sun6i_spi.c revision 1.11 1 /* $NetBSD: sun6i_spi.c,v 1.11 2025/09/10 01:55:07 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2019 Tobias Nygren
5 * Copyright (c) 2018 Jonathan A. Kollasch
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: sun6i_spi.c,v 1.11 2025/09/10 01:55:07 thorpej Exp $");
32
33 #include <sys/param.h>
34 #include <sys/device.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/intr.h>
38 #include <sys/kernel.h>
39
40 #include <sys/bitops.h>
41 #include <dev/spi/spivar.h>
42
43 #include <arm/sunxi/sun6i_spireg.h>
44
45 #include <dev/fdt/fdtvar.h>
46
47 #include <arm/fdt/arm_fdtvar.h>
48
49 #define SPI_IER_DEFAULT (SPI_IER_TC_INT_EN | SPI_IER_TF_UDR_INT_EN | \
50 SPI_IER_TF_OVF_INT_EN | SPI_IER_RF_UDR_INT_EN | SPI_IER_RF_OVF_INT_EN)
51
52 struct sun6ispi_softc {
53 device_t sc_dev;
54 bus_space_tag_t sc_iot;
55 bus_space_handle_t sc_ioh;
56 void *sc_intrh;
57 struct spi_controller sc_spi;
58 SIMPLEQ_HEAD(,spi_transfer) sc_q;
59 struct spi_transfer *sc_transfer;
60 struct spi_chunk *sc_wchunk;
61 struct spi_chunk *sc_rchunk;
62 uint32_t sc_TCR;
63 u_int sc_modclkrate;
64 volatile bool sc_running;
65 };
66
67 #define SPIREG_READ(sc, reg) \
68 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
69 #define SPIREG_WRITE(sc, reg, val) \
70 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
71
72 static int sun6ispi_match(device_t, cfdata_t, void *);
73 static void sun6ispi_attach(device_t, device_t, void *);
74
75 static int sun6ispi_configure(void *, int, int, int);
76 static int sun6ispi_transfer(void *, struct spi_transfer *);
77
78 static void sun6ispi_start(struct sun6ispi_softc * const);
79 static int sun6ispi_intr(void *);
80
81 static void sun6ispi_send(struct sun6ispi_softc * const);
82 static void sun6ispi_recv(struct sun6ispi_softc * const);
83
84 CFATTACH_DECL_NEW(sun6i_spi, sizeof(struct sun6ispi_softc),
85 sun6ispi_match, sun6ispi_attach, NULL, NULL);
86
87 static const struct device_compatible_entry compat_data[] = {
88 { .compat = "allwinner,sun8i-h3-spi" },
89 DEVICE_COMPAT_EOL
90 };
91
92 static int
93 sun6ispi_match(device_t parent, cfdata_t cf, void *aux)
94 {
95 struct fdt_attach_args * const faa = aux;
96
97 return of_compatible_match(faa->faa_phandle, compat_data);
98 }
99
100 static void
101 sun6ispi_attach(device_t parent, device_t self, void *aux)
102 {
103 struct sun6ispi_softc * const sc = device_private(self);
104 struct fdt_attach_args * const faa = aux;
105 const int phandle = faa->faa_phandle;
106 bus_addr_t addr;
107 bus_size_t size;
108 struct fdtbus_reset *rst;
109 struct clk *clk, *modclk;
110 uint32_t gcr, isr;
111 char intrstr[128];
112
113 sc->sc_dev = self;
114 sc->sc_iot = faa->faa_bst;
115 SIMPLEQ_INIT(&sc->sc_q);
116
117 if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL
118 || clk_enable(clk) != 0) {
119 aprint_error(": couldn't enable clock\n");
120 return;
121 }
122
123 /* 200MHz max on H3,H5 */
124 if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL
125 || clk_set_rate(modclk, 200000000) != 0
126 || clk_enable(modclk) != 0) {
127 aprint_error(": couldn't enable module clock\n");
128 return;
129 }
130 sc->sc_modclkrate = clk_get_rate(modclk);
131
132 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
133 || bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_ioh) != 0) {
134 aprint_error(": couldn't map registers\n");
135 return;
136 }
137
138 if ((rst = fdtbus_reset_get_index(phandle, 0)) != NULL)
139 if (fdtbus_reset_deassert(rst) != 0) {
140 aprint_error(": couldn't de-assert reset\n");
141 return;
142 }
143
144 isr = SPIREG_READ(sc, SPI_INT_STA);
145 SPIREG_WRITE(sc, SPI_INT_STA, isr);
146
147 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
148 aprint_error(": failed to decode interrupt\n");
149 return;
150 }
151
152 sc->sc_intrh = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
153 sun6ispi_intr, sc, device_xname(self));
154 if (sc->sc_intrh == NULL) {
155 aprint_error(": unable to establish interrupt\n");
156 return;
157 }
158
159 aprint_naive("\n");
160 aprint_normal(": SPI\n");
161
162 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
163
164 gcr = SPI_GCR_SRST;
165 SPIREG_WRITE(sc, SPI_GCR, gcr);
166 for (u_int i = 0; ; i++) {
167 if (i >= 1000000) {
168 aprint_error_dev(self, "reset timeout\n");
169 return;
170 }
171 gcr = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SPI_GCR);
172 if ((gcr & SPI_GCR_SRST) == 0)
173 break;
174 else
175 DELAY(1);
176 }
177 gcr = SPI_GCR_TP_EN | SPI_GCR_MODE | SPI_GCR_EN;
178 SPIREG_WRITE(sc, SPI_GCR, gcr);
179
180 SPIREG_WRITE(sc, SPI_IER, SPI_IER_DEFAULT);
181
182 sc->sc_spi.sct_cookie = sc;
183 sc->sc_spi.sct_configure = sun6ispi_configure;
184 sc->sc_spi.sct_transfer = sun6ispi_transfer;
185 sc->sc_spi.sct_nslaves = 4;
186
187 spibus_attach(self, &sc->sc_spi);
188 }
189
190 static int
191 sun6ispi_configure(void *cookie, int slave, int mode, int speed)
192 {
193 struct sun6ispi_softc * const sc = cookie;
194 uint32_t tcr, cctl;
195 uint32_t minfreq, maxfreq;
196
197 minfreq = sc->sc_modclkrate >> 16;
198 maxfreq = sc->sc_modclkrate >> 1;
199
200 if (speed <= 0 || speed < minfreq || speed > maxfreq)
201 return EINVAL;
202
203 if (slave >= sc->sc_spi.sct_nslaves)
204 return EINVAL;
205
206 tcr = SPI_TCR_SS_LEVEL | SPI_TCR_SPOL;
207
208 switch (mode) {
209 case SPI_MODE_0:
210 tcr |= 0;
211 break;
212 case SPI_MODE_1:
213 tcr |= SPI_TCR_CPHA;
214 break;
215 case SPI_MODE_2:
216 tcr |= SPI_TCR_CPOL;
217 break;
218 case SPI_MODE_3:
219 tcr |= SPI_TCR_CPHA|SPI_TCR_CPOL;
220 break;
221 default:
222 return EINVAL;
223 }
224
225 sc->sc_TCR = tcr;
226
227 if (speed < sc->sc_modclkrate / 512) {
228 for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) {
229 if ((sc->sc_modclkrate / (1<<cctl)) <= speed)
230 goto cdr1_found;
231 }
232 return EINVAL;
233 cdr1_found:
234 cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1);
235 } else {
236 cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1;
237 cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2);
238 }
239
240 device_printf(sc->sc_dev, "tcr 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n",
241 tcr, cctl, sc->sc_modclkrate,
242 (cctl & SPI_CCTL_DRS)
243 ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1)))
244 : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1))
245 );
246
247 SPIREG_WRITE(sc, SPI_CCTL, cctl);
248
249 return 0;
250 }
251
252 static int
253 sun6ispi_transfer(void *cookie, struct spi_transfer *st)
254 {
255 struct sun6ispi_softc * const sc = cookie;
256 int s;
257
258 s = splbio();
259 spi_transq_enqueue(&sc->sc_q, st);
260 if (sc->sc_running == false) {
261 sun6ispi_start(sc);
262 }
263 splx(s);
264 return 0;
265 }
266
267 static void
268 sun6ispi_start(struct sun6ispi_softc * const sc)
269 {
270 struct spi_transfer *st;
271 uint32_t isr, tcr;
272 struct spi_chunk *chunk;
273 size_t burstcount;
274
275 while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
276
277 spi_transq_dequeue(&sc->sc_q);
278
279 KASSERT(sc->sc_transfer == NULL);
280 sc->sc_transfer = st;
281 sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
282 sc->sc_running = true;
283
284 isr = SPIREG_READ(sc, SPI_INT_STA);
285 SPIREG_WRITE(sc, SPI_INT_STA, isr);
286
287 burstcount = 0;
288 for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
289 burstcount += chunk->chunk_count;
290 }
291 KASSERT(burstcount <= SPI_BC_MBC);
292 SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_MBC));
293 SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_MWTC));
294 SPIREG_WRITE(sc, SPI_BCC, __SHIFTIN(burstcount, SPI_BCC_STC));
295
296 KASSERT(st->st_slave <= 3);
297 tcr = sc->sc_TCR | __SHIFTIN(st->st_slave, SPI_TCR_SS_SEL);
298
299 sun6ispi_send(sc);
300
301 const uint32_t ier = SPI_IER_DEFAULT | SPI_IER_RF_RDY_INT_EN | SPI_IER_TX_ERQ_INT_EN;
302 SPIREG_WRITE(sc, SPI_IER, ier);
303
304 SPIREG_WRITE(sc, SPI_TCR, tcr|SPI_TCR_XCH);
305
306 if (!cold)
307 return;
308
309 for (;;) {
310 sun6ispi_intr(sc);
311 if (ISSET(st->st_flags, SPI_F_DONE))
312 break;
313 }
314 }
315
316 sc->sc_running = false;
317 }
318
319 static void
320 sun6ispi_send(struct sun6ispi_softc * const sc)
321 {
322 uint8_t fd;
323 uint32_t fsr;
324 struct spi_chunk *chunk;
325
326 while ((chunk = sc->sc_wchunk) != NULL) {
327 while (chunk->chunk_wresid) {
328 fsr = SPIREG_READ(sc, SPI_FSR);
329 if (__SHIFTOUT(fsr, SPI_FSR_TF_CNT) >= 64) {
330 return;
331 }
332 if (chunk->chunk_wptr) {
333 fd = *chunk->chunk_wptr++;
334 } else {
335 fd = '\0';
336 }
337 bus_space_write_1(sc->sc_iot, sc->sc_ioh, SPI_TXD, fd);
338 chunk->chunk_wresid--;
339 }
340 sc->sc_wchunk = sc->sc_wchunk->chunk_next;
341 }
342 }
343
344 static void
345 sun6ispi_recv(struct sun6ispi_softc * const sc)
346 {
347 uint8_t fd;
348 uint32_t fsr;
349 struct spi_chunk *chunk;
350
351 while ((chunk = sc->sc_rchunk) != NULL) {
352 while (chunk->chunk_rresid) {
353 fsr = SPIREG_READ(sc, SPI_FSR);
354 if (__SHIFTOUT(fsr, SPI_FSR_RF_CNT) == 0) {
355 return;
356 }
357 fd = bus_space_read_1(sc->sc_iot, sc->sc_ioh, SPI_RXD);
358 if (chunk->chunk_rptr) {
359 *chunk->chunk_rptr++ = fd;
360 }
361 chunk->chunk_rresid--;
362 }
363 sc->sc_rchunk = sc->sc_rchunk->chunk_next;
364 }
365 }
366
367 static int
368 sun6ispi_intr(void *cookie)
369 {
370 struct sun6ispi_softc * const sc = cookie;
371 struct spi_transfer *st;
372 uint32_t isr;
373
374 isr = SPIREG_READ(sc, SPI_INT_STA);
375 SPIREG_WRITE(sc, SPI_INT_STA, isr);
376
377 if (ISSET(isr, SPI_ISR_RX_RDY)) {
378 sun6ispi_recv(sc);
379 sun6ispi_send(sc);
380 }
381
382 if (ISSET(isr, SPI_ISR_TC)) {
383 SPIREG_WRITE(sc, SPI_IER, SPI_IER_DEFAULT);
384
385 sc->sc_rchunk = sc->sc_wchunk = NULL;
386 st = sc->sc_transfer;
387 sc->sc_transfer = NULL;
388 KASSERT(st != NULL);
389 spi_done(st, 0);
390 sc->sc_running = false;
391 }
392
393 return isr;
394 }
395