sun6i_spi.c revision 1.11 1 1.11 thorpej /* $NetBSD: sun6i_spi.c,v 1.11 2025/09/10 01:55:07 thorpej Exp $ */
2 1.1 jakllsch
3 1.1 jakllsch /*
4 1.3 tnn * Copyright (c) 2019 Tobias Nygren
5 1.1 jakllsch * Copyright (c) 2018 Jonathan A. Kollasch
6 1.1 jakllsch * All rights reserved.
7 1.1 jakllsch *
8 1.1 jakllsch * Redistribution and use in source and binary forms, with or without
9 1.1 jakllsch * modification, are permitted provided that the following conditions
10 1.1 jakllsch * are met:
11 1.1 jakllsch * 1. Redistributions of source code must retain the above copyright
12 1.1 jakllsch * notice, this list of conditions and the following disclaimer.
13 1.1 jakllsch * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jakllsch * notice, this list of conditions and the following disclaimer in the
15 1.1 jakllsch * documentation and/or other materials provided with the distribution.
16 1.1 jakllsch *
17 1.1 jakllsch * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 1.1 jakllsch * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 1.1 jakllsch * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 1.1 jakllsch * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
21 1.1 jakllsch * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 1.1 jakllsch * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 1.1 jakllsch * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 1.1 jakllsch * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 1.1 jakllsch * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26 1.1 jakllsch * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27 1.1 jakllsch * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 1.1 jakllsch */
29 1.1 jakllsch
30 1.1 jakllsch #include <sys/cdefs.h>
31 1.11 thorpej __KERNEL_RCSID(0, "$NetBSD: sun6i_spi.c,v 1.11 2025/09/10 01:55:07 thorpej Exp $");
32 1.1 jakllsch
33 1.1 jakllsch #include <sys/param.h>
34 1.1 jakllsch #include <sys/device.h>
35 1.1 jakllsch #include <sys/systm.h>
36 1.1 jakllsch #include <sys/bus.h>
37 1.1 jakllsch #include <sys/intr.h>
38 1.1 jakllsch #include <sys/kernel.h>
39 1.1 jakllsch
40 1.1 jakllsch #include <sys/bitops.h>
41 1.1 jakllsch #include <dev/spi/spivar.h>
42 1.1 jakllsch
43 1.1 jakllsch #include <arm/sunxi/sun6i_spireg.h>
44 1.1 jakllsch
45 1.1 jakllsch #include <dev/fdt/fdtvar.h>
46 1.1 jakllsch
47 1.1 jakllsch #include <arm/fdt/arm_fdtvar.h>
48 1.1 jakllsch
49 1.1 jakllsch #define SPI_IER_DEFAULT (SPI_IER_TC_INT_EN | SPI_IER_TF_UDR_INT_EN | \
50 1.1 jakllsch SPI_IER_TF_OVF_INT_EN | SPI_IER_RF_UDR_INT_EN | SPI_IER_RF_OVF_INT_EN)
51 1.1 jakllsch
52 1.1 jakllsch struct sun6ispi_softc {
53 1.1 jakllsch device_t sc_dev;
54 1.1 jakllsch bus_space_tag_t sc_iot;
55 1.1 jakllsch bus_space_handle_t sc_ioh;
56 1.1 jakllsch void *sc_intrh;
57 1.1 jakllsch struct spi_controller sc_spi;
58 1.1 jakllsch SIMPLEQ_HEAD(,spi_transfer) sc_q;
59 1.1 jakllsch struct spi_transfer *sc_transfer;
60 1.1 jakllsch struct spi_chunk *sc_wchunk;
61 1.1 jakllsch struct spi_chunk *sc_rchunk;
62 1.1 jakllsch uint32_t sc_TCR;
63 1.1 jakllsch u_int sc_modclkrate;
64 1.1 jakllsch volatile bool sc_running;
65 1.1 jakllsch };
66 1.1 jakllsch
67 1.3 tnn #define SPIREG_READ(sc, reg) \
68 1.3 tnn bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
69 1.3 tnn #define SPIREG_WRITE(sc, reg, val) \
70 1.3 tnn bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
71 1.3 tnn
72 1.1 jakllsch static int sun6ispi_match(device_t, cfdata_t, void *);
73 1.1 jakllsch static void sun6ispi_attach(device_t, device_t, void *);
74 1.1 jakllsch
75 1.1 jakllsch static int sun6ispi_configure(void *, int, int, int);
76 1.1 jakllsch static int sun6ispi_transfer(void *, struct spi_transfer *);
77 1.1 jakllsch
78 1.1 jakllsch static void sun6ispi_start(struct sun6ispi_softc * const);
79 1.1 jakllsch static int sun6ispi_intr(void *);
80 1.1 jakllsch
81 1.1 jakllsch static void sun6ispi_send(struct sun6ispi_softc * const);
82 1.1 jakllsch static void sun6ispi_recv(struct sun6ispi_softc * const);
83 1.1 jakllsch
84 1.1 jakllsch CFATTACH_DECL_NEW(sun6i_spi, sizeof(struct sun6ispi_softc),
85 1.1 jakllsch sun6ispi_match, sun6ispi_attach, NULL, NULL);
86 1.1 jakllsch
87 1.8 thorpej static const struct device_compatible_entry compat_data[] = {
88 1.8 thorpej { .compat = "allwinner,sun8i-h3-spi" },
89 1.8 thorpej DEVICE_COMPAT_EOL
90 1.8 thorpej };
91 1.8 thorpej
92 1.1 jakllsch static int
93 1.1 jakllsch sun6ispi_match(device_t parent, cfdata_t cf, void *aux)
94 1.1 jakllsch {
95 1.1 jakllsch struct fdt_attach_args * const faa = aux;
96 1.1 jakllsch
97 1.8 thorpej return of_compatible_match(faa->faa_phandle, compat_data);
98 1.1 jakllsch }
99 1.1 jakllsch
100 1.1 jakllsch static void
101 1.1 jakllsch sun6ispi_attach(device_t parent, device_t self, void *aux)
102 1.1 jakllsch {
103 1.1 jakllsch struct sun6ispi_softc * const sc = device_private(self);
104 1.1 jakllsch struct fdt_attach_args * const faa = aux;
105 1.3 tnn const int phandle = faa->faa_phandle;
106 1.3 tnn bus_addr_t addr;
107 1.3 tnn bus_size_t size;
108 1.1 jakllsch struct fdtbus_reset *rst;
109 1.1 jakllsch struct clk *clk, *modclk;
110 1.1 jakllsch uint32_t gcr, isr;
111 1.1 jakllsch char intrstr[128];
112 1.1 jakllsch
113 1.1 jakllsch sc->sc_dev = self;
114 1.1 jakllsch sc->sc_iot = faa->faa_bst;
115 1.1 jakllsch SIMPLEQ_INIT(&sc->sc_q);
116 1.1 jakllsch
117 1.3 tnn if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL
118 1.3 tnn || clk_enable(clk) != 0) {
119 1.3 tnn aprint_error(": couldn't enable clock\n");
120 1.1 jakllsch return;
121 1.1 jakllsch }
122 1.1 jakllsch
123 1.3 tnn /* 200MHz max on H3,H5 */
124 1.3 tnn if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL
125 1.3 tnn || clk_set_rate(modclk, 200000000) != 0
126 1.3 tnn || clk_enable(modclk) != 0) {
127 1.3 tnn aprint_error(": couldn't enable module clock\n");
128 1.1 jakllsch return;
129 1.1 jakllsch }
130 1.3 tnn sc->sc_modclkrate = clk_get_rate(modclk);
131 1.1 jakllsch
132 1.3 tnn if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
133 1.3 tnn || bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_ioh) != 0) {
134 1.3 tnn aprint_error(": couldn't map registers\n");
135 1.3 tnn return;
136 1.1 jakllsch }
137 1.1 jakllsch
138 1.1 jakllsch if ((rst = fdtbus_reset_get_index(phandle, 0)) != NULL)
139 1.1 jakllsch if (fdtbus_reset_deassert(rst) != 0) {
140 1.1 jakllsch aprint_error(": couldn't de-assert reset\n");
141 1.1 jakllsch return;
142 1.1 jakllsch }
143 1.1 jakllsch
144 1.3 tnn isr = SPIREG_READ(sc, SPI_INT_STA);
145 1.3 tnn SPIREG_WRITE(sc, SPI_INT_STA, isr);
146 1.1 jakllsch
147 1.1 jakllsch if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
148 1.1 jakllsch aprint_error(": failed to decode interrupt\n");
149 1.1 jakllsch return;
150 1.1 jakllsch }
151 1.1 jakllsch
152 1.6 jmcneill sc->sc_intrh = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
153 1.6 jmcneill sun6ispi_intr, sc, device_xname(self));
154 1.1 jakllsch if (sc->sc_intrh == NULL) {
155 1.3 tnn aprint_error(": unable to establish interrupt\n");
156 1.1 jakllsch return;
157 1.1 jakllsch }
158 1.3 tnn
159 1.3 tnn aprint_naive("\n");
160 1.3 tnn aprint_normal(": SPI\n");
161 1.7 jmcneill
162 1.1 jakllsch aprint_normal_dev(self, "interrupting on %s\n", intrstr);
163 1.1 jakllsch
164 1.1 jakllsch gcr = SPI_GCR_SRST;
165 1.3 tnn SPIREG_WRITE(sc, SPI_GCR, gcr);
166 1.2 jakllsch for (u_int i = 0; ; i++) {
167 1.2 jakllsch if (i >= 1000000) {
168 1.2 jakllsch aprint_error_dev(self, "reset timeout\n");
169 1.2 jakllsch return;
170 1.2 jakllsch }
171 1.2 jakllsch gcr = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SPI_GCR);
172 1.2 jakllsch if ((gcr & SPI_GCR_SRST) == 0)
173 1.2 jakllsch break;
174 1.2 jakllsch else
175 1.2 jakllsch DELAY(1);
176 1.2 jakllsch }
177 1.1 jakllsch gcr = SPI_GCR_TP_EN | SPI_GCR_MODE | SPI_GCR_EN;
178 1.3 tnn SPIREG_WRITE(sc, SPI_GCR, gcr);
179 1.1 jakllsch
180 1.3 tnn SPIREG_WRITE(sc, SPI_IER, SPI_IER_DEFAULT);
181 1.1 jakllsch
182 1.1 jakllsch sc->sc_spi.sct_cookie = sc;
183 1.1 jakllsch sc->sc_spi.sct_configure = sun6ispi_configure;
184 1.1 jakllsch sc->sc_spi.sct_transfer = sun6ispi_transfer;
185 1.1 jakllsch sc->sc_spi.sct_nslaves = 4;
186 1.1 jakllsch
187 1.11 thorpej spibus_attach(self, &sc->sc_spi);
188 1.1 jakllsch }
189 1.1 jakllsch
190 1.1 jakllsch static int
191 1.1 jakllsch sun6ispi_configure(void *cookie, int slave, int mode, int speed)
192 1.1 jakllsch {
193 1.1 jakllsch struct sun6ispi_softc * const sc = cookie;
194 1.1 jakllsch uint32_t tcr, cctl;
195 1.3 tnn uint32_t minfreq, maxfreq;
196 1.1 jakllsch
197 1.3 tnn minfreq = sc->sc_modclkrate >> 16;
198 1.3 tnn maxfreq = sc->sc_modclkrate >> 1;
199 1.1 jakllsch
200 1.3 tnn if (speed <= 0 || speed < minfreq || speed > maxfreq)
201 1.1 jakllsch return EINVAL;
202 1.1 jakllsch
203 1.3 tnn if (slave >= sc->sc_spi.sct_nslaves)
204 1.1 jakllsch return EINVAL;
205 1.7 jmcneill
206 1.3 tnn tcr = SPI_TCR_SS_LEVEL | SPI_TCR_SPOL;
207 1.1 jakllsch
208 1.1 jakllsch switch (mode) {
209 1.1 jakllsch case SPI_MODE_0:
210 1.1 jakllsch tcr |= 0;
211 1.1 jakllsch break;
212 1.1 jakllsch case SPI_MODE_1:
213 1.1 jakllsch tcr |= SPI_TCR_CPHA;
214 1.1 jakllsch break;
215 1.1 jakllsch case SPI_MODE_2:
216 1.1 jakllsch tcr |= SPI_TCR_CPOL;
217 1.1 jakllsch break;
218 1.1 jakllsch case SPI_MODE_3:
219 1.1 jakllsch tcr |= SPI_TCR_CPHA|SPI_TCR_CPOL;
220 1.1 jakllsch break;
221 1.1 jakllsch default:
222 1.1 jakllsch return EINVAL;
223 1.1 jakllsch }
224 1.1 jakllsch
225 1.1 jakllsch sc->sc_TCR = tcr;
226 1.1 jakllsch
227 1.3 tnn if (speed < sc->sc_modclkrate / 512) {
228 1.1 jakllsch for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) {
229 1.1 jakllsch if ((sc->sc_modclkrate / (1<<cctl)) <= speed)
230 1.1 jakllsch goto cdr1_found;
231 1.1 jakllsch }
232 1.1 jakllsch return EINVAL;
233 1.1 jakllsch cdr1_found:
234 1.1 jakllsch cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1);
235 1.1 jakllsch } else {
236 1.1 jakllsch cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1;
237 1.1 jakllsch cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2);
238 1.1 jakllsch }
239 1.1 jakllsch
240 1.3 tnn device_printf(sc->sc_dev, "tcr 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n",
241 1.3 tnn tcr, cctl, sc->sc_modclkrate,
242 1.3 tnn (cctl & SPI_CCTL_DRS)
243 1.3 tnn ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1)))
244 1.3 tnn : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1))
245 1.3 tnn );
246 1.3 tnn
247 1.3 tnn SPIREG_WRITE(sc, SPI_CCTL, cctl);
248 1.1 jakllsch
249 1.1 jakllsch return 0;
250 1.1 jakllsch }
251 1.1 jakllsch
252 1.1 jakllsch static int
253 1.1 jakllsch sun6ispi_transfer(void *cookie, struct spi_transfer *st)
254 1.1 jakllsch {
255 1.1 jakllsch struct sun6ispi_softc * const sc = cookie;
256 1.1 jakllsch int s;
257 1.1 jakllsch
258 1.1 jakllsch s = splbio();
259 1.1 jakllsch spi_transq_enqueue(&sc->sc_q, st);
260 1.1 jakllsch if (sc->sc_running == false) {
261 1.1 jakllsch sun6ispi_start(sc);
262 1.1 jakllsch }
263 1.1 jakllsch splx(s);
264 1.1 jakllsch return 0;
265 1.1 jakllsch }
266 1.1 jakllsch
267 1.1 jakllsch static void
268 1.1 jakllsch sun6ispi_start(struct sun6ispi_softc * const sc)
269 1.1 jakllsch {
270 1.1 jakllsch struct spi_transfer *st;
271 1.1 jakllsch uint32_t isr, tcr;
272 1.3 tnn struct spi_chunk *chunk;
273 1.3 tnn size_t burstcount;
274 1.1 jakllsch
275 1.1 jakllsch while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
276 1.1 jakllsch
277 1.1 jakllsch spi_transq_dequeue(&sc->sc_q);
278 1.1 jakllsch
279 1.1 jakllsch KASSERT(sc->sc_transfer == NULL);
280 1.1 jakllsch sc->sc_transfer = st;
281 1.1 jakllsch sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
282 1.1 jakllsch sc->sc_running = true;
283 1.1 jakllsch
284 1.3 tnn isr = SPIREG_READ(sc, SPI_INT_STA);
285 1.3 tnn SPIREG_WRITE(sc, SPI_INT_STA, isr);
286 1.1 jakllsch
287 1.3 tnn burstcount = 0;
288 1.3 tnn for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
289 1.3 tnn burstcount += chunk->chunk_count;
290 1.3 tnn }
291 1.3 tnn KASSERT(burstcount <= SPI_BC_MBC);
292 1.3 tnn SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_MBC));
293 1.3 tnn SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_MWTC));
294 1.3 tnn SPIREG_WRITE(sc, SPI_BCC, __SHIFTIN(burstcount, SPI_BCC_STC));
295 1.1 jakllsch
296 1.1 jakllsch KASSERT(st->st_slave <= 3);
297 1.1 jakllsch tcr = sc->sc_TCR | __SHIFTIN(st->st_slave, SPI_TCR_SS_SEL);
298 1.1 jakllsch
299 1.1 jakllsch sun6ispi_send(sc);
300 1.1 jakllsch
301 1.1 jakllsch const uint32_t ier = SPI_IER_DEFAULT | SPI_IER_RF_RDY_INT_EN | SPI_IER_TX_ERQ_INT_EN;
302 1.3 tnn SPIREG_WRITE(sc, SPI_IER, ier);
303 1.1 jakllsch
304 1.3 tnn SPIREG_WRITE(sc, SPI_TCR, tcr|SPI_TCR_XCH);
305 1.1 jakllsch
306 1.1 jakllsch if (!cold)
307 1.1 jakllsch return;
308 1.1 jakllsch
309 1.1 jakllsch for (;;) {
310 1.1 jakllsch sun6ispi_intr(sc);
311 1.1 jakllsch if (ISSET(st->st_flags, SPI_F_DONE))
312 1.1 jakllsch break;
313 1.1 jakllsch }
314 1.1 jakllsch }
315 1.1 jakllsch
316 1.1 jakllsch sc->sc_running = false;
317 1.1 jakllsch }
318 1.1 jakllsch
319 1.1 jakllsch static void
320 1.1 jakllsch sun6ispi_send(struct sun6ispi_softc * const sc)
321 1.1 jakllsch {
322 1.1 jakllsch uint8_t fd;
323 1.1 jakllsch uint32_t fsr;
324 1.1 jakllsch struct spi_chunk *chunk;
325 1.1 jakllsch
326 1.1 jakllsch while ((chunk = sc->sc_wchunk) != NULL) {
327 1.1 jakllsch while (chunk->chunk_wresid) {
328 1.3 tnn fsr = SPIREG_READ(sc, SPI_FSR);
329 1.1 jakllsch if (__SHIFTOUT(fsr, SPI_FSR_TF_CNT) >= 64) {
330 1.1 jakllsch return;
331 1.1 jakllsch }
332 1.1 jakllsch if (chunk->chunk_wptr) {
333 1.1 jakllsch fd = *chunk->chunk_wptr++;
334 1.1 jakllsch } else {
335 1.1 jakllsch fd = '\0';
336 1.1 jakllsch }
337 1.1 jakllsch bus_space_write_1(sc->sc_iot, sc->sc_ioh, SPI_TXD, fd);
338 1.1 jakllsch chunk->chunk_wresid--;
339 1.1 jakllsch }
340 1.1 jakllsch sc->sc_wchunk = sc->sc_wchunk->chunk_next;
341 1.1 jakllsch }
342 1.1 jakllsch }
343 1.1 jakllsch
344 1.1 jakllsch static void
345 1.1 jakllsch sun6ispi_recv(struct sun6ispi_softc * const sc)
346 1.1 jakllsch {
347 1.1 jakllsch uint8_t fd;
348 1.1 jakllsch uint32_t fsr;
349 1.1 jakllsch struct spi_chunk *chunk;
350 1.1 jakllsch
351 1.1 jakllsch while ((chunk = sc->sc_rchunk) != NULL) {
352 1.1 jakllsch while (chunk->chunk_rresid) {
353 1.3 tnn fsr = SPIREG_READ(sc, SPI_FSR);
354 1.1 jakllsch if (__SHIFTOUT(fsr, SPI_FSR_RF_CNT) == 0) {
355 1.1 jakllsch return;
356 1.1 jakllsch }
357 1.1 jakllsch fd = bus_space_read_1(sc->sc_iot, sc->sc_ioh, SPI_RXD);
358 1.1 jakllsch if (chunk->chunk_rptr) {
359 1.1 jakllsch *chunk->chunk_rptr++ = fd;
360 1.1 jakllsch }
361 1.1 jakllsch chunk->chunk_rresid--;
362 1.1 jakllsch }
363 1.1 jakllsch sc->sc_rchunk = sc->sc_rchunk->chunk_next;
364 1.1 jakllsch }
365 1.1 jakllsch }
366 1.1 jakllsch
367 1.1 jakllsch static int
368 1.1 jakllsch sun6ispi_intr(void *cookie)
369 1.1 jakllsch {
370 1.1 jakllsch struct sun6ispi_softc * const sc = cookie;
371 1.1 jakllsch struct spi_transfer *st;
372 1.1 jakllsch uint32_t isr;
373 1.1 jakllsch
374 1.3 tnn isr = SPIREG_READ(sc, SPI_INT_STA);
375 1.3 tnn SPIREG_WRITE(sc, SPI_INT_STA, isr);
376 1.1 jakllsch
377 1.1 jakllsch if (ISSET(isr, SPI_ISR_RX_RDY)) {
378 1.1 jakllsch sun6ispi_recv(sc);
379 1.1 jakllsch sun6ispi_send(sc);
380 1.1 jakllsch }
381 1.1 jakllsch
382 1.1 jakllsch if (ISSET(isr, SPI_ISR_TC)) {
383 1.3 tnn SPIREG_WRITE(sc, SPI_IER, SPI_IER_DEFAULT);
384 1.1 jakllsch
385 1.1 jakllsch sc->sc_rchunk = sc->sc_wchunk = NULL;
386 1.1 jakllsch st = sc->sc_transfer;
387 1.1 jakllsch sc->sc_transfer = NULL;
388 1.1 jakllsch KASSERT(st != NULL);
389 1.1 jakllsch spi_done(st, 0);
390 1.1 jakllsch sc->sc_running = false;
391 1.1 jakllsch }
392 1.1 jakllsch
393 1.1 jakllsch return isr;
394 1.1 jakllsch }
395