sunxi_emac.c revision 1.2 1 1.2 jmcneill /* $NetBSD: sunxi_emac.c,v 1.2 2017/07/07 21:01:58 jmcneill Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2016-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill /*
30 1.1 jmcneill * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 1.1 jmcneill */
32 1.1 jmcneill
33 1.1 jmcneill #include "opt_net_mpsafe.h"
34 1.1 jmcneill
35 1.1 jmcneill #include <sys/cdefs.h>
36 1.2 jmcneill __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.2 2017/07/07 21:01:58 jmcneill Exp $");
37 1.1 jmcneill
38 1.1 jmcneill #include <sys/param.h>
39 1.1 jmcneill #include <sys/bus.h>
40 1.1 jmcneill #include <sys/device.h>
41 1.1 jmcneill #include <sys/intr.h>
42 1.1 jmcneill #include <sys/systm.h>
43 1.1 jmcneill #include <sys/kernel.h>
44 1.1 jmcneill #include <sys/mutex.h>
45 1.1 jmcneill #include <sys/callout.h>
46 1.1 jmcneill #include <sys/gpio.h>
47 1.1 jmcneill #include <sys/cprng.h>
48 1.1 jmcneill
49 1.1 jmcneill #include <net/if.h>
50 1.1 jmcneill #include <net/if_dl.h>
51 1.1 jmcneill #include <net/if_ether.h>
52 1.1 jmcneill #include <net/if_media.h>
53 1.1 jmcneill #include <net/bpf.h>
54 1.1 jmcneill
55 1.1 jmcneill #include <dev/mii/miivar.h>
56 1.1 jmcneill
57 1.1 jmcneill #include <dev/fdt/fdtvar.h>
58 1.1 jmcneill
59 1.1 jmcneill #include <arm/sunxi/sunxi_emac.h>
60 1.1 jmcneill
61 1.1 jmcneill #ifdef NET_MPSAFE
62 1.1 jmcneill #define EMAC_MPSAFE 1
63 1.1 jmcneill #define CALLOUT_FLAGS CALLOUT_MPSAFE
64 1.1 jmcneill #define FDT_INTR_FLAGS FDT_INTR_MPSAFE
65 1.1 jmcneill #else
66 1.1 jmcneill #define CALLOUT_FLAGS 0
67 1.1 jmcneill #define FDT_INTR_FLAGS 0
68 1.1 jmcneill #endif
69 1.1 jmcneill
70 1.1 jmcneill #define EMAC_IFNAME "emac%d"
71 1.1 jmcneill
72 1.1 jmcneill #define ETHER_ALIGN 2
73 1.1 jmcneill
74 1.1 jmcneill #define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx)
75 1.1 jmcneill #define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx)
76 1.1 jmcneill #define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx))
77 1.1 jmcneill
78 1.2 jmcneill #define DESC_ALIGN sizeof(struct sunxi_emac_desc)
79 1.1 jmcneill #define TX_DESC_COUNT 1024
80 1.1 jmcneill #define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
81 1.1 jmcneill #define RX_DESC_COUNT 256
82 1.1 jmcneill #define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
83 1.1 jmcneill
84 1.1 jmcneill #define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc))
85 1.1 jmcneill #define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
86 1.1 jmcneill #define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
87 1.1 jmcneill #define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
88 1.1 jmcneill
89 1.1 jmcneill #define TX_MAX_SEGS 128
90 1.1 jmcneill
91 1.1 jmcneill #define SOFT_RST_RETRY 1000
92 1.1 jmcneill #define MII_BUSY_RETRY 1000
93 1.1 jmcneill #define MDIO_FREQ 2500000
94 1.1 jmcneill
95 1.1 jmcneill #define BURST_LEN_DEFAULT 8
96 1.1 jmcneill #define RX_TX_PRI_DEFAULT 0
97 1.1 jmcneill #define PAUSE_TIME_DEFAULT 0x400
98 1.2 jmcneill #define TX_INTERVAL_DEFAULT 1
99 1.2 jmcneill #define RX_BATCH_DEFAULT 1
100 1.1 jmcneill
101 1.1 jmcneill /* syscon EMAC clock register */
102 1.1 jmcneill #define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
103 1.1 jmcneill #define EMAC_CLK_EPHY_ADDR_SHIFT 20
104 1.1 jmcneill #define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
105 1.1 jmcneill #define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
106 1.1 jmcneill #define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
107 1.1 jmcneill #define EMAC_CLK_RMII_EN (1 << 13)
108 1.1 jmcneill #define EMAC_CLK_ETXDC (0x7 << 10)
109 1.1 jmcneill #define EMAC_CLK_ETXDC_SHIFT 10
110 1.1 jmcneill #define EMAC_CLK_ERXDC (0x1f << 5)
111 1.1 jmcneill #define EMAC_CLK_ERXDC_SHIFT 5
112 1.1 jmcneill #define EMAC_CLK_PIT (0x1 << 2)
113 1.1 jmcneill #define EMAC_CLK_PIT_MII (0 << 2)
114 1.1 jmcneill #define EMAC_CLK_PIT_RGMII (1 << 2)
115 1.1 jmcneill #define EMAC_CLK_SRC (0x3 << 0)
116 1.1 jmcneill #define EMAC_CLK_SRC_MII (0 << 0)
117 1.1 jmcneill #define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
118 1.1 jmcneill #define EMAC_CLK_SRC_RGMII (2 << 0)
119 1.1 jmcneill
120 1.1 jmcneill /* Burst length of RX and TX DMA transfers */
121 1.1 jmcneill static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
122 1.1 jmcneill
123 1.1 jmcneill /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
124 1.1 jmcneill static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
125 1.1 jmcneill
126 1.1 jmcneill /* Pause time field in the transmitted control frame */
127 1.1 jmcneill static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
128 1.1 jmcneill
129 1.1 jmcneill /* Request a TX interrupt every <n> descriptors */
130 1.1 jmcneill static int sunxi_emac_tx_interval = TX_INTERVAL_DEFAULT;
131 1.1 jmcneill
132 1.1 jmcneill /* Maximum number of mbufs to send to if_input */
133 1.1 jmcneill static int sunxi_emac_rx_batch = RX_BATCH_DEFAULT;
134 1.1 jmcneill
135 1.1 jmcneill enum sunxi_emac_type {
136 1.1 jmcneill EMAC_A83T = 1,
137 1.1 jmcneill EMAC_H3,
138 1.1 jmcneill };
139 1.1 jmcneill
140 1.1 jmcneill static const struct of_compat_data compat_data[] = {
141 1.1 jmcneill { "allwinner,sun8i-a83t-emac", EMAC_A83T },
142 1.1 jmcneill { "allwinner,sun8i-h3-emac", EMAC_H3 },
143 1.1 jmcneill { NULL }
144 1.1 jmcneill };
145 1.1 jmcneill
146 1.1 jmcneill struct sunxi_emac_bufmap {
147 1.1 jmcneill bus_dmamap_t map;
148 1.1 jmcneill struct mbuf *mbuf;
149 1.1 jmcneill };
150 1.1 jmcneill
151 1.1 jmcneill struct sunxi_emac_txring {
152 1.1 jmcneill bus_dma_tag_t desc_tag;
153 1.1 jmcneill bus_dmamap_t desc_map;
154 1.1 jmcneill bus_dma_segment_t desc_dmaseg;
155 1.1 jmcneill struct sunxi_emac_desc *desc_ring;
156 1.1 jmcneill bus_addr_t desc_ring_paddr;
157 1.1 jmcneill bus_dma_tag_t buf_tag;
158 1.1 jmcneill struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
159 1.1 jmcneill u_int cur, next, queued;
160 1.1 jmcneill };
161 1.1 jmcneill
162 1.1 jmcneill struct sunxi_emac_rxring {
163 1.1 jmcneill bus_dma_tag_t desc_tag;
164 1.1 jmcneill bus_dmamap_t desc_map;
165 1.1 jmcneill bus_dma_segment_t desc_dmaseg;
166 1.1 jmcneill struct sunxi_emac_desc *desc_ring;
167 1.1 jmcneill bus_addr_t desc_ring_paddr;
168 1.1 jmcneill bus_dma_tag_t buf_tag;
169 1.1 jmcneill struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
170 1.1 jmcneill u_int cur;
171 1.1 jmcneill };
172 1.1 jmcneill
173 1.1 jmcneill enum {
174 1.1 jmcneill _RES_EMAC,
175 1.1 jmcneill _RES_SYSCON,
176 1.1 jmcneill _RES_NITEMS
177 1.1 jmcneill };
178 1.1 jmcneill
179 1.1 jmcneill struct sunxi_emac_softc {
180 1.1 jmcneill device_t dev;
181 1.1 jmcneill int phandle;
182 1.1 jmcneill enum sunxi_emac_type type;
183 1.1 jmcneill bus_space_tag_t bst;
184 1.1 jmcneill bus_dma_tag_t dmat;
185 1.1 jmcneill
186 1.1 jmcneill bus_space_handle_t bsh[_RES_NITEMS];
187 1.1 jmcneill struct clk *clk_ahb;
188 1.1 jmcneill struct clk *clk_ephy;
189 1.1 jmcneill struct fdtbus_reset *rst_ahb;
190 1.1 jmcneill struct fdtbus_reset *rst_ephy;
191 1.1 jmcneill struct fdtbus_regulator *reg_phy;
192 1.1 jmcneill struct fdtbus_gpio_pin *pin_reset;
193 1.1 jmcneill
194 1.1 jmcneill kmutex_t mtx;
195 1.1 jmcneill struct ethercom ec;
196 1.1 jmcneill struct mii_data mii;
197 1.1 jmcneill callout_t stat_ch;
198 1.1 jmcneill void *ih;
199 1.1 jmcneill u_int mdc_div_ratio_m;
200 1.1 jmcneill
201 1.1 jmcneill struct sunxi_emac_txring tx;
202 1.1 jmcneill struct sunxi_emac_rxring rx;
203 1.1 jmcneill };
204 1.1 jmcneill
205 1.1 jmcneill #define RD4(sc, reg) \
206 1.1 jmcneill bus_space_read_4((sc)->bst, (sc)->bsh[_RES_EMAC], (reg))
207 1.1 jmcneill #define WR4(sc, reg, val) \
208 1.1 jmcneill bus_space_write_4((sc)->bst, (sc)->bsh[_RES_EMAC], (reg), (val))
209 1.1 jmcneill
210 1.1 jmcneill #define SYSCONRD4(sc, reg) \
211 1.1 jmcneill bus_space_read_4((sc)->bst, (sc)->bsh[_RES_SYSCON], (reg))
212 1.1 jmcneill #define SYSCONWR4(sc, reg, val) \
213 1.1 jmcneill bus_space_write_4((sc)->bst, (sc)->bsh[_RES_SYSCON], (reg), (val))
214 1.1 jmcneill
215 1.1 jmcneill static int
216 1.1 jmcneill sunxi_emac_mii_readreg(device_t dev, int phy, int reg)
217 1.1 jmcneill {
218 1.1 jmcneill struct sunxi_emac_softc *sc = device_private(dev);
219 1.1 jmcneill int retry, val;
220 1.1 jmcneill
221 1.1 jmcneill val = 0;
222 1.1 jmcneill
223 1.1 jmcneill WR4(sc, EMAC_MII_CMD,
224 1.1 jmcneill (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
225 1.1 jmcneill (phy << PHY_ADDR_SHIFT) |
226 1.1 jmcneill (reg << PHY_REG_ADDR_SHIFT) |
227 1.1 jmcneill MII_BUSY);
228 1.1 jmcneill for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
229 1.1 jmcneill if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
230 1.1 jmcneill val = RD4(sc, EMAC_MII_DATA);
231 1.1 jmcneill break;
232 1.1 jmcneill }
233 1.1 jmcneill delay(10);
234 1.1 jmcneill }
235 1.1 jmcneill
236 1.1 jmcneill if (retry == 0)
237 1.1 jmcneill device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
238 1.1 jmcneill phy, reg);
239 1.1 jmcneill
240 1.1 jmcneill return val;
241 1.1 jmcneill }
242 1.1 jmcneill
243 1.1 jmcneill static void
244 1.1 jmcneill sunxi_emac_mii_writereg(device_t dev, int phy, int reg, int val)
245 1.1 jmcneill {
246 1.1 jmcneill struct sunxi_emac_softc *sc = device_private(dev);
247 1.1 jmcneill int retry;
248 1.1 jmcneill
249 1.1 jmcneill WR4(sc, EMAC_MII_DATA, val);
250 1.1 jmcneill WR4(sc, EMAC_MII_CMD,
251 1.1 jmcneill (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
252 1.1 jmcneill (phy << PHY_ADDR_SHIFT) |
253 1.1 jmcneill (reg << PHY_REG_ADDR_SHIFT) |
254 1.1 jmcneill MII_WR | MII_BUSY);
255 1.1 jmcneill for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
256 1.1 jmcneill if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
257 1.1 jmcneill break;
258 1.1 jmcneill delay(10);
259 1.1 jmcneill }
260 1.1 jmcneill
261 1.1 jmcneill if (retry == 0)
262 1.1 jmcneill device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
263 1.1 jmcneill phy, reg);
264 1.1 jmcneill }
265 1.1 jmcneill
266 1.1 jmcneill static void
267 1.1 jmcneill sunxi_emac_update_link(struct sunxi_emac_softc *sc)
268 1.1 jmcneill {
269 1.1 jmcneill struct mii_data *mii = &sc->mii;
270 1.1 jmcneill uint32_t val;
271 1.1 jmcneill
272 1.1 jmcneill val = RD4(sc, EMAC_BASIC_CTL_0);
273 1.1 jmcneill val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
274 1.1 jmcneill
275 1.1 jmcneill if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
276 1.1 jmcneill IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
277 1.1 jmcneill val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
278 1.1 jmcneill else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
279 1.1 jmcneill val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
280 1.1 jmcneill else
281 1.1 jmcneill val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
282 1.1 jmcneill
283 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
284 1.1 jmcneill val |= BASIC_CTL_DUPLEX;
285 1.1 jmcneill
286 1.1 jmcneill WR4(sc, EMAC_BASIC_CTL_0, val);
287 1.1 jmcneill
288 1.1 jmcneill val = RD4(sc, EMAC_RX_CTL_0);
289 1.1 jmcneill val &= ~RX_FLOW_CTL_EN;
290 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
291 1.1 jmcneill val |= RX_FLOW_CTL_EN;
292 1.1 jmcneill WR4(sc, EMAC_RX_CTL_0, val);
293 1.1 jmcneill
294 1.1 jmcneill val = RD4(sc, EMAC_TX_FLOW_CTL);
295 1.1 jmcneill val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
296 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
297 1.1 jmcneill val |= TX_FLOW_CTL_EN;
298 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
299 1.1 jmcneill val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
300 1.1 jmcneill WR4(sc, EMAC_TX_FLOW_CTL, val);
301 1.1 jmcneill }
302 1.1 jmcneill
303 1.1 jmcneill static void
304 1.1 jmcneill sunxi_emac_mii_statchg(struct ifnet *ifp)
305 1.1 jmcneill {
306 1.1 jmcneill struct sunxi_emac_softc * const sc = ifp->if_softc;
307 1.1 jmcneill
308 1.1 jmcneill sunxi_emac_update_link(sc);
309 1.1 jmcneill }
310 1.1 jmcneill
311 1.1 jmcneill static void
312 1.1 jmcneill sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
313 1.1 jmcneill bus_dmamap_t map, int start, int end, int total, int flags)
314 1.1 jmcneill {
315 1.1 jmcneill if (end > start) {
316 1.1 jmcneill bus_dmamap_sync(dmat, map, DESC_OFF(start),
317 1.1 jmcneill DESC_OFF(end) - DESC_OFF(start), flags);
318 1.1 jmcneill } else {
319 1.1 jmcneill bus_dmamap_sync(dmat, map, DESC_OFF(start),
320 1.1 jmcneill DESC_OFF(total) - DESC_OFF(start), flags);
321 1.2 jmcneill if (DESC_OFF(end) - DESC_OFF(0) > 0)
322 1.2 jmcneill bus_dmamap_sync(dmat, map, DESC_OFF(0),
323 1.2 jmcneill DESC_OFF(end) - DESC_OFF(0), flags);
324 1.1 jmcneill }
325 1.1 jmcneill }
326 1.1 jmcneill
327 1.1 jmcneill static void
328 1.1 jmcneill sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
329 1.1 jmcneill bus_addr_t paddr, u_int len)
330 1.1 jmcneill {
331 1.1 jmcneill uint32_t status, size;
332 1.1 jmcneill
333 1.1 jmcneill if (paddr == 0 || len == 0) {
334 1.1 jmcneill status = 0;
335 1.1 jmcneill size = 0;
336 1.1 jmcneill --sc->tx.queued;
337 1.1 jmcneill } else {
338 1.1 jmcneill status = TX_DESC_CTL;
339 1.1 jmcneill size = flags | len;
340 1.1 jmcneill if ((index & (sunxi_emac_tx_interval - 1)) == 0)
341 1.1 jmcneill size |= TX_INT_CTL;
342 1.1 jmcneill ++sc->tx.queued;
343 1.1 jmcneill }
344 1.1 jmcneill
345 1.1 jmcneill sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
346 1.1 jmcneill sc->tx.desc_ring[index].size = htole32(size);
347 1.1 jmcneill sc->tx.desc_ring[index].status = htole32(status);
348 1.1 jmcneill }
349 1.1 jmcneill
350 1.1 jmcneill static int
351 1.1 jmcneill sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
352 1.1 jmcneill {
353 1.1 jmcneill bus_dma_segment_t *segs;
354 1.1 jmcneill int error, nsegs, cur, i, flags;
355 1.1 jmcneill u_int csum_flags;
356 1.1 jmcneill
357 1.1 jmcneill error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
358 1.1 jmcneill sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
359 1.1 jmcneill if (error == EFBIG) {
360 1.1 jmcneill device_printf(sc->dev,
361 1.1 jmcneill "TX packet needs too many DMA segments, dropping...\n");
362 1.1 jmcneill m_freem(m);
363 1.1 jmcneill return 0;
364 1.1 jmcneill }
365 1.1 jmcneill if (error != 0)
366 1.1 jmcneill return 0;
367 1.1 jmcneill
368 1.1 jmcneill segs = sc->tx.buf_map[index].map->dm_segs;
369 1.1 jmcneill nsegs = sc->tx.buf_map[index].map->dm_nsegs;
370 1.1 jmcneill
371 1.1 jmcneill flags = TX_FIR_DESC;
372 1.1 jmcneill if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
373 1.1 jmcneill if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
374 1.1 jmcneill csum_flags = TX_CHECKSUM_CTL_FULL;
375 1.1 jmcneill else
376 1.1 jmcneill csum_flags = TX_CHECKSUM_CTL_IP;
377 1.1 jmcneill flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
378 1.1 jmcneill }
379 1.1 jmcneill
380 1.1 jmcneill for (cur = index, i = 0; i < nsegs; i++) {
381 1.1 jmcneill sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
382 1.1 jmcneill if (i == nsegs - 1)
383 1.1 jmcneill flags |= TX_LAST_DESC;
384 1.1 jmcneill
385 1.1 jmcneill sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
386 1.1 jmcneill segs[i].ds_len);
387 1.1 jmcneill flags &= ~TX_FIR_DESC;
388 1.1 jmcneill cur = TX_NEXT(cur);
389 1.1 jmcneill }
390 1.1 jmcneill
391 1.2 jmcneill bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
392 1.2 jmcneill 0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
393 1.2 jmcneill
394 1.1 jmcneill return nsegs;
395 1.1 jmcneill }
396 1.1 jmcneill
397 1.1 jmcneill static void
398 1.1 jmcneill sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
399 1.1 jmcneill bus_addr_t paddr)
400 1.1 jmcneill {
401 1.1 jmcneill uint32_t status, size;
402 1.1 jmcneill
403 1.1 jmcneill status = RX_DESC_CTL;
404 1.1 jmcneill size = MCLBYTES - 1;
405 1.1 jmcneill
406 1.1 jmcneill sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
407 1.1 jmcneill sc->rx.desc_ring[index].size = htole32(size);
408 1.1 jmcneill sc->rx.desc_ring[index].next =
409 1.1 jmcneill htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
410 1.1 jmcneill sc->rx.desc_ring[index].status = htole32(status);
411 1.1 jmcneill }
412 1.1 jmcneill
413 1.1 jmcneill static int
414 1.1 jmcneill sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
415 1.1 jmcneill {
416 1.1 jmcneill int error;
417 1.1 jmcneill
418 1.1 jmcneill m_adj(m, ETHER_ALIGN);
419 1.1 jmcneill
420 1.1 jmcneill error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
421 1.1 jmcneill sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT);
422 1.1 jmcneill if (error != 0)
423 1.1 jmcneill return error;
424 1.1 jmcneill
425 1.1 jmcneill bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
426 1.1 jmcneill 0, sc->rx.buf_map[index].map->dm_mapsize,
427 1.1 jmcneill BUS_DMASYNC_PREREAD);
428 1.1 jmcneill
429 1.1 jmcneill sc->rx.buf_map[index].mbuf = m;
430 1.1 jmcneill sunxi_emac_setup_rxdesc(sc, index,
431 1.1 jmcneill sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
432 1.1 jmcneill
433 1.1 jmcneill return 0;
434 1.1 jmcneill }
435 1.1 jmcneill
436 1.1 jmcneill static struct mbuf *
437 1.1 jmcneill sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
438 1.1 jmcneill {
439 1.1 jmcneill struct mbuf *m;
440 1.1 jmcneill
441 1.1 jmcneill m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
442 1.1 jmcneill if (m != NULL)
443 1.1 jmcneill m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
444 1.1 jmcneill
445 1.1 jmcneill return m;
446 1.1 jmcneill }
447 1.1 jmcneill
448 1.1 jmcneill static void
449 1.1 jmcneill sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
450 1.1 jmcneill {
451 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
452 1.1 jmcneill struct mbuf *m;
453 1.1 jmcneill uint32_t val;
454 1.1 jmcneill int cnt, nsegs, start;
455 1.1 jmcneill
456 1.1 jmcneill EMAC_ASSERT_LOCKED(sc);
457 1.1 jmcneill
458 1.1 jmcneill if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
459 1.1 jmcneill return;
460 1.1 jmcneill
461 1.1 jmcneill for (cnt = 0, start = sc->tx.cur; ; cnt++) {
462 1.1 jmcneill if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
463 1.1 jmcneill ifp->if_flags |= IFF_OACTIVE;
464 1.1 jmcneill break;
465 1.1 jmcneill }
466 1.1 jmcneill
467 1.1 jmcneill IFQ_POLL(&ifp->if_snd, m);
468 1.1 jmcneill if (m == NULL)
469 1.1 jmcneill break;
470 1.1 jmcneill
471 1.1 jmcneill nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
472 1.1 jmcneill if (nsegs == 0) {
473 1.1 jmcneill ifp->if_flags |= IFF_OACTIVE;
474 1.1 jmcneill break;
475 1.1 jmcneill }
476 1.1 jmcneill IFQ_DEQUEUE(&ifp->if_snd, m);
477 1.1 jmcneill bpf_mtap(ifp, m);
478 1.1 jmcneill
479 1.1 jmcneill sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
480 1.1 jmcneill }
481 1.1 jmcneill
482 1.1 jmcneill if (cnt != 0) {
483 1.1 jmcneill sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
484 1.1 jmcneill start, sc->tx.cur, TX_DESC_COUNT,
485 1.1 jmcneill BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
486 1.1 jmcneill
487 1.1 jmcneill /* Start and run TX DMA */
488 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_1);
489 1.1 jmcneill WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
490 1.1 jmcneill }
491 1.1 jmcneill }
492 1.1 jmcneill
493 1.1 jmcneill static void
494 1.1 jmcneill sunxi_emac_start(struct ifnet *ifp)
495 1.1 jmcneill {
496 1.1 jmcneill struct sunxi_emac_softc *sc = ifp->if_softc;
497 1.1 jmcneill
498 1.1 jmcneill EMAC_LOCK(sc);
499 1.1 jmcneill sunxi_emac_start_locked(sc);
500 1.1 jmcneill EMAC_UNLOCK(sc);
501 1.1 jmcneill }
502 1.1 jmcneill
503 1.1 jmcneill static void
504 1.1 jmcneill sunxi_emac_tick(void *softc)
505 1.1 jmcneill {
506 1.1 jmcneill struct sunxi_emac_softc *sc = softc;
507 1.1 jmcneill struct mii_data *mii = &sc->mii;
508 1.1 jmcneill #ifndef EMAC_MPSAFE
509 1.1 jmcneill int s = splnet();
510 1.1 jmcneill #endif
511 1.1 jmcneill
512 1.1 jmcneill EMAC_LOCK(sc);
513 1.1 jmcneill mii_tick(mii);
514 1.1 jmcneill callout_schedule(&sc->stat_ch, hz);
515 1.1 jmcneill EMAC_UNLOCK(sc);
516 1.1 jmcneill
517 1.1 jmcneill #ifndef EMAC_MPSAFE
518 1.1 jmcneill splx(s);
519 1.1 jmcneill #endif
520 1.1 jmcneill }
521 1.1 jmcneill
522 1.1 jmcneill /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
523 1.1 jmcneill static uint32_t
524 1.1 jmcneill bitrev32(uint32_t x)
525 1.1 jmcneill {
526 1.1 jmcneill x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
527 1.1 jmcneill x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
528 1.1 jmcneill x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
529 1.1 jmcneill x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
530 1.1 jmcneill
531 1.1 jmcneill return (x >> 16) | (x << 16);
532 1.1 jmcneill }
533 1.1 jmcneill
534 1.1 jmcneill static void
535 1.1 jmcneill sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
536 1.1 jmcneill {
537 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
538 1.1 jmcneill uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
539 1.1 jmcneill struct ether_multi *enm;
540 1.1 jmcneill struct ether_multistep step;
541 1.1 jmcneill const uint8_t *eaddr;
542 1.1 jmcneill
543 1.1 jmcneill EMAC_ASSERT_LOCKED(sc);
544 1.1 jmcneill
545 1.1 jmcneill val = 0;
546 1.1 jmcneill hash[0] = hash[1] = 0;
547 1.1 jmcneill
548 1.1 jmcneill if ((ifp->if_flags & IFF_PROMISC) != 0)
549 1.1 jmcneill val |= DIS_ADDR_FILTER;
550 1.1 jmcneill else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
551 1.1 jmcneill val |= RX_ALL_MULTICAST;
552 1.1 jmcneill hash[0] = hash[1] = ~0;
553 1.1 jmcneill } else {
554 1.1 jmcneill val |= HASH_MULTICAST;
555 1.1 jmcneill ETHER_FIRST_MULTI(step, &sc->ec, enm);
556 1.1 jmcneill while (enm != NULL) {
557 1.1 jmcneill crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
558 1.1 jmcneill crc &= 0x7f;
559 1.1 jmcneill crc = bitrev32(~crc) >> 26;
560 1.1 jmcneill hashreg = (crc >> 5);
561 1.1 jmcneill hashbit = (crc & 0x1f);
562 1.1 jmcneill hash[hashreg] |= (1 << hashbit);
563 1.1 jmcneill ETHER_NEXT_MULTI(step, enm);
564 1.1 jmcneill }
565 1.1 jmcneill }
566 1.1 jmcneill
567 1.1 jmcneill /* Write our unicast address */
568 1.1 jmcneill eaddr = CLLADDR(ifp->if_sadl);
569 1.1 jmcneill machi = (eaddr[5] << 8) | eaddr[4];
570 1.1 jmcneill maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
571 1.1 jmcneill (eaddr[0] << 0);
572 1.1 jmcneill WR4(sc, EMAC_ADDR_HIGH(0), machi);
573 1.1 jmcneill WR4(sc, EMAC_ADDR_LOW(0), maclo);
574 1.1 jmcneill
575 1.1 jmcneill /* Multicast hash filters */
576 1.1 jmcneill WR4(sc, EMAC_RX_HASH_0, hash[1]);
577 1.1 jmcneill WR4(sc, EMAC_RX_HASH_1, hash[0]);
578 1.1 jmcneill
579 1.1 jmcneill /* RX frame filter config */
580 1.1 jmcneill WR4(sc, EMAC_RX_FRM_FLT, val);
581 1.1 jmcneill }
582 1.1 jmcneill
583 1.1 jmcneill static void
584 1.1 jmcneill sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
585 1.1 jmcneill {
586 1.1 jmcneill /* Enable interrupts */
587 1.1 jmcneill WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
588 1.1 jmcneill }
589 1.1 jmcneill
590 1.1 jmcneill static void
591 1.1 jmcneill sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
592 1.1 jmcneill {
593 1.1 jmcneill /* Disable interrupts */
594 1.1 jmcneill WR4(sc, EMAC_INT_EN, 0);
595 1.1 jmcneill }
596 1.1 jmcneill
597 1.1 jmcneill static int
598 1.1 jmcneill sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
599 1.1 jmcneill {
600 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
601 1.1 jmcneill struct mii_data *mii = &sc->mii;
602 1.1 jmcneill uint32_t val;
603 1.1 jmcneill
604 1.1 jmcneill EMAC_ASSERT_LOCKED(sc);
605 1.1 jmcneill
606 1.1 jmcneill if ((ifp->if_flags & IFF_RUNNING) != 0)
607 1.1 jmcneill return 0;
608 1.1 jmcneill
609 1.1 jmcneill sunxi_emac_setup_rxfilter(sc);
610 1.1 jmcneill
611 1.1 jmcneill /* Configure DMA burst length and priorities */
612 1.1 jmcneill val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
613 1.1 jmcneill if (sunxi_emac_rx_tx_pri)
614 1.1 jmcneill val |= BASIC_CTL_RX_TX_PRI;
615 1.1 jmcneill WR4(sc, EMAC_BASIC_CTL_1, val);
616 1.1 jmcneill
617 1.1 jmcneill /* Enable interrupts */
618 1.1 jmcneill sunxi_emac_enable_intr(sc);
619 1.1 jmcneill
620 1.1 jmcneill /* Enable transmit DMA */
621 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_1);
622 1.1 jmcneill WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
623 1.1 jmcneill
624 1.1 jmcneill /* Enable receive DMA */
625 1.1 jmcneill val = RD4(sc, EMAC_RX_CTL_1);
626 1.1 jmcneill WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
627 1.1 jmcneill
628 1.1 jmcneill /* Enable transmitter */
629 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_0);
630 1.1 jmcneill WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
631 1.1 jmcneill
632 1.1 jmcneill /* Enable receiver */
633 1.1 jmcneill val = RD4(sc, EMAC_RX_CTL_0);
634 1.1 jmcneill WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
635 1.1 jmcneill
636 1.1 jmcneill ifp->if_flags |= IFF_RUNNING;
637 1.1 jmcneill ifp->if_flags &= ~IFF_OACTIVE;
638 1.1 jmcneill
639 1.1 jmcneill mii_mediachg(mii);
640 1.1 jmcneill callout_schedule(&sc->stat_ch, hz);
641 1.1 jmcneill
642 1.1 jmcneill return 0;
643 1.1 jmcneill }
644 1.1 jmcneill
645 1.1 jmcneill static int
646 1.1 jmcneill sunxi_emac_init(struct ifnet *ifp)
647 1.1 jmcneill {
648 1.1 jmcneill struct sunxi_emac_softc *sc = ifp->if_softc;
649 1.1 jmcneill int error;
650 1.1 jmcneill
651 1.1 jmcneill EMAC_LOCK(sc);
652 1.1 jmcneill error = sunxi_emac_init_locked(sc);
653 1.1 jmcneill EMAC_UNLOCK(sc);
654 1.1 jmcneill
655 1.1 jmcneill return error;
656 1.1 jmcneill }
657 1.1 jmcneill
658 1.1 jmcneill static void
659 1.1 jmcneill sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
660 1.1 jmcneill {
661 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
662 1.1 jmcneill uint32_t val;
663 1.1 jmcneill
664 1.1 jmcneill EMAC_ASSERT_LOCKED(sc);
665 1.1 jmcneill
666 1.1 jmcneill callout_stop(&sc->stat_ch);
667 1.1 jmcneill
668 1.1 jmcneill mii_down(&sc->mii);
669 1.1 jmcneill
670 1.1 jmcneill /* Stop transmit DMA and flush data in the TX FIFO */
671 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_1);
672 1.1 jmcneill val &= ~TX_DMA_EN;
673 1.1 jmcneill val |= FLUSH_TX_FIFO;
674 1.1 jmcneill WR4(sc, EMAC_TX_CTL_1, val);
675 1.1 jmcneill
676 1.1 jmcneill /* Disable transmitter */
677 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_0);
678 1.1 jmcneill WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
679 1.1 jmcneill
680 1.1 jmcneill /* Disable receiver */
681 1.1 jmcneill val = RD4(sc, EMAC_RX_CTL_0);
682 1.1 jmcneill WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
683 1.1 jmcneill
684 1.1 jmcneill /* Disable interrupts */
685 1.1 jmcneill sunxi_emac_disable_intr(sc);
686 1.1 jmcneill
687 1.1 jmcneill /* Disable transmit DMA */
688 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_1);
689 1.1 jmcneill WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
690 1.1 jmcneill
691 1.1 jmcneill /* Disable receive DMA */
692 1.1 jmcneill val = RD4(sc, EMAC_RX_CTL_1);
693 1.1 jmcneill WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
694 1.1 jmcneill
695 1.1 jmcneill ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
696 1.1 jmcneill }
697 1.1 jmcneill
698 1.1 jmcneill static void
699 1.1 jmcneill sunxi_emac_stop(struct ifnet *ifp, int disable)
700 1.1 jmcneill {
701 1.1 jmcneill struct sunxi_emac_softc * const sc = ifp->if_softc;
702 1.1 jmcneill
703 1.1 jmcneill EMAC_LOCK(sc);
704 1.1 jmcneill sunxi_emac_stop_locked(sc, disable);
705 1.1 jmcneill EMAC_UNLOCK(sc);
706 1.1 jmcneill }
707 1.1 jmcneill
708 1.1 jmcneill static int
709 1.1 jmcneill sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
710 1.1 jmcneill {
711 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
712 1.1 jmcneill struct mbuf *m, *m0, *mh, *mt;
713 1.1 jmcneill int error, index, len, cnt, npkt;
714 1.1 jmcneill uint32_t status;
715 1.1 jmcneill
716 1.1 jmcneill mh = mt = NULL;
717 1.1 jmcneill cnt = 0;
718 1.1 jmcneill npkt = 0;
719 1.1 jmcneill
720 1.1 jmcneill for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
721 1.1 jmcneill sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
722 1.1 jmcneill index, index + 1,
723 1.1 jmcneill RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
724 1.1 jmcneill
725 1.1 jmcneill status = le32toh(sc->rx.desc_ring[index].status);
726 1.1 jmcneill if ((status & RX_DESC_CTL) != 0)
727 1.1 jmcneill break;
728 1.1 jmcneill
729 1.1 jmcneill bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
730 1.1 jmcneill 0, sc->rx.buf_map[index].map->dm_mapsize,
731 1.1 jmcneill BUS_DMASYNC_POSTREAD);
732 1.1 jmcneill bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
733 1.1 jmcneill
734 1.1 jmcneill len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
735 1.1 jmcneill if (len != 0) {
736 1.1 jmcneill m = sc->rx.buf_map[index].mbuf;
737 1.1 jmcneill m_set_rcvif(m, ifp);
738 1.1 jmcneill m->m_flags |= M_HASFCS;
739 1.1 jmcneill m->m_pkthdr.len = len;
740 1.1 jmcneill m->m_len = len;
741 1.1 jmcneill
742 1.1 jmcneill if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
743 1.1 jmcneill (status & RX_FRM_TYPE) != 0) {
744 1.1 jmcneill m->m_pkthdr.csum_flags = M_CSUM_IPv4;
745 1.1 jmcneill if ((status & RX_HEADER_ERR) != 0)
746 1.1 jmcneill m->m_pkthdr.csum_flags |=
747 1.1 jmcneill M_CSUM_IPv4_BAD;
748 1.1 jmcneill if ((status & RX_PAYLOAD_ERR) == 0) {
749 1.1 jmcneill m->m_pkthdr.csum_flags |=
750 1.1 jmcneill M_CSUM_DATA;
751 1.1 jmcneill m->m_pkthdr.csum_data = 0xffff;
752 1.1 jmcneill }
753 1.1 jmcneill }
754 1.1 jmcneill
755 1.1 jmcneill m->m_nextpkt = NULL;
756 1.1 jmcneill if (mh == NULL)
757 1.1 jmcneill mh = m;
758 1.1 jmcneill else
759 1.1 jmcneill mt->m_nextpkt = m;
760 1.1 jmcneill mt = m;
761 1.1 jmcneill ++cnt;
762 1.1 jmcneill ++npkt;
763 1.1 jmcneill
764 1.1 jmcneill if (cnt == sunxi_emac_rx_batch) {
765 1.1 jmcneill if_percpuq_enqueue(ifp->if_percpuq, mh);
766 1.1 jmcneill mh = mt = NULL;
767 1.1 jmcneill cnt = 0;
768 1.1 jmcneill }
769 1.1 jmcneill }
770 1.1 jmcneill
771 1.1 jmcneill if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
772 1.1 jmcneill error = sunxi_emac_setup_rxbuf(sc, index, m0);
773 1.1 jmcneill if (error != 0) {
774 1.1 jmcneill /* XXX hole in RX ring */
775 1.1 jmcneill }
776 1.1 jmcneill } else
777 1.1 jmcneill ifp->if_ierrors++;
778 1.1 jmcneill
779 1.1 jmcneill sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
780 1.1 jmcneill index, index + 1,
781 1.2 jmcneill RX_DESC_COUNT, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
782 1.1 jmcneill }
783 1.1 jmcneill
784 1.2 jmcneill sc->rx.cur = index;
785 1.2 jmcneill
786 1.2 jmcneill if (mh != NULL)
787 1.1 jmcneill if_percpuq_enqueue(ifp->if_percpuq, mh);
788 1.1 jmcneill
789 1.1 jmcneill return npkt;
790 1.1 jmcneill }
791 1.1 jmcneill
792 1.1 jmcneill static void
793 1.1 jmcneill sunxi_emac_txintr(struct sunxi_emac_softc *sc)
794 1.1 jmcneill {
795 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
796 1.1 jmcneill struct sunxi_emac_bufmap *bmap;
797 1.1 jmcneill struct sunxi_emac_desc *desc;
798 1.1 jmcneill uint32_t status;
799 1.1 jmcneill int i;
800 1.1 jmcneill
801 1.1 jmcneill EMAC_ASSERT_LOCKED(sc);
802 1.1 jmcneill
803 1.1 jmcneill for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
804 1.1 jmcneill KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
805 1.1 jmcneill sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
806 1.1 jmcneill i, i + 1, TX_DESC_COUNT,
807 1.1 jmcneill BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
808 1.1 jmcneill desc = &sc->tx.desc_ring[i];
809 1.1 jmcneill status = le32toh(desc->status);
810 1.1 jmcneill if ((status & TX_DESC_CTL) != 0)
811 1.1 jmcneill break;
812 1.1 jmcneill bmap = &sc->tx.buf_map[i];
813 1.1 jmcneill if (bmap->mbuf != NULL) {
814 1.1 jmcneill bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
815 1.1 jmcneill 0, bmap->map->dm_mapsize,
816 1.1 jmcneill BUS_DMASYNC_POSTWRITE);
817 1.1 jmcneill bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
818 1.1 jmcneill m_freem(bmap->mbuf);
819 1.1 jmcneill bmap->mbuf = NULL;
820 1.1 jmcneill }
821 1.1 jmcneill
822 1.1 jmcneill sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
823 1.2 jmcneill sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
824 1.2 jmcneill i, i + 1, TX_DESC_COUNT,
825 1.2 jmcneill BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
826 1.1 jmcneill
827 1.1 jmcneill ifp->if_flags &= ~IFF_OACTIVE;
828 1.1 jmcneill ifp->if_opackets++;
829 1.1 jmcneill }
830 1.1 jmcneill
831 1.1 jmcneill sc->tx.next = i;
832 1.1 jmcneill }
833 1.1 jmcneill
834 1.1 jmcneill static int
835 1.1 jmcneill sunxi_emac_intr(void *arg)
836 1.1 jmcneill {
837 1.1 jmcneill struct sunxi_emac_softc *sc = arg;
838 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
839 1.1 jmcneill uint32_t val;
840 1.1 jmcneill
841 1.1 jmcneill EMAC_LOCK(sc);
842 1.1 jmcneill
843 1.1 jmcneill val = RD4(sc, EMAC_INT_STA);
844 1.1 jmcneill WR4(sc, EMAC_INT_STA, val);
845 1.1 jmcneill
846 1.1 jmcneill if (val & RX_INT)
847 1.1 jmcneill sunxi_emac_rxintr(sc);
848 1.1 jmcneill
849 1.1 jmcneill if (val & (TX_INT|TX_BUF_UA_INT)) {
850 1.1 jmcneill sunxi_emac_txintr(sc);
851 1.1 jmcneill if_schedule_deferred_start(ifp);
852 1.1 jmcneill }
853 1.1 jmcneill
854 1.1 jmcneill EMAC_UNLOCK(sc);
855 1.1 jmcneill
856 1.1 jmcneill return 1;
857 1.1 jmcneill }
858 1.1 jmcneill
859 1.1 jmcneill static int
860 1.1 jmcneill sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
861 1.1 jmcneill {
862 1.1 jmcneill struct sunxi_emac_softc *sc = ifp->if_softc;
863 1.1 jmcneill struct mii_data *mii = &sc->mii;
864 1.1 jmcneill struct ifreq *ifr = data;
865 1.1 jmcneill int error, s;
866 1.1 jmcneill
867 1.1 jmcneill #ifndef EMAC_MPSAFE
868 1.1 jmcneill s = splnet();
869 1.1 jmcneill #endif
870 1.1 jmcneill
871 1.1 jmcneill switch (cmd) {
872 1.1 jmcneill case SIOCSIFMEDIA:
873 1.1 jmcneill case SIOCGIFMEDIA:
874 1.1 jmcneill #ifdef EMAC_MPSAFE
875 1.1 jmcneill s = splnet();
876 1.1 jmcneill #endif
877 1.1 jmcneill error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
878 1.1 jmcneill #ifdef EMAC_MPSAFE
879 1.1 jmcneill splx(s);
880 1.1 jmcneill #endif
881 1.1 jmcneill break;
882 1.1 jmcneill default:
883 1.1 jmcneill #ifdef EMAC_MPSAFE
884 1.1 jmcneill s = splnet();
885 1.1 jmcneill #endif
886 1.1 jmcneill error = ether_ioctl(ifp, cmd, data);
887 1.1 jmcneill #ifdef EMAC_MPSAFE
888 1.1 jmcneill splx(s);
889 1.1 jmcneill #endif
890 1.1 jmcneill if (error != ENETRESET)
891 1.1 jmcneill break;
892 1.1 jmcneill
893 1.1 jmcneill error = 0;
894 1.1 jmcneill
895 1.1 jmcneill if (cmd == SIOCSIFCAP)
896 1.1 jmcneill error = (*ifp->if_init)(ifp);
897 1.1 jmcneill else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
898 1.1 jmcneill ;
899 1.1 jmcneill else if ((ifp->if_flags & IFF_RUNNING) != 0) {
900 1.1 jmcneill EMAC_LOCK(sc);
901 1.1 jmcneill sunxi_emac_setup_rxfilter(sc);
902 1.1 jmcneill EMAC_UNLOCK(sc);
903 1.1 jmcneill }
904 1.1 jmcneill break;
905 1.1 jmcneill }
906 1.1 jmcneill
907 1.1 jmcneill #ifndef EMAC_MPSAFE
908 1.1 jmcneill splx(s);
909 1.1 jmcneill #endif
910 1.1 jmcneill
911 1.1 jmcneill return error;
912 1.1 jmcneill }
913 1.1 jmcneill
914 1.1 jmcneill static int
915 1.1 jmcneill sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
916 1.1 jmcneill {
917 1.1 jmcneill uint32_t reg, tx_delay, rx_delay;
918 1.1 jmcneill const char *phy_type;
919 1.1 jmcneill
920 1.1 jmcneill phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
921 1.1 jmcneill if (phy_type == NULL)
922 1.1 jmcneill return 0;
923 1.1 jmcneill
924 1.1 jmcneill aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
925 1.1 jmcneill
926 1.1 jmcneill reg = SYSCONRD4(sc, 0);
927 1.1 jmcneill
928 1.1 jmcneill reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
929 1.1 jmcneill if (strcmp(phy_type, "rgmii") == 0)
930 1.1 jmcneill reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
931 1.1 jmcneill else if (strcmp(phy_type, "rmii") == 0)
932 1.1 jmcneill reg |= EMAC_CLK_RMII_EN;
933 1.1 jmcneill else
934 1.1 jmcneill reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
935 1.1 jmcneill
936 1.1 jmcneill if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
937 1.1 jmcneill reg &= ~EMAC_CLK_ETXDC;
938 1.1 jmcneill reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
939 1.1 jmcneill }
940 1.1 jmcneill if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
941 1.1 jmcneill reg &= ~EMAC_CLK_ERXDC;
942 1.1 jmcneill reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
943 1.1 jmcneill }
944 1.1 jmcneill
945 1.1 jmcneill if (sc->type == EMAC_H3) {
946 1.1 jmcneill if (of_hasprop(sc->phandle, "allwinner,use-internal-phy")) {
947 1.1 jmcneill reg |= EMAC_CLK_EPHY_SELECT;
948 1.1 jmcneill reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
949 1.1 jmcneill if (of_hasprop(sc->phandle,
950 1.1 jmcneill "allwinner,leds-active-low"))
951 1.1 jmcneill reg |= EMAC_CLK_EPHY_LED_POL;
952 1.1 jmcneill else
953 1.1 jmcneill reg &= ~EMAC_CLK_EPHY_LED_POL;
954 1.1 jmcneill
955 1.1 jmcneill /* Set internal PHY addr to 1 */
956 1.1 jmcneill reg &= ~EMAC_CLK_EPHY_ADDR;
957 1.1 jmcneill reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
958 1.1 jmcneill } else {
959 1.1 jmcneill reg &= ~EMAC_CLK_EPHY_SELECT;
960 1.1 jmcneill }
961 1.1 jmcneill }
962 1.1 jmcneill
963 1.1 jmcneill aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
964 1.1 jmcneill
965 1.1 jmcneill SYSCONWR4(sc, 0, reg);
966 1.1 jmcneill
967 1.1 jmcneill return 0;
968 1.1 jmcneill }
969 1.1 jmcneill
970 1.1 jmcneill static int
971 1.1 jmcneill sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
972 1.1 jmcneill {
973 1.1 jmcneill u_int freq;
974 1.1 jmcneill int error, div;
975 1.1 jmcneill
976 1.1 jmcneill /* Configure PHY for MII or RGMII mode */
977 1.1 jmcneill if (sunxi_emac_setup_phy(sc) != 0)
978 1.1 jmcneill return ENXIO;
979 1.1 jmcneill
980 1.1 jmcneill /* Enable clocks */
981 1.1 jmcneill error = clk_enable(sc->clk_ahb);
982 1.1 jmcneill if (error != 0) {
983 1.1 jmcneill aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
984 1.1 jmcneill return error;
985 1.1 jmcneill }
986 1.1 jmcneill
987 1.1 jmcneill if (sc->clk_ephy != NULL) {
988 1.1 jmcneill error = clk_enable(sc->clk_ephy);
989 1.1 jmcneill if (error != 0) {
990 1.1 jmcneill aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
991 1.1 jmcneill return error;
992 1.1 jmcneill }
993 1.1 jmcneill }
994 1.1 jmcneill
995 1.1 jmcneill /* De-assert reset */
996 1.1 jmcneill error = fdtbus_reset_deassert(sc->rst_ahb);
997 1.1 jmcneill if (error != 0) {
998 1.1 jmcneill aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
999 1.1 jmcneill return error;
1000 1.1 jmcneill }
1001 1.1 jmcneill if (sc->rst_ephy != NULL) {
1002 1.1 jmcneill error = fdtbus_reset_deassert(sc->rst_ephy);
1003 1.1 jmcneill if (error != 0) {
1004 1.1 jmcneill aprint_error_dev(sc->dev,
1005 1.1 jmcneill "cannot de-assert ephy reset\n");
1006 1.1 jmcneill return error;
1007 1.1 jmcneill }
1008 1.1 jmcneill }
1009 1.1 jmcneill
1010 1.1 jmcneill /* Enable PHY regulator if applicable */
1011 1.1 jmcneill if (sc->reg_phy != NULL) {
1012 1.1 jmcneill error = fdtbus_regulator_enable(sc->reg_phy);
1013 1.1 jmcneill if (error != 0) {
1014 1.1 jmcneill aprint_error_dev(sc->dev,
1015 1.1 jmcneill "cannot enable PHY regulator\n");
1016 1.1 jmcneill return error;
1017 1.1 jmcneill }
1018 1.1 jmcneill }
1019 1.1 jmcneill
1020 1.1 jmcneill /* Determine MDC clock divide ratio based on AHB clock */
1021 1.1 jmcneill freq = clk_get_rate(sc->clk_ahb);
1022 1.1 jmcneill if (freq == 0) {
1023 1.1 jmcneill aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1024 1.1 jmcneill return ENXIO;
1025 1.1 jmcneill }
1026 1.1 jmcneill div = freq / MDIO_FREQ;
1027 1.1 jmcneill if (div <= 16)
1028 1.1 jmcneill sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1029 1.1 jmcneill else if (div <= 32)
1030 1.1 jmcneill sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1031 1.1 jmcneill else if (div <= 64)
1032 1.1 jmcneill sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1033 1.1 jmcneill else if (div <= 128)
1034 1.1 jmcneill sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1035 1.1 jmcneill else {
1036 1.1 jmcneill aprint_error_dev(sc->dev,
1037 1.1 jmcneill "cannot determine MDC clock divide ratio\n");
1038 1.1 jmcneill return ENXIO;
1039 1.1 jmcneill }
1040 1.1 jmcneill
1041 1.1 jmcneill aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1042 1.1 jmcneill freq, sc->mdc_div_ratio_m);
1043 1.1 jmcneill
1044 1.1 jmcneill return 0;
1045 1.1 jmcneill }
1046 1.1 jmcneill
1047 1.1 jmcneill static void
1048 1.1 jmcneill sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1049 1.1 jmcneill {
1050 1.1 jmcneill uint32_t maclo, machi;
1051 1.1 jmcneill #if notyet
1052 1.1 jmcneill u_char rootkey[16];
1053 1.1 jmcneill #endif
1054 1.1 jmcneill
1055 1.1 jmcneill machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1056 1.1 jmcneill maclo = RD4(sc, EMAC_ADDR_LOW(0));
1057 1.1 jmcneill
1058 1.1 jmcneill if (maclo == 0xffffffff && machi == 0xffff) {
1059 1.1 jmcneill #if notyet
1060 1.1 jmcneill /* MAC address in hardware is invalid, create one */
1061 1.1 jmcneill if (aw_sid_get_rootkey(rootkey) == 0 &&
1062 1.1 jmcneill (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1063 1.1 jmcneill rootkey[15]) != 0) {
1064 1.1 jmcneill /* MAC address is derived from the root key in SID */
1065 1.1 jmcneill maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1066 1.1 jmcneill (rootkey[3] << 8) | 0x02;
1067 1.1 jmcneill machi = (rootkey[15] << 8) | rootkey[14];
1068 1.1 jmcneill } else {
1069 1.1 jmcneill #endif
1070 1.1 jmcneill /* Create one */
1071 1.1 jmcneill maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1072 1.1 jmcneill machi = cprng_strong32() & 0xffff;
1073 1.1 jmcneill #if notyet
1074 1.1 jmcneill }
1075 1.1 jmcneill #endif
1076 1.1 jmcneill }
1077 1.1 jmcneill
1078 1.1 jmcneill eaddr[0] = maclo & 0xff;
1079 1.1 jmcneill eaddr[1] = (maclo >> 8) & 0xff;
1080 1.1 jmcneill eaddr[2] = (maclo >> 16) & 0xff;
1081 1.1 jmcneill eaddr[3] = (maclo >> 24) & 0xff;
1082 1.1 jmcneill eaddr[4] = machi & 0xff;
1083 1.1 jmcneill eaddr[5] = (machi >> 8) & 0xff;
1084 1.1 jmcneill }
1085 1.1 jmcneill
1086 1.1 jmcneill #ifdef SUNXI_EMAC_DEBUG
1087 1.1 jmcneill static void
1088 1.1 jmcneill sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
1089 1.1 jmcneill {
1090 1.1 jmcneill static const struct {
1091 1.1 jmcneill const char *name;
1092 1.1 jmcneill u_int reg;
1093 1.1 jmcneill } regs[] = {
1094 1.1 jmcneill { "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1095 1.1 jmcneill { "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1096 1.1 jmcneill { "INT_STA", EMAC_INT_STA },
1097 1.1 jmcneill { "INT_EN", EMAC_INT_EN },
1098 1.1 jmcneill { "TX_CTL_0", EMAC_TX_CTL_0 },
1099 1.1 jmcneill { "TX_CTL_1", EMAC_TX_CTL_1 },
1100 1.1 jmcneill { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1101 1.1 jmcneill { "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1102 1.1 jmcneill { "RX_CTL_0", EMAC_RX_CTL_0 },
1103 1.1 jmcneill { "RX_CTL_1", EMAC_RX_CTL_1 },
1104 1.1 jmcneill { "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1105 1.1 jmcneill { "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1106 1.1 jmcneill { "RX_HASH_0", EMAC_RX_HASH_0 },
1107 1.1 jmcneill { "RX_HASH_1", EMAC_RX_HASH_1 },
1108 1.1 jmcneill { "MII_CMD", EMAC_MII_CMD },
1109 1.1 jmcneill { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1110 1.1 jmcneill { "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1111 1.1 jmcneill { "TX_DMA_STA", EMAC_TX_DMA_STA },
1112 1.1 jmcneill { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1113 1.1 jmcneill { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1114 1.1 jmcneill { "RX_DMA_STA", EMAC_RX_DMA_STA },
1115 1.1 jmcneill { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1116 1.1 jmcneill { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1117 1.1 jmcneill { "RGMII_STA", EMAC_RGMII_STA },
1118 1.1 jmcneill };
1119 1.1 jmcneill u_int n;
1120 1.1 jmcneill
1121 1.1 jmcneill for (n = 0; n < __arraycount(regs); n++)
1122 1.1 jmcneill device_printf(dev, " %-20s %08x\n", regs[n].name,
1123 1.1 jmcneill RD4(sc, regs[n].reg));
1124 1.1 jmcneill }
1125 1.1 jmcneill #endif
1126 1.1 jmcneill
1127 1.1 jmcneill static int
1128 1.1 jmcneill sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1129 1.1 jmcneill {
1130 1.1 jmcneill uint32_t delay_prop[3];
1131 1.1 jmcneill int pin_value;
1132 1.1 jmcneill
1133 1.1 jmcneill if (sc->pin_reset == NULL)
1134 1.1 jmcneill return 0;
1135 1.1 jmcneill
1136 1.1 jmcneill if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1137 1.1 jmcneill sizeof(delay_prop)) <= 0)
1138 1.1 jmcneill return ENXIO;
1139 1.1 jmcneill
1140 1.1 jmcneill pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1141 1.1 jmcneill
1142 1.1 jmcneill fdtbus_gpio_write(sc->pin_reset, pin_value);
1143 1.1 jmcneill delay(htole32(delay_prop[0]));
1144 1.1 jmcneill fdtbus_gpio_write(sc->pin_reset, !pin_value);
1145 1.1 jmcneill delay(htole32(delay_prop[1]));
1146 1.1 jmcneill fdtbus_gpio_write(sc->pin_reset, pin_value);
1147 1.1 jmcneill delay(htole32(delay_prop[2]));
1148 1.1 jmcneill
1149 1.1 jmcneill return 0;
1150 1.1 jmcneill }
1151 1.1 jmcneill
1152 1.1 jmcneill static int
1153 1.1 jmcneill sunxi_emac_reset(struct sunxi_emac_softc *sc)
1154 1.1 jmcneill {
1155 1.1 jmcneill int retry;
1156 1.1 jmcneill
1157 1.1 jmcneill /* Reset PHY if necessary */
1158 1.1 jmcneill if (sunxi_emac_phy_reset(sc) != 0) {
1159 1.1 jmcneill aprint_error_dev(sc->dev, "failed to reset PHY\n");
1160 1.1 jmcneill return ENXIO;
1161 1.1 jmcneill }
1162 1.1 jmcneill
1163 1.1 jmcneill /* Soft reset all registers and logic */
1164 1.1 jmcneill WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1165 1.1 jmcneill
1166 1.1 jmcneill /* Wait for soft reset bit to self-clear */
1167 1.1 jmcneill for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1168 1.1 jmcneill if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1169 1.1 jmcneill break;
1170 1.1 jmcneill delay(10);
1171 1.1 jmcneill }
1172 1.1 jmcneill if (retry == 0) {
1173 1.1 jmcneill aprint_error_dev(sc->dev, "soft reset timed out\n");
1174 1.1 jmcneill #ifdef SUNXI_EMAC_DEBUG
1175 1.1 jmcneill sunxi_emac_dump_regs(sc);
1176 1.1 jmcneill #endif
1177 1.1 jmcneill return ETIMEDOUT;
1178 1.1 jmcneill }
1179 1.1 jmcneill
1180 1.1 jmcneill return 0;
1181 1.1 jmcneill }
1182 1.1 jmcneill
1183 1.1 jmcneill static int
1184 1.1 jmcneill sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1185 1.1 jmcneill {
1186 1.1 jmcneill struct mbuf *m;
1187 1.1 jmcneill int error, nsegs, i;
1188 1.1 jmcneill
1189 1.1 jmcneill /* Setup TX ring */
1190 1.1 jmcneill sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1191 1.1 jmcneill error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1192 1.1 jmcneill BUS_DMA_WAITOK, &sc->tx.desc_map);
1193 1.1 jmcneill if (error)
1194 1.1 jmcneill return error;
1195 1.1 jmcneill error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1196 1.1 jmcneill &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1197 1.1 jmcneill if (error)
1198 1.1 jmcneill return error;
1199 1.1 jmcneill error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1200 1.1 jmcneill TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1201 1.2 jmcneill BUS_DMA_WAITOK);
1202 1.1 jmcneill if (error)
1203 1.1 jmcneill return error;
1204 1.1 jmcneill error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1205 1.1 jmcneill TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1206 1.1 jmcneill if (error)
1207 1.1 jmcneill return error;
1208 1.1 jmcneill sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1209 1.1 jmcneill
1210 1.1 jmcneill memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1211 1.1 jmcneill bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1212 1.2 jmcneill BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1213 1.1 jmcneill
1214 1.1 jmcneill for (i = 0; i < TX_DESC_COUNT; i++)
1215 1.1 jmcneill sc->tx.desc_ring[i].next =
1216 1.1 jmcneill htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1217 1.1 jmcneill
1218 1.1 jmcneill sc->tx.queued = TX_DESC_COUNT;
1219 1.1 jmcneill for (i = 0; i < TX_DESC_COUNT; i++) {
1220 1.1 jmcneill error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1221 1.1 jmcneill TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1222 1.1 jmcneill &sc->tx.buf_map[i].map);
1223 1.1 jmcneill if (error != 0) {
1224 1.1 jmcneill device_printf(sc->dev, "cannot create TX buffer map\n");
1225 1.1 jmcneill return error;
1226 1.1 jmcneill }
1227 1.1 jmcneill sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1228 1.1 jmcneill }
1229 1.1 jmcneill
1230 1.1 jmcneill /* Setup RX ring */
1231 1.1 jmcneill sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1232 1.1 jmcneill error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1233 1.1 jmcneill BUS_DMA_WAITOK, &sc->rx.desc_map);
1234 1.1 jmcneill if (error)
1235 1.1 jmcneill return error;
1236 1.1 jmcneill error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1237 1.1 jmcneill &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1238 1.1 jmcneill if (error)
1239 1.1 jmcneill return error;
1240 1.1 jmcneill error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1241 1.1 jmcneill RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1242 1.2 jmcneill BUS_DMA_WAITOK);
1243 1.1 jmcneill if (error)
1244 1.1 jmcneill return error;
1245 1.1 jmcneill error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1246 1.1 jmcneill RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1247 1.1 jmcneill if (error)
1248 1.1 jmcneill return error;
1249 1.1 jmcneill sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1250 1.1 jmcneill
1251 1.1 jmcneill memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1252 1.1 jmcneill
1253 1.1 jmcneill for (i = 0; i < RX_DESC_COUNT; i++) {
1254 1.1 jmcneill error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1255 1.1 jmcneill RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1256 1.1 jmcneill &sc->rx.buf_map[i].map);
1257 1.1 jmcneill if (error != 0) {
1258 1.1 jmcneill device_printf(sc->dev, "cannot create RX buffer map\n");
1259 1.1 jmcneill return error;
1260 1.1 jmcneill }
1261 1.1 jmcneill if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1262 1.1 jmcneill device_printf(sc->dev, "cannot allocate RX mbuf\n");
1263 1.1 jmcneill return ENOMEM;
1264 1.1 jmcneill }
1265 1.1 jmcneill error = sunxi_emac_setup_rxbuf(sc, i, m);
1266 1.1 jmcneill if (error != 0) {
1267 1.1 jmcneill device_printf(sc->dev, "cannot create RX buffer\n");
1268 1.1 jmcneill return error;
1269 1.1 jmcneill }
1270 1.1 jmcneill }
1271 1.1 jmcneill bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1272 1.1 jmcneill 0, sc->rx.desc_map->dm_mapsize,
1273 1.2 jmcneill BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1274 1.1 jmcneill
1275 1.1 jmcneill /* Write transmit and receive descriptor base address registers */
1276 1.1 jmcneill WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1277 1.1 jmcneill WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1278 1.1 jmcneill
1279 1.1 jmcneill return 0;
1280 1.1 jmcneill }
1281 1.1 jmcneill
1282 1.1 jmcneill static int
1283 1.1 jmcneill sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1284 1.1 jmcneill {
1285 1.1 jmcneill const int phandle = sc->phandle;
1286 1.1 jmcneill bus_addr_t addr, size;
1287 1.1 jmcneill u_int n;
1288 1.1 jmcneill
1289 1.1 jmcneill /* Map registers */
1290 1.1 jmcneill for (n = 0; n < _RES_NITEMS; n++) {
1291 1.1 jmcneill if (fdtbus_get_reg(phandle, n, &addr, &size) != 0)
1292 1.1 jmcneill return ENXIO;
1293 1.1 jmcneill if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh[n]) != 0)
1294 1.1 jmcneill return ENXIO;
1295 1.1 jmcneill }
1296 1.1 jmcneill
1297 1.1 jmcneill /* Get clocks and resets. "ahb" is required, "ephy" is optional. */
1298 1.1 jmcneill
1299 1.1 jmcneill if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL)
1300 1.1 jmcneill return ENXIO;
1301 1.1 jmcneill sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1302 1.1 jmcneill
1303 1.1 jmcneill if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL)
1304 1.1 jmcneill return ENXIO;
1305 1.1 jmcneill sc->rst_ahb = fdtbus_reset_get(phandle, "ephy");
1306 1.1 jmcneill
1307 1.1 jmcneill /* Regulator is optional */
1308 1.1 jmcneill sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1309 1.1 jmcneill
1310 1.1 jmcneill /* Reset GPIO is optional */
1311 1.1 jmcneill sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1312 1.1 jmcneill "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1313 1.1 jmcneill
1314 1.1 jmcneill return 0;
1315 1.1 jmcneill }
1316 1.1 jmcneill
1317 1.1 jmcneill static int
1318 1.1 jmcneill sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1319 1.1 jmcneill {
1320 1.1 jmcneill struct fdt_attach_args * const faa = aux;
1321 1.1 jmcneill
1322 1.1 jmcneill return of_match_compat_data(faa->faa_phandle, compat_data);
1323 1.1 jmcneill }
1324 1.1 jmcneill
1325 1.1 jmcneill static void
1326 1.1 jmcneill sunxi_emac_attach(device_t parent, device_t self, void *aux)
1327 1.1 jmcneill {
1328 1.1 jmcneill struct fdt_attach_args * const faa = aux;
1329 1.1 jmcneill struct sunxi_emac_softc * const sc = device_private(self);
1330 1.1 jmcneill const int phandle = faa->faa_phandle;
1331 1.1 jmcneill struct mii_data *mii = &sc->mii;
1332 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
1333 1.1 jmcneill uint8_t eaddr[ETHER_ADDR_LEN];
1334 1.1 jmcneill char intrstr[128];
1335 1.1 jmcneill
1336 1.1 jmcneill sc->dev = self;
1337 1.1 jmcneill sc->phandle = phandle;
1338 1.1 jmcneill sc->bst = faa->faa_bst;
1339 1.1 jmcneill sc->dmat = faa->faa_dmat;
1340 1.1 jmcneill sc->type = of_search_compatible(phandle, compat_data)->data;
1341 1.1 jmcneill
1342 1.1 jmcneill if (sunxi_emac_get_resources(sc) != 0) {
1343 1.1 jmcneill aprint_error(": cannot allocate resources for device\n");
1344 1.1 jmcneill return;
1345 1.1 jmcneill }
1346 1.1 jmcneill if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1347 1.1 jmcneill aprint_error(": cannot decode interrupt\n");
1348 1.1 jmcneill return;
1349 1.1 jmcneill }
1350 1.1 jmcneill
1351 1.1 jmcneill mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1352 1.1 jmcneill callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1353 1.1 jmcneill callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1354 1.1 jmcneill
1355 1.1 jmcneill aprint_naive("\n");
1356 1.1 jmcneill aprint_normal(": EMAC\n");
1357 1.1 jmcneill
1358 1.1 jmcneill /* Setup clocks and regulators */
1359 1.1 jmcneill if (sunxi_emac_setup_resources(sc) != 0)
1360 1.1 jmcneill return;
1361 1.1 jmcneill
1362 1.1 jmcneill /* Read MAC address before resetting the chip */
1363 1.1 jmcneill sunxi_emac_get_eaddr(sc, eaddr);
1364 1.1 jmcneill
1365 1.1 jmcneill /* Soft reset EMAC core */
1366 1.1 jmcneill if (sunxi_emac_reset(sc) != 0)
1367 1.1 jmcneill return;
1368 1.1 jmcneill
1369 1.1 jmcneill /* Setup DMA descriptors */
1370 1.1 jmcneill if (sunxi_emac_setup_dma(sc) != 0) {
1371 1.1 jmcneill aprint_error_dev(self, "failed to setup DMA descriptors\n");
1372 1.1 jmcneill return;
1373 1.1 jmcneill }
1374 1.1 jmcneill
1375 1.1 jmcneill /* Install interrupt handler */
1376 1.1 jmcneill sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
1377 1.1 jmcneill FDT_INTR_FLAGS, sunxi_emac_intr, sc);
1378 1.1 jmcneill if (sc->ih == NULL) {
1379 1.1 jmcneill aprint_error_dev(self, "failed to establish interrupt on %s\n",
1380 1.1 jmcneill intrstr);
1381 1.1 jmcneill return;
1382 1.1 jmcneill }
1383 1.1 jmcneill aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1384 1.1 jmcneill
1385 1.1 jmcneill /* Setup ethernet interface */
1386 1.1 jmcneill ifp->if_softc = sc;
1387 1.1 jmcneill snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1388 1.1 jmcneill ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1389 1.1 jmcneill #ifdef EMAC_MPSAFE
1390 1.1 jmcneill ifp->if_extflags = IFEF_START_MPSAFE;
1391 1.1 jmcneill #endif
1392 1.1 jmcneill ifp->if_start = sunxi_emac_start;
1393 1.1 jmcneill ifp->if_ioctl = sunxi_emac_ioctl;
1394 1.1 jmcneill ifp->if_init = sunxi_emac_init;
1395 1.1 jmcneill ifp->if_stop = sunxi_emac_stop;
1396 1.1 jmcneill ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1397 1.1 jmcneill IFCAP_CSUM_IPv4_Tx |
1398 1.1 jmcneill IFCAP_CSUM_TCPv4_Rx |
1399 1.1 jmcneill IFCAP_CSUM_TCPv4_Tx |
1400 1.1 jmcneill IFCAP_CSUM_UDPv4_Rx |
1401 1.1 jmcneill IFCAP_CSUM_UDPv4_Tx;
1402 1.1 jmcneill IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1403 1.1 jmcneill IFQ_SET_READY(&ifp->if_snd);
1404 1.1 jmcneill
1405 1.1 jmcneill /* 802.1Q VLAN-sized frames are supported */
1406 1.1 jmcneill sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1407 1.1 jmcneill
1408 1.1 jmcneill /* Attach MII driver */
1409 1.1 jmcneill sc->ec.ec_mii = mii;
1410 1.1 jmcneill ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1411 1.1 jmcneill mii->mii_ifp = ifp;
1412 1.1 jmcneill mii->mii_readreg = sunxi_emac_mii_readreg;
1413 1.1 jmcneill mii->mii_writereg = sunxi_emac_mii_writereg;
1414 1.1 jmcneill mii->mii_statchg = sunxi_emac_mii_statchg;
1415 1.1 jmcneill mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
1416 1.1 jmcneill MIIF_DOPAUSE);
1417 1.1 jmcneill
1418 1.1 jmcneill if (LIST_EMPTY(&mii->mii_phys)) {
1419 1.1 jmcneill aprint_error_dev(self, "no PHY found!\n");
1420 1.1 jmcneill return;
1421 1.1 jmcneill }
1422 1.1 jmcneill ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
1423 1.1 jmcneill
1424 1.1 jmcneill /* Attach interface */
1425 1.1 jmcneill if_attach(ifp);
1426 1.1 jmcneill if_deferred_start_init(ifp, NULL);
1427 1.1 jmcneill
1428 1.1 jmcneill /* Attach ethernet interface */
1429 1.1 jmcneill ether_ifattach(ifp, eaddr);
1430 1.1 jmcneill }
1431 1.1 jmcneill
1432 1.1 jmcneill CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1433 1.1 jmcneill sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1434