sunxi_emac.c revision 1.20 1 1.20 martin /* $NetBSD: sunxi_emac.c,v 1.20 2018/10/18 13:33:10 martin Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2016-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill /*
30 1.1 jmcneill * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 1.1 jmcneill */
32 1.1 jmcneill
33 1.1 jmcneill #include "opt_net_mpsafe.h"
34 1.1 jmcneill
35 1.1 jmcneill #include <sys/cdefs.h>
36 1.20 martin __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.20 2018/10/18 13:33:10 martin Exp $");
37 1.1 jmcneill
38 1.1 jmcneill #include <sys/param.h>
39 1.1 jmcneill #include <sys/bus.h>
40 1.1 jmcneill #include <sys/device.h>
41 1.1 jmcneill #include <sys/intr.h>
42 1.1 jmcneill #include <sys/systm.h>
43 1.1 jmcneill #include <sys/kernel.h>
44 1.1 jmcneill #include <sys/mutex.h>
45 1.1 jmcneill #include <sys/callout.h>
46 1.1 jmcneill #include <sys/gpio.h>
47 1.1 jmcneill #include <sys/cprng.h>
48 1.1 jmcneill
49 1.1 jmcneill #include <net/if.h>
50 1.1 jmcneill #include <net/if_dl.h>
51 1.1 jmcneill #include <net/if_ether.h>
52 1.1 jmcneill #include <net/if_media.h>
53 1.1 jmcneill #include <net/bpf.h>
54 1.1 jmcneill
55 1.1 jmcneill #include <dev/mii/miivar.h>
56 1.1 jmcneill
57 1.1 jmcneill #include <dev/fdt/fdtvar.h>
58 1.16 jmcneill #include <dev/fdt/syscon.h>
59 1.1 jmcneill
60 1.1 jmcneill #include <arm/sunxi/sunxi_emac.h>
61 1.1 jmcneill
62 1.1 jmcneill #ifdef NET_MPSAFE
63 1.1 jmcneill #define EMAC_MPSAFE 1
64 1.1 jmcneill #define CALLOUT_FLAGS CALLOUT_MPSAFE
65 1.1 jmcneill #define FDT_INTR_FLAGS FDT_INTR_MPSAFE
66 1.1 jmcneill #else
67 1.1 jmcneill #define CALLOUT_FLAGS 0
68 1.1 jmcneill #define FDT_INTR_FLAGS 0
69 1.1 jmcneill #endif
70 1.1 jmcneill
71 1.1 jmcneill #define EMAC_IFNAME "emac%d"
72 1.1 jmcneill
73 1.1 jmcneill #define ETHER_ALIGN 2
74 1.1 jmcneill
75 1.1 jmcneill #define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx)
76 1.1 jmcneill #define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx)
77 1.1 jmcneill #define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx))
78 1.1 jmcneill
79 1.2 jmcneill #define DESC_ALIGN sizeof(struct sunxi_emac_desc)
80 1.1 jmcneill #define TX_DESC_COUNT 1024
81 1.1 jmcneill #define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
82 1.1 jmcneill #define RX_DESC_COUNT 256
83 1.1 jmcneill #define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
84 1.1 jmcneill
85 1.1 jmcneill #define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc))
86 1.1 jmcneill #define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
87 1.1 jmcneill #define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
88 1.1 jmcneill #define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
89 1.1 jmcneill
90 1.1 jmcneill #define TX_MAX_SEGS 128
91 1.1 jmcneill
92 1.1 jmcneill #define SOFT_RST_RETRY 1000
93 1.1 jmcneill #define MII_BUSY_RETRY 1000
94 1.1 jmcneill #define MDIO_FREQ 2500000
95 1.1 jmcneill
96 1.1 jmcneill #define BURST_LEN_DEFAULT 8
97 1.1 jmcneill #define RX_TX_PRI_DEFAULT 0
98 1.1 jmcneill #define PAUSE_TIME_DEFAULT 0x400
99 1.1 jmcneill
100 1.1 jmcneill /* syscon EMAC clock register */
101 1.10 jmcneill #define EMAC_CLK_REG 0x30
102 1.10 jmcneill #define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
103 1.10 jmcneill #define EMAC_CLK_EPHY_ADDR_SHIFT 20
104 1.10 jmcneill #define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
105 1.10 jmcneill #define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
106 1.10 jmcneill #define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
107 1.10 jmcneill #define EMAC_CLK_RMII_EN (1 << 13)
108 1.10 jmcneill #define EMAC_CLK_ETXDC (0x7 << 10)
109 1.10 jmcneill #define EMAC_CLK_ETXDC_SHIFT 10
110 1.10 jmcneill #define EMAC_CLK_ERXDC (0x1f << 5)
111 1.10 jmcneill #define EMAC_CLK_ERXDC_SHIFT 5
112 1.10 jmcneill #define EMAC_CLK_PIT (0x1 << 2)
113 1.10 jmcneill #define EMAC_CLK_PIT_MII (0 << 2)
114 1.10 jmcneill #define EMAC_CLK_PIT_RGMII (1 << 2)
115 1.10 jmcneill #define EMAC_CLK_SRC (0x3 << 0)
116 1.10 jmcneill #define EMAC_CLK_SRC_MII (0 << 0)
117 1.10 jmcneill #define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
118 1.10 jmcneill #define EMAC_CLK_SRC_RGMII (2 << 0)
119 1.1 jmcneill
120 1.1 jmcneill /* Burst length of RX and TX DMA transfers */
121 1.1 jmcneill static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
122 1.1 jmcneill
123 1.1 jmcneill /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
124 1.1 jmcneill static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
125 1.1 jmcneill
126 1.1 jmcneill /* Pause time field in the transmitted control frame */
127 1.1 jmcneill static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
128 1.1 jmcneill
129 1.1 jmcneill enum sunxi_emac_type {
130 1.13 jmcneill EMAC_A64 = 1,
131 1.13 jmcneill EMAC_A83T,
132 1.1 jmcneill EMAC_H3,
133 1.13 jmcneill EMAC_H6,
134 1.1 jmcneill };
135 1.1 jmcneill
136 1.1 jmcneill static const struct of_compat_data compat_data[] = {
137 1.1 jmcneill { "allwinner,sun8i-a83t-emac", EMAC_A83T },
138 1.1 jmcneill { "allwinner,sun8i-h3-emac", EMAC_H3 },
139 1.5 jmcneill { "allwinner,sun50i-a64-emac", EMAC_A64 },
140 1.13 jmcneill { "allwinner,sun50i-h6-emac", EMAC_H6 },
141 1.1 jmcneill { NULL }
142 1.1 jmcneill };
143 1.1 jmcneill
144 1.1 jmcneill struct sunxi_emac_bufmap {
145 1.1 jmcneill bus_dmamap_t map;
146 1.1 jmcneill struct mbuf *mbuf;
147 1.1 jmcneill };
148 1.1 jmcneill
149 1.1 jmcneill struct sunxi_emac_txring {
150 1.1 jmcneill bus_dma_tag_t desc_tag;
151 1.1 jmcneill bus_dmamap_t desc_map;
152 1.1 jmcneill bus_dma_segment_t desc_dmaseg;
153 1.1 jmcneill struct sunxi_emac_desc *desc_ring;
154 1.1 jmcneill bus_addr_t desc_ring_paddr;
155 1.1 jmcneill bus_dma_tag_t buf_tag;
156 1.1 jmcneill struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
157 1.1 jmcneill u_int cur, next, queued;
158 1.1 jmcneill };
159 1.1 jmcneill
160 1.1 jmcneill struct sunxi_emac_rxring {
161 1.1 jmcneill bus_dma_tag_t desc_tag;
162 1.1 jmcneill bus_dmamap_t desc_map;
163 1.1 jmcneill bus_dma_segment_t desc_dmaseg;
164 1.1 jmcneill struct sunxi_emac_desc *desc_ring;
165 1.1 jmcneill bus_addr_t desc_ring_paddr;
166 1.1 jmcneill bus_dma_tag_t buf_tag;
167 1.1 jmcneill struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
168 1.1 jmcneill u_int cur;
169 1.1 jmcneill };
170 1.1 jmcneill
171 1.1 jmcneill struct sunxi_emac_softc {
172 1.1 jmcneill device_t dev;
173 1.1 jmcneill int phandle;
174 1.1 jmcneill enum sunxi_emac_type type;
175 1.1 jmcneill bus_space_tag_t bst;
176 1.1 jmcneill bus_dma_tag_t dmat;
177 1.1 jmcneill
178 1.16 jmcneill bus_space_handle_t bsh;
179 1.1 jmcneill struct clk *clk_ahb;
180 1.1 jmcneill struct clk *clk_ephy;
181 1.1 jmcneill struct fdtbus_reset *rst_ahb;
182 1.1 jmcneill struct fdtbus_reset *rst_ephy;
183 1.1 jmcneill struct fdtbus_regulator *reg_phy;
184 1.1 jmcneill struct fdtbus_gpio_pin *pin_reset;
185 1.1 jmcneill
186 1.16 jmcneill struct syscon *syscon;
187 1.16 jmcneill
188 1.7 jmcneill int phy_id;
189 1.7 jmcneill
190 1.1 jmcneill kmutex_t mtx;
191 1.1 jmcneill struct ethercom ec;
192 1.1 jmcneill struct mii_data mii;
193 1.1 jmcneill callout_t stat_ch;
194 1.1 jmcneill void *ih;
195 1.1 jmcneill u_int mdc_div_ratio_m;
196 1.1 jmcneill
197 1.1 jmcneill struct sunxi_emac_txring tx;
198 1.1 jmcneill struct sunxi_emac_rxring rx;
199 1.1 jmcneill };
200 1.1 jmcneill
201 1.1 jmcneill #define RD4(sc, reg) \
202 1.16 jmcneill bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
203 1.1 jmcneill #define WR4(sc, reg, val) \
204 1.16 jmcneill bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
205 1.1 jmcneill
206 1.1 jmcneill static int
207 1.1 jmcneill sunxi_emac_mii_readreg(device_t dev, int phy, int reg)
208 1.1 jmcneill {
209 1.1 jmcneill struct sunxi_emac_softc *sc = device_private(dev);
210 1.1 jmcneill int retry, val;
211 1.1 jmcneill
212 1.1 jmcneill val = 0;
213 1.1 jmcneill
214 1.1 jmcneill WR4(sc, EMAC_MII_CMD,
215 1.1 jmcneill (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
216 1.1 jmcneill (phy << PHY_ADDR_SHIFT) |
217 1.1 jmcneill (reg << PHY_REG_ADDR_SHIFT) |
218 1.1 jmcneill MII_BUSY);
219 1.1 jmcneill for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
220 1.1 jmcneill if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
221 1.1 jmcneill val = RD4(sc, EMAC_MII_DATA);
222 1.1 jmcneill break;
223 1.1 jmcneill }
224 1.1 jmcneill delay(10);
225 1.1 jmcneill }
226 1.1 jmcneill
227 1.1 jmcneill if (retry == 0)
228 1.1 jmcneill device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
229 1.1 jmcneill phy, reg);
230 1.1 jmcneill
231 1.1 jmcneill return val;
232 1.1 jmcneill }
233 1.1 jmcneill
234 1.1 jmcneill static void
235 1.1 jmcneill sunxi_emac_mii_writereg(device_t dev, int phy, int reg, int val)
236 1.1 jmcneill {
237 1.1 jmcneill struct sunxi_emac_softc *sc = device_private(dev);
238 1.1 jmcneill int retry;
239 1.1 jmcneill
240 1.1 jmcneill WR4(sc, EMAC_MII_DATA, val);
241 1.1 jmcneill WR4(sc, EMAC_MII_CMD,
242 1.1 jmcneill (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
243 1.1 jmcneill (phy << PHY_ADDR_SHIFT) |
244 1.1 jmcneill (reg << PHY_REG_ADDR_SHIFT) |
245 1.1 jmcneill MII_WR | MII_BUSY);
246 1.1 jmcneill for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
247 1.1 jmcneill if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
248 1.1 jmcneill break;
249 1.1 jmcneill delay(10);
250 1.1 jmcneill }
251 1.1 jmcneill
252 1.1 jmcneill if (retry == 0)
253 1.1 jmcneill device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
254 1.1 jmcneill phy, reg);
255 1.1 jmcneill }
256 1.1 jmcneill
257 1.1 jmcneill static void
258 1.1 jmcneill sunxi_emac_update_link(struct sunxi_emac_softc *sc)
259 1.1 jmcneill {
260 1.1 jmcneill struct mii_data *mii = &sc->mii;
261 1.1 jmcneill uint32_t val;
262 1.1 jmcneill
263 1.1 jmcneill val = RD4(sc, EMAC_BASIC_CTL_0);
264 1.1 jmcneill val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
265 1.1 jmcneill
266 1.1 jmcneill if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
267 1.1 jmcneill IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
268 1.1 jmcneill val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
269 1.1 jmcneill else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
270 1.1 jmcneill val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
271 1.1 jmcneill else
272 1.1 jmcneill val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
273 1.1 jmcneill
274 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
275 1.1 jmcneill val |= BASIC_CTL_DUPLEX;
276 1.1 jmcneill
277 1.1 jmcneill WR4(sc, EMAC_BASIC_CTL_0, val);
278 1.1 jmcneill
279 1.1 jmcneill val = RD4(sc, EMAC_RX_CTL_0);
280 1.1 jmcneill val &= ~RX_FLOW_CTL_EN;
281 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
282 1.1 jmcneill val |= RX_FLOW_CTL_EN;
283 1.1 jmcneill WR4(sc, EMAC_RX_CTL_0, val);
284 1.1 jmcneill
285 1.1 jmcneill val = RD4(sc, EMAC_TX_FLOW_CTL);
286 1.1 jmcneill val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
287 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
288 1.1 jmcneill val |= TX_FLOW_CTL_EN;
289 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
290 1.1 jmcneill val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
291 1.1 jmcneill WR4(sc, EMAC_TX_FLOW_CTL, val);
292 1.1 jmcneill }
293 1.1 jmcneill
294 1.1 jmcneill static void
295 1.1 jmcneill sunxi_emac_mii_statchg(struct ifnet *ifp)
296 1.1 jmcneill {
297 1.1 jmcneill struct sunxi_emac_softc * const sc = ifp->if_softc;
298 1.1 jmcneill
299 1.1 jmcneill sunxi_emac_update_link(sc);
300 1.1 jmcneill }
301 1.1 jmcneill
302 1.1 jmcneill static void
303 1.1 jmcneill sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
304 1.1 jmcneill bus_dmamap_t map, int start, int end, int total, int flags)
305 1.1 jmcneill {
306 1.1 jmcneill if (end > start) {
307 1.1 jmcneill bus_dmamap_sync(dmat, map, DESC_OFF(start),
308 1.1 jmcneill DESC_OFF(end) - DESC_OFF(start), flags);
309 1.1 jmcneill } else {
310 1.1 jmcneill bus_dmamap_sync(dmat, map, DESC_OFF(start),
311 1.1 jmcneill DESC_OFF(total) - DESC_OFF(start), flags);
312 1.2 jmcneill if (DESC_OFF(end) - DESC_OFF(0) > 0)
313 1.2 jmcneill bus_dmamap_sync(dmat, map, DESC_OFF(0),
314 1.2 jmcneill DESC_OFF(end) - DESC_OFF(0), flags);
315 1.1 jmcneill }
316 1.1 jmcneill }
317 1.1 jmcneill
318 1.1 jmcneill static void
319 1.1 jmcneill sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
320 1.1 jmcneill bus_addr_t paddr, u_int len)
321 1.1 jmcneill {
322 1.1 jmcneill uint32_t status, size;
323 1.1 jmcneill
324 1.1 jmcneill if (paddr == 0 || len == 0) {
325 1.1 jmcneill status = 0;
326 1.1 jmcneill size = 0;
327 1.1 jmcneill --sc->tx.queued;
328 1.1 jmcneill } else {
329 1.1 jmcneill status = TX_DESC_CTL;
330 1.1 jmcneill size = flags | len;
331 1.1 jmcneill ++sc->tx.queued;
332 1.1 jmcneill }
333 1.1 jmcneill
334 1.1 jmcneill sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
335 1.1 jmcneill sc->tx.desc_ring[index].size = htole32(size);
336 1.1 jmcneill sc->tx.desc_ring[index].status = htole32(status);
337 1.1 jmcneill }
338 1.1 jmcneill
339 1.1 jmcneill static int
340 1.1 jmcneill sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
341 1.1 jmcneill {
342 1.1 jmcneill bus_dma_segment_t *segs;
343 1.1 jmcneill int error, nsegs, cur, i, flags;
344 1.1 jmcneill u_int csum_flags;
345 1.1 jmcneill
346 1.1 jmcneill error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
347 1.1 jmcneill sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
348 1.1 jmcneill if (error == EFBIG) {
349 1.1 jmcneill device_printf(sc->dev,
350 1.1 jmcneill "TX packet needs too many DMA segments, dropping...\n");
351 1.1 jmcneill m_freem(m);
352 1.1 jmcneill return 0;
353 1.1 jmcneill }
354 1.1 jmcneill if (error != 0)
355 1.1 jmcneill return 0;
356 1.1 jmcneill
357 1.1 jmcneill segs = sc->tx.buf_map[index].map->dm_segs;
358 1.1 jmcneill nsegs = sc->tx.buf_map[index].map->dm_nsegs;
359 1.1 jmcneill
360 1.1 jmcneill flags = TX_FIR_DESC;
361 1.1 jmcneill if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
362 1.1 jmcneill if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
363 1.1 jmcneill csum_flags = TX_CHECKSUM_CTL_FULL;
364 1.1 jmcneill else
365 1.1 jmcneill csum_flags = TX_CHECKSUM_CTL_IP;
366 1.1 jmcneill flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
367 1.1 jmcneill }
368 1.1 jmcneill
369 1.1 jmcneill for (cur = index, i = 0; i < nsegs; i++) {
370 1.1 jmcneill sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
371 1.1 jmcneill if (i == nsegs - 1)
372 1.8 jmcneill flags |= TX_LAST_DESC | TX_INT_CTL;
373 1.1 jmcneill
374 1.1 jmcneill sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
375 1.1 jmcneill segs[i].ds_len);
376 1.1 jmcneill flags &= ~TX_FIR_DESC;
377 1.1 jmcneill cur = TX_NEXT(cur);
378 1.1 jmcneill }
379 1.1 jmcneill
380 1.2 jmcneill bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
381 1.2 jmcneill 0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
382 1.2 jmcneill
383 1.1 jmcneill return nsegs;
384 1.1 jmcneill }
385 1.1 jmcneill
386 1.1 jmcneill static void
387 1.1 jmcneill sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
388 1.1 jmcneill bus_addr_t paddr)
389 1.1 jmcneill {
390 1.1 jmcneill uint32_t status, size;
391 1.1 jmcneill
392 1.1 jmcneill status = RX_DESC_CTL;
393 1.1 jmcneill size = MCLBYTES - 1;
394 1.1 jmcneill
395 1.1 jmcneill sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
396 1.1 jmcneill sc->rx.desc_ring[index].size = htole32(size);
397 1.1 jmcneill sc->rx.desc_ring[index].next =
398 1.1 jmcneill htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
399 1.1 jmcneill sc->rx.desc_ring[index].status = htole32(status);
400 1.1 jmcneill }
401 1.1 jmcneill
402 1.1 jmcneill static int
403 1.1 jmcneill sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
404 1.1 jmcneill {
405 1.1 jmcneill int error;
406 1.1 jmcneill
407 1.1 jmcneill m_adj(m, ETHER_ALIGN);
408 1.1 jmcneill
409 1.1 jmcneill error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
410 1.1 jmcneill sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT);
411 1.1 jmcneill if (error != 0)
412 1.1 jmcneill return error;
413 1.1 jmcneill
414 1.1 jmcneill bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
415 1.1 jmcneill 0, sc->rx.buf_map[index].map->dm_mapsize,
416 1.1 jmcneill BUS_DMASYNC_PREREAD);
417 1.1 jmcneill
418 1.1 jmcneill sc->rx.buf_map[index].mbuf = m;
419 1.1 jmcneill sunxi_emac_setup_rxdesc(sc, index,
420 1.1 jmcneill sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
421 1.1 jmcneill
422 1.1 jmcneill return 0;
423 1.1 jmcneill }
424 1.1 jmcneill
425 1.1 jmcneill static struct mbuf *
426 1.1 jmcneill sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
427 1.1 jmcneill {
428 1.1 jmcneill struct mbuf *m;
429 1.1 jmcneill
430 1.1 jmcneill m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
431 1.1 jmcneill if (m != NULL)
432 1.1 jmcneill m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
433 1.1 jmcneill
434 1.1 jmcneill return m;
435 1.1 jmcneill }
436 1.1 jmcneill
437 1.1 jmcneill static void
438 1.1 jmcneill sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
439 1.1 jmcneill {
440 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
441 1.1 jmcneill struct mbuf *m;
442 1.1 jmcneill uint32_t val;
443 1.1 jmcneill int cnt, nsegs, start;
444 1.1 jmcneill
445 1.1 jmcneill EMAC_ASSERT_LOCKED(sc);
446 1.1 jmcneill
447 1.1 jmcneill if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
448 1.1 jmcneill return;
449 1.1 jmcneill
450 1.1 jmcneill for (cnt = 0, start = sc->tx.cur; ; cnt++) {
451 1.1 jmcneill if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
452 1.1 jmcneill ifp->if_flags |= IFF_OACTIVE;
453 1.1 jmcneill break;
454 1.1 jmcneill }
455 1.1 jmcneill
456 1.1 jmcneill IFQ_POLL(&ifp->if_snd, m);
457 1.1 jmcneill if (m == NULL)
458 1.1 jmcneill break;
459 1.1 jmcneill
460 1.1 jmcneill nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
461 1.1 jmcneill if (nsegs == 0) {
462 1.1 jmcneill ifp->if_flags |= IFF_OACTIVE;
463 1.1 jmcneill break;
464 1.1 jmcneill }
465 1.1 jmcneill IFQ_DEQUEUE(&ifp->if_snd, m);
466 1.15 msaitoh bpf_mtap(ifp, m, BPF_D_OUT);
467 1.1 jmcneill
468 1.1 jmcneill sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
469 1.1 jmcneill }
470 1.1 jmcneill
471 1.1 jmcneill if (cnt != 0) {
472 1.1 jmcneill sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
473 1.1 jmcneill start, sc->tx.cur, TX_DESC_COUNT,
474 1.1 jmcneill BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
475 1.1 jmcneill
476 1.1 jmcneill /* Start and run TX DMA */
477 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_1);
478 1.1 jmcneill WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
479 1.1 jmcneill }
480 1.1 jmcneill }
481 1.1 jmcneill
482 1.1 jmcneill static void
483 1.1 jmcneill sunxi_emac_start(struct ifnet *ifp)
484 1.1 jmcneill {
485 1.1 jmcneill struct sunxi_emac_softc *sc = ifp->if_softc;
486 1.1 jmcneill
487 1.1 jmcneill EMAC_LOCK(sc);
488 1.1 jmcneill sunxi_emac_start_locked(sc);
489 1.1 jmcneill EMAC_UNLOCK(sc);
490 1.1 jmcneill }
491 1.1 jmcneill
492 1.1 jmcneill static void
493 1.1 jmcneill sunxi_emac_tick(void *softc)
494 1.1 jmcneill {
495 1.1 jmcneill struct sunxi_emac_softc *sc = softc;
496 1.1 jmcneill struct mii_data *mii = &sc->mii;
497 1.1 jmcneill #ifndef EMAC_MPSAFE
498 1.1 jmcneill int s = splnet();
499 1.1 jmcneill #endif
500 1.1 jmcneill
501 1.1 jmcneill EMAC_LOCK(sc);
502 1.1 jmcneill mii_tick(mii);
503 1.1 jmcneill callout_schedule(&sc->stat_ch, hz);
504 1.1 jmcneill EMAC_UNLOCK(sc);
505 1.1 jmcneill
506 1.1 jmcneill #ifndef EMAC_MPSAFE
507 1.1 jmcneill splx(s);
508 1.1 jmcneill #endif
509 1.1 jmcneill }
510 1.1 jmcneill
511 1.1 jmcneill /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
512 1.1 jmcneill static uint32_t
513 1.1 jmcneill bitrev32(uint32_t x)
514 1.1 jmcneill {
515 1.1 jmcneill x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
516 1.1 jmcneill x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
517 1.1 jmcneill x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
518 1.1 jmcneill x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
519 1.1 jmcneill
520 1.1 jmcneill return (x >> 16) | (x << 16);
521 1.1 jmcneill }
522 1.1 jmcneill
523 1.1 jmcneill static void
524 1.1 jmcneill sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
525 1.1 jmcneill {
526 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
527 1.1 jmcneill uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
528 1.1 jmcneill struct ether_multi *enm;
529 1.1 jmcneill struct ether_multistep step;
530 1.1 jmcneill const uint8_t *eaddr;
531 1.1 jmcneill
532 1.1 jmcneill EMAC_ASSERT_LOCKED(sc);
533 1.1 jmcneill
534 1.1 jmcneill val = 0;
535 1.1 jmcneill hash[0] = hash[1] = 0;
536 1.1 jmcneill
537 1.1 jmcneill if ((ifp->if_flags & IFF_PROMISC) != 0)
538 1.1 jmcneill val |= DIS_ADDR_FILTER;
539 1.1 jmcneill else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
540 1.1 jmcneill val |= RX_ALL_MULTICAST;
541 1.1 jmcneill hash[0] = hash[1] = ~0;
542 1.1 jmcneill } else {
543 1.1 jmcneill val |= HASH_MULTICAST;
544 1.1 jmcneill ETHER_FIRST_MULTI(step, &sc->ec, enm);
545 1.1 jmcneill while (enm != NULL) {
546 1.1 jmcneill crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
547 1.1 jmcneill crc &= 0x7f;
548 1.1 jmcneill crc = bitrev32(~crc) >> 26;
549 1.1 jmcneill hashreg = (crc >> 5);
550 1.1 jmcneill hashbit = (crc & 0x1f);
551 1.1 jmcneill hash[hashreg] |= (1 << hashbit);
552 1.1 jmcneill ETHER_NEXT_MULTI(step, enm);
553 1.1 jmcneill }
554 1.1 jmcneill }
555 1.1 jmcneill
556 1.1 jmcneill /* Write our unicast address */
557 1.1 jmcneill eaddr = CLLADDR(ifp->if_sadl);
558 1.1 jmcneill machi = (eaddr[5] << 8) | eaddr[4];
559 1.1 jmcneill maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
560 1.1 jmcneill (eaddr[0] << 0);
561 1.1 jmcneill WR4(sc, EMAC_ADDR_HIGH(0), machi);
562 1.1 jmcneill WR4(sc, EMAC_ADDR_LOW(0), maclo);
563 1.1 jmcneill
564 1.1 jmcneill /* Multicast hash filters */
565 1.1 jmcneill WR4(sc, EMAC_RX_HASH_0, hash[1]);
566 1.1 jmcneill WR4(sc, EMAC_RX_HASH_1, hash[0]);
567 1.1 jmcneill
568 1.1 jmcneill /* RX frame filter config */
569 1.1 jmcneill WR4(sc, EMAC_RX_FRM_FLT, val);
570 1.1 jmcneill }
571 1.1 jmcneill
572 1.1 jmcneill static void
573 1.1 jmcneill sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
574 1.1 jmcneill {
575 1.1 jmcneill /* Enable interrupts */
576 1.1 jmcneill WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
577 1.1 jmcneill }
578 1.1 jmcneill
579 1.1 jmcneill static void
580 1.1 jmcneill sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
581 1.1 jmcneill {
582 1.1 jmcneill /* Disable interrupts */
583 1.1 jmcneill WR4(sc, EMAC_INT_EN, 0);
584 1.1 jmcneill }
585 1.1 jmcneill
586 1.20 martin #ifdef SUNXI_EMAC_DEBUG
587 1.20 martin static void
588 1.20 martin sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
589 1.20 martin {
590 1.20 martin static const struct {
591 1.20 martin const char *name;
592 1.20 martin u_int reg;
593 1.20 martin } regs[] = {
594 1.20 martin { "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
595 1.20 martin { "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
596 1.20 martin { "INT_STA", EMAC_INT_STA },
597 1.20 martin { "INT_EN", EMAC_INT_EN },
598 1.20 martin { "TX_CTL_0", EMAC_TX_CTL_0 },
599 1.20 martin { "TX_CTL_1", EMAC_TX_CTL_1 },
600 1.20 martin { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
601 1.20 martin { "TX_DMA_LIST", EMAC_TX_DMA_LIST },
602 1.20 martin { "RX_CTL_0", EMAC_RX_CTL_0 },
603 1.20 martin { "RX_CTL_1", EMAC_RX_CTL_1 },
604 1.20 martin { "RX_DMA_LIST", EMAC_RX_DMA_LIST },
605 1.20 martin { "RX_FRM_FLT", EMAC_RX_FRM_FLT },
606 1.20 martin { "RX_HASH_0", EMAC_RX_HASH_0 },
607 1.20 martin { "RX_HASH_1", EMAC_RX_HASH_1 },
608 1.20 martin { "MII_CMD", EMAC_MII_CMD },
609 1.20 martin { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
610 1.20 martin { "ADDR_LOW0", EMAC_ADDR_LOW(0) },
611 1.20 martin { "TX_DMA_STA", EMAC_TX_DMA_STA },
612 1.20 martin { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
613 1.20 martin { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
614 1.20 martin { "RX_DMA_STA", EMAC_RX_DMA_STA },
615 1.20 martin { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
616 1.20 martin { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
617 1.20 martin { "RGMII_STA", EMAC_RGMII_STA },
618 1.20 martin };
619 1.20 martin u_int n;
620 1.20 martin
621 1.20 martin for (n = 0; n < __arraycount(regs); n++)
622 1.20 martin device_printf(sc->dev, " %-20s %08x\n", regs[n].name,
623 1.20 martin RD4(sc, regs[n].reg));
624 1.20 martin }
625 1.20 martin #endif
626 1.20 martin
627 1.1 jmcneill static int
628 1.19 jmcneill sunxi_emac_reset(struct sunxi_emac_softc *sc)
629 1.19 jmcneill {
630 1.19 jmcneill int retry;
631 1.19 jmcneill
632 1.19 jmcneill /* Soft reset all registers and logic */
633 1.19 jmcneill WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
634 1.19 jmcneill
635 1.19 jmcneill /* Wait for soft reset bit to self-clear */
636 1.19 jmcneill for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
637 1.19 jmcneill if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
638 1.19 jmcneill break;
639 1.19 jmcneill delay(10);
640 1.19 jmcneill }
641 1.19 jmcneill if (retry == 0) {
642 1.19 jmcneill aprint_debug_dev(sc->dev, "soft reset timed out\n");
643 1.19 jmcneill #ifdef SUNXI_EMAC_DEBUG
644 1.19 jmcneill sunxi_emac_dump_regs(sc);
645 1.19 jmcneill #endif
646 1.19 jmcneill return ETIMEDOUT;
647 1.19 jmcneill }
648 1.19 jmcneill
649 1.19 jmcneill return 0;
650 1.19 jmcneill }
651 1.19 jmcneill
652 1.19 jmcneill static int
653 1.1 jmcneill sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
654 1.1 jmcneill {
655 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
656 1.1 jmcneill struct mii_data *mii = &sc->mii;
657 1.1 jmcneill uint32_t val;
658 1.1 jmcneill
659 1.1 jmcneill EMAC_ASSERT_LOCKED(sc);
660 1.1 jmcneill
661 1.1 jmcneill if ((ifp->if_flags & IFF_RUNNING) != 0)
662 1.1 jmcneill return 0;
663 1.1 jmcneill
664 1.19 jmcneill /* Soft reset EMAC core */
665 1.19 jmcneill sunxi_emac_reset(sc);
666 1.19 jmcneill
667 1.19 jmcneill /* Write transmit and receive descriptor base address registers */
668 1.19 jmcneill WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
669 1.19 jmcneill WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
670 1.19 jmcneill
671 1.1 jmcneill sunxi_emac_setup_rxfilter(sc);
672 1.1 jmcneill
673 1.1 jmcneill /* Configure DMA burst length and priorities */
674 1.1 jmcneill val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
675 1.1 jmcneill if (sunxi_emac_rx_tx_pri)
676 1.1 jmcneill val |= BASIC_CTL_RX_TX_PRI;
677 1.1 jmcneill WR4(sc, EMAC_BASIC_CTL_1, val);
678 1.1 jmcneill
679 1.1 jmcneill /* Enable interrupts */
680 1.1 jmcneill sunxi_emac_enable_intr(sc);
681 1.1 jmcneill
682 1.1 jmcneill /* Enable transmit DMA */
683 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_1);
684 1.1 jmcneill WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
685 1.1 jmcneill
686 1.1 jmcneill /* Enable receive DMA */
687 1.1 jmcneill val = RD4(sc, EMAC_RX_CTL_1);
688 1.1 jmcneill WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
689 1.1 jmcneill
690 1.1 jmcneill /* Enable transmitter */
691 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_0);
692 1.1 jmcneill WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
693 1.1 jmcneill
694 1.1 jmcneill /* Enable receiver */
695 1.1 jmcneill val = RD4(sc, EMAC_RX_CTL_0);
696 1.1 jmcneill WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
697 1.1 jmcneill
698 1.1 jmcneill ifp->if_flags |= IFF_RUNNING;
699 1.1 jmcneill ifp->if_flags &= ~IFF_OACTIVE;
700 1.1 jmcneill
701 1.1 jmcneill mii_mediachg(mii);
702 1.1 jmcneill callout_schedule(&sc->stat_ch, hz);
703 1.1 jmcneill
704 1.1 jmcneill return 0;
705 1.1 jmcneill }
706 1.1 jmcneill
707 1.1 jmcneill static int
708 1.1 jmcneill sunxi_emac_init(struct ifnet *ifp)
709 1.1 jmcneill {
710 1.1 jmcneill struct sunxi_emac_softc *sc = ifp->if_softc;
711 1.1 jmcneill int error;
712 1.1 jmcneill
713 1.1 jmcneill EMAC_LOCK(sc);
714 1.1 jmcneill error = sunxi_emac_init_locked(sc);
715 1.1 jmcneill EMAC_UNLOCK(sc);
716 1.1 jmcneill
717 1.1 jmcneill return error;
718 1.1 jmcneill }
719 1.1 jmcneill
720 1.1 jmcneill static void
721 1.1 jmcneill sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
722 1.1 jmcneill {
723 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
724 1.1 jmcneill uint32_t val;
725 1.1 jmcneill
726 1.1 jmcneill EMAC_ASSERT_LOCKED(sc);
727 1.1 jmcneill
728 1.1 jmcneill callout_stop(&sc->stat_ch);
729 1.1 jmcneill
730 1.1 jmcneill mii_down(&sc->mii);
731 1.1 jmcneill
732 1.1 jmcneill /* Stop transmit DMA and flush data in the TX FIFO */
733 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_1);
734 1.1 jmcneill val &= ~TX_DMA_EN;
735 1.1 jmcneill val |= FLUSH_TX_FIFO;
736 1.1 jmcneill WR4(sc, EMAC_TX_CTL_1, val);
737 1.1 jmcneill
738 1.1 jmcneill /* Disable transmitter */
739 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_0);
740 1.1 jmcneill WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
741 1.1 jmcneill
742 1.1 jmcneill /* Disable receiver */
743 1.1 jmcneill val = RD4(sc, EMAC_RX_CTL_0);
744 1.1 jmcneill WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
745 1.1 jmcneill
746 1.1 jmcneill /* Disable interrupts */
747 1.1 jmcneill sunxi_emac_disable_intr(sc);
748 1.1 jmcneill
749 1.1 jmcneill /* Disable transmit DMA */
750 1.1 jmcneill val = RD4(sc, EMAC_TX_CTL_1);
751 1.1 jmcneill WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
752 1.1 jmcneill
753 1.1 jmcneill /* Disable receive DMA */
754 1.1 jmcneill val = RD4(sc, EMAC_RX_CTL_1);
755 1.1 jmcneill WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
756 1.1 jmcneill
757 1.1 jmcneill ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
758 1.1 jmcneill }
759 1.1 jmcneill
760 1.1 jmcneill static void
761 1.1 jmcneill sunxi_emac_stop(struct ifnet *ifp, int disable)
762 1.1 jmcneill {
763 1.1 jmcneill struct sunxi_emac_softc * const sc = ifp->if_softc;
764 1.1 jmcneill
765 1.1 jmcneill EMAC_LOCK(sc);
766 1.1 jmcneill sunxi_emac_stop_locked(sc, disable);
767 1.1 jmcneill EMAC_UNLOCK(sc);
768 1.1 jmcneill }
769 1.1 jmcneill
770 1.1 jmcneill static int
771 1.1 jmcneill sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
772 1.1 jmcneill {
773 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
774 1.4 jmcneill int error, index, len, npkt;
775 1.4 jmcneill struct mbuf *m, *m0;
776 1.1 jmcneill uint32_t status;
777 1.1 jmcneill
778 1.1 jmcneill npkt = 0;
779 1.1 jmcneill
780 1.1 jmcneill for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
781 1.1 jmcneill sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
782 1.1 jmcneill index, index + 1,
783 1.1 jmcneill RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
784 1.1 jmcneill
785 1.1 jmcneill status = le32toh(sc->rx.desc_ring[index].status);
786 1.1 jmcneill if ((status & RX_DESC_CTL) != 0)
787 1.1 jmcneill break;
788 1.1 jmcneill
789 1.1 jmcneill bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
790 1.1 jmcneill 0, sc->rx.buf_map[index].map->dm_mapsize,
791 1.1 jmcneill BUS_DMASYNC_POSTREAD);
792 1.1 jmcneill bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
793 1.1 jmcneill
794 1.1 jmcneill len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
795 1.1 jmcneill if (len != 0) {
796 1.1 jmcneill m = sc->rx.buf_map[index].mbuf;
797 1.1 jmcneill m_set_rcvif(m, ifp);
798 1.1 jmcneill m->m_flags |= M_HASFCS;
799 1.1 jmcneill m->m_pkthdr.len = len;
800 1.1 jmcneill m->m_len = len;
801 1.4 jmcneill m->m_nextpkt = NULL;
802 1.1 jmcneill
803 1.1 jmcneill if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
804 1.1 jmcneill (status & RX_FRM_TYPE) != 0) {
805 1.8 jmcneill m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
806 1.8 jmcneill M_CSUM_TCPv4 | M_CSUM_UDPv4;
807 1.1 jmcneill if ((status & RX_HEADER_ERR) != 0)
808 1.1 jmcneill m->m_pkthdr.csum_flags |=
809 1.1 jmcneill M_CSUM_IPv4_BAD;
810 1.8 jmcneill if ((status & RX_PAYLOAD_ERR) != 0)
811 1.1 jmcneill m->m_pkthdr.csum_flags |=
812 1.8 jmcneill M_CSUM_TCP_UDP_BAD;
813 1.1 jmcneill }
814 1.1 jmcneill
815 1.1 jmcneill ++npkt;
816 1.1 jmcneill
817 1.4 jmcneill if_percpuq_enqueue(ifp->if_percpuq, m);
818 1.1 jmcneill }
819 1.1 jmcneill
820 1.1 jmcneill if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
821 1.1 jmcneill error = sunxi_emac_setup_rxbuf(sc, index, m0);
822 1.1 jmcneill if (error != 0) {
823 1.1 jmcneill /* XXX hole in RX ring */
824 1.1 jmcneill }
825 1.1 jmcneill } else
826 1.1 jmcneill ifp->if_ierrors++;
827 1.1 jmcneill
828 1.1 jmcneill sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
829 1.1 jmcneill index, index + 1,
830 1.2 jmcneill RX_DESC_COUNT, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
831 1.1 jmcneill }
832 1.1 jmcneill
833 1.2 jmcneill sc->rx.cur = index;
834 1.2 jmcneill
835 1.1 jmcneill return npkt;
836 1.1 jmcneill }
837 1.1 jmcneill
838 1.1 jmcneill static void
839 1.1 jmcneill sunxi_emac_txintr(struct sunxi_emac_softc *sc)
840 1.1 jmcneill {
841 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
842 1.1 jmcneill struct sunxi_emac_bufmap *bmap;
843 1.1 jmcneill struct sunxi_emac_desc *desc;
844 1.1 jmcneill uint32_t status;
845 1.1 jmcneill int i;
846 1.1 jmcneill
847 1.1 jmcneill EMAC_ASSERT_LOCKED(sc);
848 1.1 jmcneill
849 1.1 jmcneill for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
850 1.1 jmcneill KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
851 1.1 jmcneill sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
852 1.1 jmcneill i, i + 1, TX_DESC_COUNT,
853 1.1 jmcneill BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
854 1.1 jmcneill desc = &sc->tx.desc_ring[i];
855 1.1 jmcneill status = le32toh(desc->status);
856 1.1 jmcneill if ((status & TX_DESC_CTL) != 0)
857 1.1 jmcneill break;
858 1.1 jmcneill bmap = &sc->tx.buf_map[i];
859 1.1 jmcneill if (bmap->mbuf != NULL) {
860 1.1 jmcneill bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
861 1.1 jmcneill 0, bmap->map->dm_mapsize,
862 1.1 jmcneill BUS_DMASYNC_POSTWRITE);
863 1.1 jmcneill bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
864 1.1 jmcneill m_freem(bmap->mbuf);
865 1.1 jmcneill bmap->mbuf = NULL;
866 1.1 jmcneill }
867 1.1 jmcneill
868 1.1 jmcneill sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
869 1.2 jmcneill sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
870 1.2 jmcneill i, i + 1, TX_DESC_COUNT,
871 1.2 jmcneill BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
872 1.1 jmcneill
873 1.1 jmcneill ifp->if_flags &= ~IFF_OACTIVE;
874 1.1 jmcneill ifp->if_opackets++;
875 1.1 jmcneill }
876 1.1 jmcneill
877 1.1 jmcneill sc->tx.next = i;
878 1.1 jmcneill }
879 1.1 jmcneill
880 1.1 jmcneill static int
881 1.1 jmcneill sunxi_emac_intr(void *arg)
882 1.1 jmcneill {
883 1.1 jmcneill struct sunxi_emac_softc *sc = arg;
884 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
885 1.1 jmcneill uint32_t val;
886 1.1 jmcneill
887 1.1 jmcneill EMAC_LOCK(sc);
888 1.1 jmcneill
889 1.1 jmcneill val = RD4(sc, EMAC_INT_STA);
890 1.1 jmcneill WR4(sc, EMAC_INT_STA, val);
891 1.1 jmcneill
892 1.1 jmcneill if (val & RX_INT)
893 1.1 jmcneill sunxi_emac_rxintr(sc);
894 1.1 jmcneill
895 1.1 jmcneill if (val & (TX_INT|TX_BUF_UA_INT)) {
896 1.1 jmcneill sunxi_emac_txintr(sc);
897 1.1 jmcneill if_schedule_deferred_start(ifp);
898 1.1 jmcneill }
899 1.1 jmcneill
900 1.1 jmcneill EMAC_UNLOCK(sc);
901 1.1 jmcneill
902 1.1 jmcneill return 1;
903 1.1 jmcneill }
904 1.1 jmcneill
905 1.1 jmcneill static int
906 1.1 jmcneill sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
907 1.1 jmcneill {
908 1.1 jmcneill struct sunxi_emac_softc *sc = ifp->if_softc;
909 1.1 jmcneill struct mii_data *mii = &sc->mii;
910 1.1 jmcneill struct ifreq *ifr = data;
911 1.1 jmcneill int error, s;
912 1.1 jmcneill
913 1.1 jmcneill #ifndef EMAC_MPSAFE
914 1.1 jmcneill s = splnet();
915 1.1 jmcneill #endif
916 1.1 jmcneill
917 1.1 jmcneill switch (cmd) {
918 1.1 jmcneill case SIOCSIFMEDIA:
919 1.1 jmcneill case SIOCGIFMEDIA:
920 1.1 jmcneill #ifdef EMAC_MPSAFE
921 1.1 jmcneill s = splnet();
922 1.1 jmcneill #endif
923 1.1 jmcneill error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
924 1.1 jmcneill #ifdef EMAC_MPSAFE
925 1.1 jmcneill splx(s);
926 1.1 jmcneill #endif
927 1.1 jmcneill break;
928 1.1 jmcneill default:
929 1.1 jmcneill #ifdef EMAC_MPSAFE
930 1.1 jmcneill s = splnet();
931 1.1 jmcneill #endif
932 1.1 jmcneill error = ether_ioctl(ifp, cmd, data);
933 1.1 jmcneill #ifdef EMAC_MPSAFE
934 1.1 jmcneill splx(s);
935 1.1 jmcneill #endif
936 1.1 jmcneill if (error != ENETRESET)
937 1.1 jmcneill break;
938 1.1 jmcneill
939 1.1 jmcneill error = 0;
940 1.1 jmcneill
941 1.1 jmcneill if (cmd == SIOCSIFCAP)
942 1.1 jmcneill error = (*ifp->if_init)(ifp);
943 1.1 jmcneill else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
944 1.1 jmcneill ;
945 1.1 jmcneill else if ((ifp->if_flags & IFF_RUNNING) != 0) {
946 1.1 jmcneill EMAC_LOCK(sc);
947 1.1 jmcneill sunxi_emac_setup_rxfilter(sc);
948 1.1 jmcneill EMAC_UNLOCK(sc);
949 1.1 jmcneill }
950 1.1 jmcneill break;
951 1.1 jmcneill }
952 1.1 jmcneill
953 1.1 jmcneill #ifndef EMAC_MPSAFE
954 1.1 jmcneill splx(s);
955 1.1 jmcneill #endif
956 1.1 jmcneill
957 1.1 jmcneill return error;
958 1.1 jmcneill }
959 1.1 jmcneill
960 1.10 jmcneill static bool
961 1.10 jmcneill sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
962 1.10 jmcneill {
963 1.10 jmcneill const char * mdio_internal_compat[] = {
964 1.10 jmcneill "allwinner,sun8i-h3-mdio-internal",
965 1.10 jmcneill NULL
966 1.10 jmcneill };
967 1.10 jmcneill int phy;
968 1.10 jmcneill
969 1.10 jmcneill /* Non-standard property, for compatible with old dts files */
970 1.10 jmcneill if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
971 1.10 jmcneill return true;
972 1.10 jmcneill
973 1.10 jmcneill phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
974 1.10 jmcneill if (phy == -1)
975 1.10 jmcneill return false;
976 1.10 jmcneill
977 1.10 jmcneill /* For internal PHY, check compatible string of parent node */
978 1.10 jmcneill return of_compatible(OF_parent(phy), mdio_internal_compat) >= 0;
979 1.10 jmcneill }
980 1.10 jmcneill
981 1.1 jmcneill static int
982 1.1 jmcneill sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
983 1.1 jmcneill {
984 1.1 jmcneill uint32_t reg, tx_delay, rx_delay;
985 1.1 jmcneill const char *phy_type;
986 1.1 jmcneill
987 1.1 jmcneill phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
988 1.1 jmcneill if (phy_type == NULL)
989 1.1 jmcneill return 0;
990 1.1 jmcneill
991 1.1 jmcneill aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
992 1.1 jmcneill
993 1.16 jmcneill syscon_lock(sc->syscon);
994 1.16 jmcneill reg = syscon_read_4(sc->syscon, EMAC_CLK_REG);
995 1.1 jmcneill
996 1.1 jmcneill reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
997 1.1 jmcneill if (strcmp(phy_type, "rgmii") == 0)
998 1.1 jmcneill reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
999 1.1 jmcneill else if (strcmp(phy_type, "rmii") == 0)
1000 1.1 jmcneill reg |= EMAC_CLK_RMII_EN;
1001 1.1 jmcneill else
1002 1.1 jmcneill reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1003 1.1 jmcneill
1004 1.13 jmcneill if (of_getprop_uint32(sc->phandle, "allwinner,tx-delay-ps",
1005 1.13 jmcneill &tx_delay) == 0) {
1006 1.13 jmcneill reg &= ~EMAC_CLK_ETXDC;
1007 1.13 jmcneill reg |= ((tx_delay / 100) << EMAC_CLK_ETXDC_SHIFT);
1008 1.13 jmcneill } else if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
1009 1.1 jmcneill reg &= ~EMAC_CLK_ETXDC;
1010 1.1 jmcneill reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1011 1.1 jmcneill }
1012 1.13 jmcneill if (of_getprop_uint32(sc->phandle, "allwinner,rx-delay-ps",
1013 1.13 jmcneill &rx_delay) == 0) {
1014 1.13 jmcneill reg &= ~EMAC_CLK_ERXDC;
1015 1.13 jmcneill reg |= ((rx_delay / 100) << EMAC_CLK_ERXDC_SHIFT);
1016 1.13 jmcneill } else if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
1017 1.1 jmcneill reg &= ~EMAC_CLK_ERXDC;
1018 1.1 jmcneill reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1019 1.1 jmcneill }
1020 1.1 jmcneill
1021 1.14 jmcneill if (sc->type == EMAC_H3 || sc->type == EMAC_H6) {
1022 1.10 jmcneill if (sunxi_emac_has_internal_phy(sc)) {
1023 1.1 jmcneill reg |= EMAC_CLK_EPHY_SELECT;
1024 1.1 jmcneill reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1025 1.1 jmcneill if (of_hasprop(sc->phandle,
1026 1.1 jmcneill "allwinner,leds-active-low"))
1027 1.1 jmcneill reg |= EMAC_CLK_EPHY_LED_POL;
1028 1.1 jmcneill else
1029 1.1 jmcneill reg &= ~EMAC_CLK_EPHY_LED_POL;
1030 1.1 jmcneill
1031 1.1 jmcneill /* Set internal PHY addr to 1 */
1032 1.1 jmcneill reg &= ~EMAC_CLK_EPHY_ADDR;
1033 1.1 jmcneill reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1034 1.1 jmcneill } else {
1035 1.1 jmcneill reg &= ~EMAC_CLK_EPHY_SELECT;
1036 1.1 jmcneill }
1037 1.1 jmcneill }
1038 1.1 jmcneill
1039 1.1 jmcneill aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
1040 1.1 jmcneill
1041 1.16 jmcneill syscon_write_4(sc->syscon, EMAC_CLK_REG, reg);
1042 1.16 jmcneill syscon_unlock(sc->syscon);
1043 1.1 jmcneill
1044 1.1 jmcneill return 0;
1045 1.1 jmcneill }
1046 1.1 jmcneill
1047 1.1 jmcneill static int
1048 1.1 jmcneill sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
1049 1.1 jmcneill {
1050 1.1 jmcneill u_int freq;
1051 1.1 jmcneill int error, div;
1052 1.1 jmcneill
1053 1.1 jmcneill /* Configure PHY for MII or RGMII mode */
1054 1.1 jmcneill if (sunxi_emac_setup_phy(sc) != 0)
1055 1.1 jmcneill return ENXIO;
1056 1.1 jmcneill
1057 1.1 jmcneill /* Enable clocks */
1058 1.1 jmcneill error = clk_enable(sc->clk_ahb);
1059 1.1 jmcneill if (error != 0) {
1060 1.1 jmcneill aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
1061 1.1 jmcneill return error;
1062 1.1 jmcneill }
1063 1.1 jmcneill
1064 1.1 jmcneill if (sc->clk_ephy != NULL) {
1065 1.1 jmcneill error = clk_enable(sc->clk_ephy);
1066 1.1 jmcneill if (error != 0) {
1067 1.1 jmcneill aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
1068 1.1 jmcneill return error;
1069 1.1 jmcneill }
1070 1.1 jmcneill }
1071 1.1 jmcneill
1072 1.1 jmcneill /* De-assert reset */
1073 1.1 jmcneill error = fdtbus_reset_deassert(sc->rst_ahb);
1074 1.1 jmcneill if (error != 0) {
1075 1.1 jmcneill aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
1076 1.1 jmcneill return error;
1077 1.1 jmcneill }
1078 1.1 jmcneill if (sc->rst_ephy != NULL) {
1079 1.1 jmcneill error = fdtbus_reset_deassert(sc->rst_ephy);
1080 1.1 jmcneill if (error != 0) {
1081 1.1 jmcneill aprint_error_dev(sc->dev,
1082 1.1 jmcneill "cannot de-assert ephy reset\n");
1083 1.1 jmcneill return error;
1084 1.1 jmcneill }
1085 1.1 jmcneill }
1086 1.1 jmcneill
1087 1.1 jmcneill /* Enable PHY regulator if applicable */
1088 1.1 jmcneill if (sc->reg_phy != NULL) {
1089 1.1 jmcneill error = fdtbus_regulator_enable(sc->reg_phy);
1090 1.1 jmcneill if (error != 0) {
1091 1.1 jmcneill aprint_error_dev(sc->dev,
1092 1.1 jmcneill "cannot enable PHY regulator\n");
1093 1.1 jmcneill return error;
1094 1.1 jmcneill }
1095 1.1 jmcneill }
1096 1.1 jmcneill
1097 1.1 jmcneill /* Determine MDC clock divide ratio based on AHB clock */
1098 1.1 jmcneill freq = clk_get_rate(sc->clk_ahb);
1099 1.1 jmcneill if (freq == 0) {
1100 1.1 jmcneill aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1101 1.1 jmcneill return ENXIO;
1102 1.1 jmcneill }
1103 1.1 jmcneill div = freq / MDIO_FREQ;
1104 1.1 jmcneill if (div <= 16)
1105 1.1 jmcneill sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1106 1.1 jmcneill else if (div <= 32)
1107 1.1 jmcneill sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1108 1.1 jmcneill else if (div <= 64)
1109 1.1 jmcneill sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1110 1.1 jmcneill else if (div <= 128)
1111 1.1 jmcneill sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1112 1.1 jmcneill else {
1113 1.1 jmcneill aprint_error_dev(sc->dev,
1114 1.1 jmcneill "cannot determine MDC clock divide ratio\n");
1115 1.1 jmcneill return ENXIO;
1116 1.1 jmcneill }
1117 1.1 jmcneill
1118 1.1 jmcneill aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1119 1.1 jmcneill freq, sc->mdc_div_ratio_m);
1120 1.1 jmcneill
1121 1.1 jmcneill return 0;
1122 1.1 jmcneill }
1123 1.1 jmcneill
1124 1.1 jmcneill static void
1125 1.1 jmcneill sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1126 1.1 jmcneill {
1127 1.1 jmcneill uint32_t maclo, machi;
1128 1.1 jmcneill #if notyet
1129 1.1 jmcneill u_char rootkey[16];
1130 1.1 jmcneill #endif
1131 1.1 jmcneill
1132 1.1 jmcneill machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1133 1.1 jmcneill maclo = RD4(sc, EMAC_ADDR_LOW(0));
1134 1.1 jmcneill
1135 1.1 jmcneill if (maclo == 0xffffffff && machi == 0xffff) {
1136 1.1 jmcneill #if notyet
1137 1.1 jmcneill /* MAC address in hardware is invalid, create one */
1138 1.1 jmcneill if (aw_sid_get_rootkey(rootkey) == 0 &&
1139 1.1 jmcneill (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1140 1.1 jmcneill rootkey[15]) != 0) {
1141 1.1 jmcneill /* MAC address is derived from the root key in SID */
1142 1.1 jmcneill maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1143 1.1 jmcneill (rootkey[3] << 8) | 0x02;
1144 1.1 jmcneill machi = (rootkey[15] << 8) | rootkey[14];
1145 1.1 jmcneill } else {
1146 1.1 jmcneill #endif
1147 1.1 jmcneill /* Create one */
1148 1.1 jmcneill maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1149 1.1 jmcneill machi = cprng_strong32() & 0xffff;
1150 1.1 jmcneill #if notyet
1151 1.1 jmcneill }
1152 1.1 jmcneill #endif
1153 1.1 jmcneill }
1154 1.1 jmcneill
1155 1.1 jmcneill eaddr[0] = maclo & 0xff;
1156 1.1 jmcneill eaddr[1] = (maclo >> 8) & 0xff;
1157 1.1 jmcneill eaddr[2] = (maclo >> 16) & 0xff;
1158 1.1 jmcneill eaddr[3] = (maclo >> 24) & 0xff;
1159 1.1 jmcneill eaddr[4] = machi & 0xff;
1160 1.1 jmcneill eaddr[5] = (machi >> 8) & 0xff;
1161 1.1 jmcneill }
1162 1.1 jmcneill
1163 1.1 jmcneill static int
1164 1.1 jmcneill sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1165 1.1 jmcneill {
1166 1.1 jmcneill uint32_t delay_prop[3];
1167 1.1 jmcneill int pin_value;
1168 1.1 jmcneill
1169 1.1 jmcneill if (sc->pin_reset == NULL)
1170 1.1 jmcneill return 0;
1171 1.1 jmcneill
1172 1.1 jmcneill if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1173 1.1 jmcneill sizeof(delay_prop)) <= 0)
1174 1.1 jmcneill return ENXIO;
1175 1.1 jmcneill
1176 1.1 jmcneill pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1177 1.1 jmcneill
1178 1.1 jmcneill fdtbus_gpio_write(sc->pin_reset, pin_value);
1179 1.1 jmcneill delay(htole32(delay_prop[0]));
1180 1.1 jmcneill fdtbus_gpio_write(sc->pin_reset, !pin_value);
1181 1.1 jmcneill delay(htole32(delay_prop[1]));
1182 1.1 jmcneill fdtbus_gpio_write(sc->pin_reset, pin_value);
1183 1.1 jmcneill delay(htole32(delay_prop[2]));
1184 1.1 jmcneill
1185 1.1 jmcneill return 0;
1186 1.1 jmcneill }
1187 1.1 jmcneill
1188 1.1 jmcneill static int
1189 1.1 jmcneill sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1190 1.1 jmcneill {
1191 1.1 jmcneill struct mbuf *m;
1192 1.1 jmcneill int error, nsegs, i;
1193 1.1 jmcneill
1194 1.1 jmcneill /* Setup TX ring */
1195 1.1 jmcneill sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1196 1.1 jmcneill error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1197 1.1 jmcneill BUS_DMA_WAITOK, &sc->tx.desc_map);
1198 1.1 jmcneill if (error)
1199 1.1 jmcneill return error;
1200 1.1 jmcneill error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1201 1.1 jmcneill &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1202 1.1 jmcneill if (error)
1203 1.1 jmcneill return error;
1204 1.1 jmcneill error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1205 1.1 jmcneill TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1206 1.2 jmcneill BUS_DMA_WAITOK);
1207 1.1 jmcneill if (error)
1208 1.1 jmcneill return error;
1209 1.1 jmcneill error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1210 1.1 jmcneill TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1211 1.1 jmcneill if (error)
1212 1.1 jmcneill return error;
1213 1.1 jmcneill sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1214 1.1 jmcneill
1215 1.1 jmcneill memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1216 1.1 jmcneill bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1217 1.2 jmcneill BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1218 1.1 jmcneill
1219 1.1 jmcneill for (i = 0; i < TX_DESC_COUNT; i++)
1220 1.1 jmcneill sc->tx.desc_ring[i].next =
1221 1.1 jmcneill htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1222 1.1 jmcneill
1223 1.1 jmcneill sc->tx.queued = TX_DESC_COUNT;
1224 1.1 jmcneill for (i = 0; i < TX_DESC_COUNT; i++) {
1225 1.1 jmcneill error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1226 1.1 jmcneill TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1227 1.1 jmcneill &sc->tx.buf_map[i].map);
1228 1.1 jmcneill if (error != 0) {
1229 1.1 jmcneill device_printf(sc->dev, "cannot create TX buffer map\n");
1230 1.1 jmcneill return error;
1231 1.1 jmcneill }
1232 1.1 jmcneill sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1233 1.1 jmcneill }
1234 1.1 jmcneill
1235 1.1 jmcneill /* Setup RX ring */
1236 1.1 jmcneill sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1237 1.1 jmcneill error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1238 1.1 jmcneill BUS_DMA_WAITOK, &sc->rx.desc_map);
1239 1.1 jmcneill if (error)
1240 1.1 jmcneill return error;
1241 1.1 jmcneill error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1242 1.1 jmcneill &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1243 1.1 jmcneill if (error)
1244 1.1 jmcneill return error;
1245 1.1 jmcneill error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1246 1.1 jmcneill RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1247 1.2 jmcneill BUS_DMA_WAITOK);
1248 1.1 jmcneill if (error)
1249 1.1 jmcneill return error;
1250 1.1 jmcneill error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1251 1.1 jmcneill RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1252 1.1 jmcneill if (error)
1253 1.1 jmcneill return error;
1254 1.1 jmcneill sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1255 1.1 jmcneill
1256 1.1 jmcneill memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1257 1.1 jmcneill
1258 1.1 jmcneill for (i = 0; i < RX_DESC_COUNT; i++) {
1259 1.1 jmcneill error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1260 1.1 jmcneill RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1261 1.1 jmcneill &sc->rx.buf_map[i].map);
1262 1.1 jmcneill if (error != 0) {
1263 1.1 jmcneill device_printf(sc->dev, "cannot create RX buffer map\n");
1264 1.1 jmcneill return error;
1265 1.1 jmcneill }
1266 1.1 jmcneill if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1267 1.1 jmcneill device_printf(sc->dev, "cannot allocate RX mbuf\n");
1268 1.1 jmcneill return ENOMEM;
1269 1.1 jmcneill }
1270 1.1 jmcneill error = sunxi_emac_setup_rxbuf(sc, i, m);
1271 1.1 jmcneill if (error != 0) {
1272 1.1 jmcneill device_printf(sc->dev, "cannot create RX buffer\n");
1273 1.1 jmcneill return error;
1274 1.1 jmcneill }
1275 1.1 jmcneill }
1276 1.1 jmcneill bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1277 1.1 jmcneill 0, sc->rx.desc_map->dm_mapsize,
1278 1.2 jmcneill BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1279 1.1 jmcneill
1280 1.1 jmcneill return 0;
1281 1.1 jmcneill }
1282 1.1 jmcneill
1283 1.1 jmcneill static int
1284 1.1 jmcneill sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1285 1.1 jmcneill {
1286 1.1 jmcneill const int phandle = sc->phandle;
1287 1.1 jmcneill bus_addr_t addr, size;
1288 1.1 jmcneill
1289 1.10 jmcneill /* Map EMAC registers */
1290 1.10 jmcneill if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0)
1291 1.10 jmcneill return ENXIO;
1292 1.16 jmcneill if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh) != 0)
1293 1.10 jmcneill return ENXIO;
1294 1.10 jmcneill
1295 1.16 jmcneill /* Get SYSCON registers */
1296 1.16 jmcneill sc->syscon = fdtbus_syscon_acquire(phandle, "syscon");
1297 1.16 jmcneill if (sc->syscon == NULL)
1298 1.10 jmcneill return ENXIO;
1299 1.1 jmcneill
1300 1.11 jmcneill /* The "ahb"/"stmmaceth" clock and reset is required */
1301 1.11 jmcneill if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1302 1.11 jmcneill (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL)
1303 1.11 jmcneill return ENXIO;
1304 1.11 jmcneill if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1305 1.11 jmcneill (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL)
1306 1.11 jmcneill return ENXIO;
1307 1.1 jmcneill
1308 1.11 jmcneill /* Internal PHY clock and reset are optional properties. */
1309 1.1 jmcneill sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1310 1.11 jmcneill if (sc->clk_ephy == NULL) {
1311 1.11 jmcneill int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1312 1.11 jmcneill if (phy_phandle != -1)
1313 1.11 jmcneill sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
1314 1.11 jmcneill }
1315 1.6 jmcneill sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
1316 1.11 jmcneill if (sc->rst_ephy == NULL) {
1317 1.12 jmcneill int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1318 1.11 jmcneill if (phy_phandle != -1)
1319 1.11 jmcneill sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
1320 1.11 jmcneill }
1321 1.1 jmcneill
1322 1.1 jmcneill /* Regulator is optional */
1323 1.1 jmcneill sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1324 1.1 jmcneill
1325 1.1 jmcneill /* Reset GPIO is optional */
1326 1.1 jmcneill sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1327 1.1 jmcneill "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1328 1.1 jmcneill
1329 1.1 jmcneill return 0;
1330 1.1 jmcneill }
1331 1.1 jmcneill
1332 1.1 jmcneill static int
1333 1.7 jmcneill sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1334 1.7 jmcneill {
1335 1.7 jmcneill bus_addr_t addr;
1336 1.11 jmcneill int phy_phandle;
1337 1.7 jmcneill
1338 1.11 jmcneill phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
1339 1.11 jmcneill if (phy_phandle == -1)
1340 1.11 jmcneill phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1341 1.7 jmcneill if (phy_phandle == -1)
1342 1.7 jmcneill return MII_PHY_ANY;
1343 1.7 jmcneill
1344 1.7 jmcneill if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1345 1.7 jmcneill return MII_PHY_ANY;
1346 1.7 jmcneill
1347 1.7 jmcneill return (int)addr;
1348 1.7 jmcneill }
1349 1.7 jmcneill
1350 1.7 jmcneill static int
1351 1.1 jmcneill sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1352 1.1 jmcneill {
1353 1.1 jmcneill struct fdt_attach_args * const faa = aux;
1354 1.1 jmcneill
1355 1.1 jmcneill return of_match_compat_data(faa->faa_phandle, compat_data);
1356 1.1 jmcneill }
1357 1.1 jmcneill
1358 1.1 jmcneill static void
1359 1.1 jmcneill sunxi_emac_attach(device_t parent, device_t self, void *aux)
1360 1.1 jmcneill {
1361 1.1 jmcneill struct fdt_attach_args * const faa = aux;
1362 1.1 jmcneill struct sunxi_emac_softc * const sc = device_private(self);
1363 1.1 jmcneill const int phandle = faa->faa_phandle;
1364 1.1 jmcneill struct mii_data *mii = &sc->mii;
1365 1.1 jmcneill struct ifnet *ifp = &sc->ec.ec_if;
1366 1.1 jmcneill uint8_t eaddr[ETHER_ADDR_LEN];
1367 1.1 jmcneill char intrstr[128];
1368 1.1 jmcneill
1369 1.1 jmcneill sc->dev = self;
1370 1.1 jmcneill sc->phandle = phandle;
1371 1.1 jmcneill sc->bst = faa->faa_bst;
1372 1.1 jmcneill sc->dmat = faa->faa_dmat;
1373 1.1 jmcneill sc->type = of_search_compatible(phandle, compat_data)->data;
1374 1.7 jmcneill sc->phy_id = sunxi_emac_get_phyid(sc);
1375 1.1 jmcneill
1376 1.1 jmcneill if (sunxi_emac_get_resources(sc) != 0) {
1377 1.1 jmcneill aprint_error(": cannot allocate resources for device\n");
1378 1.1 jmcneill return;
1379 1.1 jmcneill }
1380 1.1 jmcneill if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1381 1.1 jmcneill aprint_error(": cannot decode interrupt\n");
1382 1.1 jmcneill return;
1383 1.1 jmcneill }
1384 1.1 jmcneill
1385 1.1 jmcneill mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1386 1.1 jmcneill callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1387 1.1 jmcneill callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1388 1.1 jmcneill
1389 1.1 jmcneill aprint_naive("\n");
1390 1.1 jmcneill aprint_normal(": EMAC\n");
1391 1.1 jmcneill
1392 1.1 jmcneill /* Setup clocks and regulators */
1393 1.1 jmcneill if (sunxi_emac_setup_resources(sc) != 0)
1394 1.1 jmcneill return;
1395 1.1 jmcneill
1396 1.1 jmcneill /* Read MAC address before resetting the chip */
1397 1.1 jmcneill sunxi_emac_get_eaddr(sc, eaddr);
1398 1.17 jmcneill aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1399 1.1 jmcneill
1400 1.19 jmcneill /* Reset PHY if necessary */
1401 1.19 jmcneill if (sunxi_emac_phy_reset(sc) != 0) {
1402 1.19 jmcneill aprint_error_dev(self, "failed to reset PHY\n");
1403 1.1 jmcneill return;
1404 1.19 jmcneill }
1405 1.1 jmcneill
1406 1.1 jmcneill /* Setup DMA descriptors */
1407 1.1 jmcneill if (sunxi_emac_setup_dma(sc) != 0) {
1408 1.1 jmcneill aprint_error_dev(self, "failed to setup DMA descriptors\n");
1409 1.1 jmcneill return;
1410 1.1 jmcneill }
1411 1.1 jmcneill
1412 1.1 jmcneill /* Install interrupt handler */
1413 1.1 jmcneill sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
1414 1.1 jmcneill FDT_INTR_FLAGS, sunxi_emac_intr, sc);
1415 1.1 jmcneill if (sc->ih == NULL) {
1416 1.1 jmcneill aprint_error_dev(self, "failed to establish interrupt on %s\n",
1417 1.1 jmcneill intrstr);
1418 1.1 jmcneill return;
1419 1.1 jmcneill }
1420 1.1 jmcneill aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1421 1.1 jmcneill
1422 1.1 jmcneill /* Setup ethernet interface */
1423 1.1 jmcneill ifp->if_softc = sc;
1424 1.1 jmcneill snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1425 1.1 jmcneill ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1426 1.1 jmcneill #ifdef EMAC_MPSAFE
1427 1.9 ozaki ifp->if_extflags = IFEF_MPSAFE;
1428 1.1 jmcneill #endif
1429 1.1 jmcneill ifp->if_start = sunxi_emac_start;
1430 1.1 jmcneill ifp->if_ioctl = sunxi_emac_ioctl;
1431 1.1 jmcneill ifp->if_init = sunxi_emac_init;
1432 1.1 jmcneill ifp->if_stop = sunxi_emac_stop;
1433 1.1 jmcneill ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1434 1.1 jmcneill IFCAP_CSUM_IPv4_Tx |
1435 1.1 jmcneill IFCAP_CSUM_TCPv4_Rx |
1436 1.1 jmcneill IFCAP_CSUM_TCPv4_Tx |
1437 1.1 jmcneill IFCAP_CSUM_UDPv4_Rx |
1438 1.1 jmcneill IFCAP_CSUM_UDPv4_Tx;
1439 1.1 jmcneill IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1440 1.1 jmcneill IFQ_SET_READY(&ifp->if_snd);
1441 1.1 jmcneill
1442 1.1 jmcneill /* 802.1Q VLAN-sized frames are supported */
1443 1.1 jmcneill sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1444 1.1 jmcneill
1445 1.1 jmcneill /* Attach MII driver */
1446 1.1 jmcneill sc->ec.ec_mii = mii;
1447 1.1 jmcneill ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1448 1.1 jmcneill mii->mii_ifp = ifp;
1449 1.1 jmcneill mii->mii_readreg = sunxi_emac_mii_readreg;
1450 1.1 jmcneill mii->mii_writereg = sunxi_emac_mii_writereg;
1451 1.1 jmcneill mii->mii_statchg = sunxi_emac_mii_statchg;
1452 1.7 jmcneill mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1453 1.1 jmcneill MIIF_DOPAUSE);
1454 1.1 jmcneill
1455 1.1 jmcneill if (LIST_EMPTY(&mii->mii_phys)) {
1456 1.1 jmcneill aprint_error_dev(self, "no PHY found!\n");
1457 1.1 jmcneill return;
1458 1.1 jmcneill }
1459 1.1 jmcneill ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
1460 1.1 jmcneill
1461 1.1 jmcneill /* Attach interface */
1462 1.1 jmcneill if_attach(ifp);
1463 1.1 jmcneill if_deferred_start_init(ifp, NULL);
1464 1.1 jmcneill
1465 1.1 jmcneill /* Attach ethernet interface */
1466 1.1 jmcneill ether_ifattach(ifp, eaddr);
1467 1.1 jmcneill }
1468 1.1 jmcneill
1469 1.1 jmcneill CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1470 1.1 jmcneill sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1471