1.1 jakllsch device_t sc_dev; 54 1.1 jakllsch bus_space_tag_t sc_iot; 55 1.1 jakllsch bus_space_handle_t sc_ioh; 56 1.1 jakllsch void *sc_intrh; 57 1.1 jakllsch struct spi_controller sc_spi; 58 1.1 jakllsch SIMPLEQ_HEAD(,spi_transfer) sc_q; 59 1.1 jakllsch struct spi_transfer *sc_transfer; 60 1.1 jakllsch struct spi_chunk *sc_wchunk; 61 1.1 jakllsch struct spi_chunk *sc_rchunk; 62 1.1 jakllsch uint32_t sc_TCR; 63 1.1 jakllsch u_int sc_modclkrate; 64 1.1 jakllsch volatile bool sc_running; 65 1.1 jakllsch }; 66 1.1 jakllsch 67 1.3 tnn #define SPIREG_READ(sc, reg) \ 68 1.3 tnn bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)) 69 1.3 tnn #define SPIREG_WRITE(sc, reg, val) \ 70 1.3 tnn bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) 71 1.3 tnn 72 1.1 jakllsch static int sun6ispi_match(device_t, cfdata_t, void *); 73 1.1 jakllsch static void sun6ispi_attach(device_t, device_t, void *); 74 1.1 jakllsch 75 1.1 jakllsch static int sun6ispi_configure(void *, int, int, int); 76 1.1 jakllsch static int sun6ispi_transfer(void *, struct spi_transfer *); 77 1.1 jakllsch 78 1.1 jakllsch static void sun6ispi_start(struct sun6ispi_softc * const); 79 1.1 jakllsch static int sun6ispi_intr(void *); 80 1.1 jakllsch 81 1.1 jakllsch static void sun6ispi_send(struct sun6ispi_softc * const); 82 1.1 jakllsch static void sun6ispi_recv(struct sun6ispi_softc * const); 83 1.1 jakllsch 84 1.1 jakllsch CFATTACH_DECL_NEW(sun6i_spi, sizeof(struct sun6ispi_softc), 85 1.1 jakllsch sun6ispi_match, sun6ispi_attach, NULL, NULL); 86 1.1 jakllsch 87 1.8 thorpej static const struct device_compatible_entry compat_data[] = { 88 1.8 thorpej { .compat = "allwinner,sun8i-h3-spi" }, 89 1.8 thorpej DEVICE_COMPAT_EOL 90 1.8 thorpej }; 91 1.8 thorpej 92 1.1 jakllsch static int 93 1.1 jakllsch sun6ispi_match(device_t parent, cfdata_t cf, void *aux) 94 1.1 jakllsch { 95 1.1 jakllsch struct fdt_attach_args * const faa = aux; 96 1.1 jakllsch 97 1.8 thorpej return of_compatible_match(faa->faa_phandle, compat_data); 98 1.1 jakllsch } 99 1.1 jakllsch 100 1.1 jakllsch static void 101 1.1 jakllsch sun6ispi_attach(device_t parent, device_t self, void *aux) 102 1.1 jakllsch { 103 1.1 jakllsch struct sun6ispi_softc * const sc = device_private(self); 104 1.1 jakllsch struct fdt_attach_args * const faa = aux; 105 1.3 tnn const int phandle = faa->faa_phandle; 106 1.3 tnn bus_addr_t addr; 107 1.3 tnn bus_size_t size; 108 1.1 jakllsch struct fdtbus_reset *rst; 109 1.1 jakllsch struct clk *clk, *modclk; 110 1.1 jakllsch uint32_t gcr, isr; 111 1.1 jakllsch char intrstr[128]; 112 1.1 jakllsch 113 1.1 jakllsch sc->sc_dev = self; 114 1.1 jakllsch sc->sc_iot = faa->faa_bst; 115 1.1 jakllsch SIMPLEQ_INIT(&sc->sc_q); 116 1.1 jakllsch 117 1.3 tnn if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL 118 1.3 tnn || clk_enable(clk) != 0) { 119 1.3 tnn aprint_error(": couldn't enable clock\n"); 120 1.1 jakllsch return; 121 1.1 jakllsch } 122 1.1 jakllsch 123 1.3 tnn /* 200MHz max on H3,H5 */ 124 1.3 tnn if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL 125 1.3 tnn || clk_set_rate(modclk, 200000000) != 0 126 1.3 tnn || clk_enable(modclk) != 0) { 127 1.3 tnn aprint_error(": couldn't enable module clock\n"); 128 1.1 jakllsch return; 129 1.1 jakllsch } 130 1.3 tnn sc->sc_modclkrate = clk_get_rate(modclk); 131 1.1 jakllsch 132 1.3 tnn if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0 133 1.3 tnn || bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_ioh) != 0) { 134 1.3 tnn aprint_error(": couldn't map registers\n"); 135 1.3 tnn return; 136 1.1 jakllsch } 137 1.1 jakllsch 138 1.1 jakllsch if ((rst = fdtbus_reset_get_index(phandle, 0)) != NULL) 139 1.1 jakllsch if (fdtbus_reset_deassert(rst) != 0) { 140 1.1 jakllsch aprint_error(": couldn't de-assert reset\n"); 141 1.1 jakllsch return; 142 1.1 jakllsch } 143 1.1 jakllsch 144 1.3 tnn isr = SPIREG_READ(sc, SPI_INT_STA); 145 1.3 tnn SPIREG_WRITE(sc, SPI_INT_STA, isr); 146 1.1 jakllsch 147 1.1 jakllsch if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { 148 1.1 jakllsch aprint_error(": failed to decode interrupt\n"); 149 1.1 jakllsch return; 150 1.1 jakllsch } 151 1.1 jakllsch 152 1.6 jmcneill sc->sc_intrh = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0, 153 1.6 jmcneill sun6ispi_intr, sc, device_xname(self)); 154 1.1 jakllsch if (sc->sc_intrh == NULL) { 155 1.3 tnn aprint_error(": unable to establish interrupt\n"); 156 1.1 jakllsch return; 157 1.1 jakllsch } 158 1.3 tnn 159 1.3 tnn aprint_naive("\n"); 160 1.3 tnn aprint_normal(": SPI\n"); 161 1.7 jmcneill 162 1.1 jakllsch aprint_normal_dev(self, "interrupting on %s\n", intrstr); 163 1.1 jakllsch 164 1.1 jakllsch gcr = SPI_GCR_SRST; 165 1.3 tnn SPIREG_WRITE(sc, SPI_GCR, gcr); 166 1.2 jakllsch for (u_int i = 0; ; i++) { 167 1.2 jakllsch if (i >= 1000000) { 168 1.2 jakllsch aprint_error_dev(self, "reset timeout\n"); 169 1.2 jakllsch return; 170 1.2 jakllsch } 171 1.2 jakllsch gcr = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SPI_GCR); 172 1.2 jakllsch if ((gcr & SPI_GCR_SRST) == 0) 173 1.2 jakllsch break; 174 1.2 jakllsch else 175 1.2 jakllsch DELAY(1); 176 1.2 jakllsch } 177 1.1 jakllsch gcr = SPI_GCR_TP_EN | SPI_GCR_MODE | SPI_GCR_EN; 178 1.3 tnn SPIREG_WRITE(sc, SPI_GCR, gcr); 179 1.1 jakllsch 180 1.3 tnn SPIREG_WRITE(sc, SPI_IER, SPI_IER_DEFAULT); 181 1.1 jakllsch 182 1.1 jakllsch sc->sc_spi.sct_cookie = sc; 183 1.1 jakllsch sc->sc_spi.sct_configure = sun6ispi_configure; 184 1.1 jakllsch sc->sc_spi.sct_transfer = sun6ispi_transfer; 185 1.1 jakllsch sc->sc_spi.sct_nslaves = 4; 186 1.1 jakllsch 187 1.11 thorpej spibus_attach(self, &sc->sc_spi); 188 1.1 jakllsch } 189 1.1 jakllsch 190 1.1 jakllsch static int 191 1.1 jakllsch sun6ispi_configure(void *cookie, int slave, int mode, int speed) 192 1.1 jakllsch { 193 1.1 jakllsch struct sun6ispi_softc * const sc = cookie; 194 1.1 jakllsch uint32_t tcr, cctl; 195 1.3 tnn uint32_t minfreq, maxfreq; 196 1.1 jakllsch 197 1.3 tnn minfreq = sc->sc_modclkrate >> 16; 198 1.3 tnn maxfreq = sc->sc_modclkrate >> 1; 199 1.1 jakllsch 200 1.3 tnn if (speed <= 0 || speed < minfreq || speed > maxfreq) 201 1.1 jakllsch return EINVAL; 202 1.1 jakllsch 203 1.3 tnn if (slave >= sc->sc_spi.sct_nslaves) 204 1.1 jakllsch return EINVAL; 205 1.7 jmcneill 206 1.3 tnn tcr = SPI_TCR_SS_LEVEL | SPI_TCR_SPOL; 207 1.1 jakllsch 208 1.1 jakllsch switch (mode) { 209 1.1 jakllsch case SPI_MODE_0: 210 1.1 jakllsch tcr |= 0; 211 1.1 jakllsch break; 212 1.1 jakllsch case SPI_MODE_1: 213 1.1 jakllsch tcr |= SPI_TCR_CPHA; 214 1.1 jakllsch break; 215 1.1 jakllsch case SPI_MODE_2: 216 1.1 jakllsch tcr |= SPI_TCR_CPOL; 217 1.1 jakllsch break; 218 1.1 jakllsch case SPI_MODE_3: 219 1.1 jakllsch tcr |= SPI_TCR_CPHA|SPI_TCR_CPOL; 220 1.1 jakllsch break; 221 1.1 jakllsch default: 222 1.1 jakllsch return EINVAL; 223 1.1 jakllsch } 224 1.1 jakllsch 225 1.1 jakllsch sc->sc_TCR = tcr; 226 1.1 jakllsch 227 1.3 tnn if (speed < sc->sc_modclkrate / 512) { 228 1.1 jakllsch for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) { 229 1.1 jakllsch if ((sc->sc_modclkrate / (1<<cctl)) <= speed) 230 1.1 jakllsch goto cdr1_found; 231 1.1 jakllsch } 232 1.1 jakllsch return EINVAL; 233 1.1 jakllsch cdr1_found: 234 1.1 jakllsch cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1); 235 1.1 jakllsch } else { 236 1.1 jakllsch cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1; 237 1.1 jakllsch cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2); 238 1.1 jakllsch } 239 1.1 jakllsch 240 1.3 tnn device_printf(sc->sc_dev, "tcr 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n", 241 1.3 tnn tcr, cctl, sc->sc_modclkrate, 242 1.3 tnn (cctl & SPI_CCTL_DRS) 243 1.3 tnn ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1))) 244 1.3 tnn : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1)) 245 1.3 tnn ); 246 1.3 tnn 247 1.3 tnn SPIREG_WRITE(sc, SPI_CCTL, cctl); 248 1.1 jakllsch 249 1.1 jakllsch return 0; 250 1.1 jakllsch } 251 1.1 jakllsch 252 1.1 jakllsch static int 253 1.1 jakllsch sun6ispi_transfer(void *cookie, struct spi_transfer *st) 254 1.1 jakllsch { 255 1.1 jakllsch struct sun6ispi_softc * const sc = cookie; 256 1.1 jakllsch int s; 257 1.1 jakllsch 258 1.1 jakllsch s = splbio(); 259 1.1 jakllsch spi_transq_enqueue(&sc->sc_q, st); 260 1.1 jakllsch if (sc->sc_running == false) { 261 1.1 jakllsch sun6ispi_start(sc); 262 1.1 jakllsch } 263 1.1 jakllsch splx(s); 264 1.1 jakllsch return 0; 265 1.1 jakllsch } 266 1.1 jakllsch 267 1.1 jakllsch static void 268 1.1 jakllsch sun6ispi_start(struct sun6ispi_softc * const sc) 269 1.1 jakllsch { 270 1.1 jakllsch struct spi_transfer *st; 271 1.1 jakllsch uint32_t isr, tcr; 272 1.3 tnn struct spi_chunk *chunk; 273 1.3 tnn size_t burstcount; 274 1.1 jakllsch 275 1.1 jakllsch while ((st = spi_transq_first(&sc->sc_q)) != NULL) { 276 1.1 jakllsch 277 1.1 jakllsch spi_transq_dequeue(&sc->sc_q); 278 1.1 jakllsch 279 1.1 jakllsch KASSERT(sc->sc_transfer == NULL); 280 1.1 jakllsch sc->sc_transfer = st; 281 1.1 jakllsch sc->sc_rchunk = sc->sc_wchunk = st->st_chunks; 282 1.1 jakllsch sc->sc_running = true; 283 1.1 jakllsch 284 1.3 tnn isr = SPIREG_READ(sc, SPI_INT_STA); 285 1.3 tnn SPIREG_WRITE(sc, SPI_INT_STA, isr); 286 1.1 jakllsch 287 1.3 tnn burstcount = 0; 288 1.3 tnn for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) { 289 1.3 tnn burstcount += chunk->chunk_count; 290 1.3 tnn } 291 1.3 tnn KASSERT(burstcount <= SPI_BC_MBC); 292 1.3 tnn SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_MBC)); 293 1.3 tnn SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_MWTC)); 294 1.3 tnn SPIREG_WRITE(sc, SPI_BCC, __SHIFTIN(burstcount, SPI_BCC_STC)); 295 1.1 jakllsch 296 1.1 jakllsch KASSERT(st->st_slave <= 3); 297 1.1 jakllsch tcr = sc->sc_TCR | __SHIFTIN(st->st_slave, SPI_TCR_SS_SEL); 298 1.1 jakllsch 299 1.1 jakllsch sun6ispi_send(sc); 300 1.1 jakllsch 301 1.1 jakllsch const uint32_t ier = SPI_IER_DEFAULT | SPI_IER_RF_RDY_INT_EN | SPI_IER_TX_ERQ_INT_EN; 302 1.3 tnn SPIREG_WRITE(sc, SPI_IER, ier); 303 1.1 jakllsch 304 1.3 tnn SPIREG_WRITE(sc, SPI_TCR, tcr|SPI_TCR_XCH); 305 1.1 jakllsch 306 1.1 jakllsch if (!cold) 307 1.1 jakllsch return; 308 1.1 jakllsch 309 1.1 jakllsch for (;;) { 310 1.1 jakllsch sun6ispi_intr(sc); 311 1.1 jakllsch if (ISSET(st->st_flags, SPI_F_DONE)) 312 1.1 jakllsch break; 313 1.1 jakllsch } 314 1.1 jakllsch } 315 1.1 jakllsch 316 1.1 jakllsch sc->sc_running = false; 317 1.1 jakllsch } 318 1.1 jakllsch 319 1.1 jakllsch static void 320 1.1 jakllsch sun6ispi_send(struct sun6ispi_softc * const sc) 321 1.1 jakllsch { 322 1.1 jakllsch uint8_t fd; 323 1.1 jakllsch uint32_t fsr; 324 1.1 jakllsch struct spi_chunk *chunk; 325 1.1 jakllsch 326 1.1 jakllsch while ((chunk = sc->sc_wchunk) != NULL) { 327 1.1 jakllsch while (chunk->chunk_wresid) { 328 1.3 tnn fsr = SPIREG_READ(sc, SPI_FSR); 329 1.1 jakllsch if (__SHIFTOUT(fsr, SPI_FSR_TF_CNT) >= 64) { 330 1.1 jakllsch return; 331 1.1 jakllsch } 332 1.1 jakllsch if (chunk->chunk_wptr) { 333 1.1 jakllsch fd = *chunk->chunk_wptr++; 334 1.1 jakllsch } else { 335 1.1 jakllsch fd = '\0'; 336 1.1 jakllsch } 337 1.1 jakllsch bus_space_write_1(sc->sc_iot, sc->sc_ioh, SPI_TXD, fd); 338 1.1 jakllsch chunk->chunk_wresid--; 339 1.1 jakllsch } 340 1.1 jakllsch sc->sc_wchunk = sc->sc_wchunk->chunk_next; 341 1.1 jakllsch } 342 1.1 jakllsch } 343 1.1 jakllsch 344 1.1 jakllsch static void 345 1.1 jakllsch sun6ispi_recv(struct sun6ispi_softc * const sc) 346 1.1 jakllsch { 347 1.1 jakllsch uint8_t fd; 348 1.1 jakllsch uint32_t fsr; 349 1.1 jakllsch struct spi_chunk *chunk; 350 1.1 jakllsch 351 1.1 jakllsch while ((chunk = sc->sc_rchunk) != NULL) { 352 1.1 jakllsch while (chunk->chunk_rresid) { 353 1.3 tnn fsr = SPIREG_READ(sc, SPI_FSR); 354 1.1 jakllsch if (__SHIFTOUT(fsr, SPI_FSR_RF_CNT) == 0) { 355 1.1 jakllsch return; 356 1.1 jakllsch } 357 1.1 jakllsch fd = bus_space_read_1(sc->sc_iot, sc->sc_ioh, SPI_RXD); 358 1.1 jakllsch if (chunk->chunk_rptr) { 359 1.1 jakllsch *chunk->chunk_rptr++ = fd; 360 1.1 jakllsch } 361 1.1 jakllsch chunk->chunk_rresid--; 362 1.1 jakllsch } 363 1.1 jakllsch sc->sc_rchunk = sc->sc_rchunk->chunk_next; 364 1.1 jakllsch } 365 1.1 jakllsch } 366 1.1 jakllsch 367 1.1 jakllsch static int 368 1.1 jakllsch sun6ispi_intr(void *cookie) 369 1.1 jakllsch { 370 1.1 jakllsch struct sun6ispi_softc * const sc = cookie; 371 1.1 jakllsch struct spi_transfer *st; 372 1.1 jakllsch uint32_t isr; 373 1.1 jakllsch 374 1.3 tnn isr = SPIREG_READ(sc, SPI_INT_STA); 375 1.3 tnn SPIREG_WRITE(sc, SPI_INT_STA, isr); 376 1.1 jakllsch 377 1.1 jakllsch if (ISSET(isr, SPI_ISR_RX_RDY)) { 378 1.1 jakllsch sun6ispi_recv(sc); 379 1.1 jakllsch sun6ispi_send(sc); 380 1.1 jakllsch } 381 1.1 jakllsch 382 1.1 jakllsch if (ISSET(isr, SPI_ISR_TC)) { 383 1.3 tnn SPIREG_WRITE(sc, SPI_IER, SPI_IER_DEFAULT); 384 1.1 jakllsch 385 1.1 jakllsch sc->sc_rchunk = sc->sc_wchunk = NULL; 386 1.1 jakllsch st = sc->sc_transfer; 387 1.1 jakllsch sc->sc_transfer = NULL; 388 1.1 jakllsch KASSERT(st != NULL); 389 1.1 jakllsch spi_done(st, 0); 390 1.1 jakllsch sc->sc_running = false; 391 1.1 jakllsch } 392 1.1 jakllsch 393 1.1 jakllsch return isr; 394 1.1 jakllsch } 395