sunxi_emac.c revision 1.13.2.1 1 /* $NetBSD: sunxi_emac.c,v 1.13.2.1 2018/05/02 07:20:04 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2016-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 */
32
33 #include "opt_net_mpsafe.h"
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.13.2.1 2018/05/02 07:20:04 pgoyette Exp $");
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/device.h>
41 #include <sys/intr.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/mutex.h>
45 #include <sys/callout.h>
46 #include <sys/gpio.h>
47 #include <sys/cprng.h>
48
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/bpf.h>
54
55 #include <dev/mii/miivar.h>
56
57 #include <dev/fdt/fdtvar.h>
58
59 #include <arm/sunxi/sunxi_emac.h>
60
61 #ifdef NET_MPSAFE
62 #define EMAC_MPSAFE 1
63 #define CALLOUT_FLAGS CALLOUT_MPSAFE
64 #define FDT_INTR_FLAGS FDT_INTR_MPSAFE
65 #else
66 #define CALLOUT_FLAGS 0
67 #define FDT_INTR_FLAGS 0
68 #endif
69
70 #define EMAC_IFNAME "emac%d"
71
72 #define ETHER_ALIGN 2
73
74 #define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx)
75 #define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx)
76 #define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx))
77
78 #define DESC_ALIGN sizeof(struct sunxi_emac_desc)
79 #define TX_DESC_COUNT 1024
80 #define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
81 #define RX_DESC_COUNT 256
82 #define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
83
84 #define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc))
85 #define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
86 #define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
87 #define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
88
89 #define TX_MAX_SEGS 128
90
91 #define SOFT_RST_RETRY 1000
92 #define MII_BUSY_RETRY 1000
93 #define MDIO_FREQ 2500000
94
95 #define BURST_LEN_DEFAULT 8
96 #define RX_TX_PRI_DEFAULT 0
97 #define PAUSE_TIME_DEFAULT 0x400
98
99 /* syscon EMAC clock register */
100 #define EMAC_CLK_REG 0x30
101 #define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
102 #define EMAC_CLK_EPHY_ADDR_SHIFT 20
103 #define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
104 #define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
105 #define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
106 #define EMAC_CLK_RMII_EN (1 << 13)
107 #define EMAC_CLK_ETXDC (0x7 << 10)
108 #define EMAC_CLK_ETXDC_SHIFT 10
109 #define EMAC_CLK_ERXDC (0x1f << 5)
110 #define EMAC_CLK_ERXDC_SHIFT 5
111 #define EMAC_CLK_PIT (0x1 << 2)
112 #define EMAC_CLK_PIT_MII (0 << 2)
113 #define EMAC_CLK_PIT_RGMII (1 << 2)
114 #define EMAC_CLK_SRC (0x3 << 0)
115 #define EMAC_CLK_SRC_MII (0 << 0)
116 #define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
117 #define EMAC_CLK_SRC_RGMII (2 << 0)
118
119 /* Burst length of RX and TX DMA transfers */
120 static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
121
122 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
123 static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
124
125 /* Pause time field in the transmitted control frame */
126 static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
127
128 enum sunxi_emac_type {
129 EMAC_A64 = 1,
130 EMAC_A83T,
131 EMAC_H3,
132 EMAC_H6,
133 };
134
135 static const struct of_compat_data compat_data[] = {
136 { "allwinner,sun8i-a83t-emac", EMAC_A83T },
137 { "allwinner,sun8i-h3-emac", EMAC_H3 },
138 { "allwinner,sun50i-a64-emac", EMAC_A64 },
139 { "allwinner,sun50i-h6-emac", EMAC_H6 },
140 { NULL }
141 };
142
143 struct sunxi_emac_bufmap {
144 bus_dmamap_t map;
145 struct mbuf *mbuf;
146 };
147
148 struct sunxi_emac_txring {
149 bus_dma_tag_t desc_tag;
150 bus_dmamap_t desc_map;
151 bus_dma_segment_t desc_dmaseg;
152 struct sunxi_emac_desc *desc_ring;
153 bus_addr_t desc_ring_paddr;
154 bus_dma_tag_t buf_tag;
155 struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
156 u_int cur, next, queued;
157 };
158
159 struct sunxi_emac_rxring {
160 bus_dma_tag_t desc_tag;
161 bus_dmamap_t desc_map;
162 bus_dma_segment_t desc_dmaseg;
163 struct sunxi_emac_desc *desc_ring;
164 bus_addr_t desc_ring_paddr;
165 bus_dma_tag_t buf_tag;
166 struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
167 u_int cur;
168 };
169
170 enum {
171 _RES_EMAC,
172 _RES_SYSCON,
173 _RES_NITEMS
174 };
175
176 struct sunxi_emac_softc {
177 device_t dev;
178 int phandle;
179 enum sunxi_emac_type type;
180 bus_space_tag_t bst;
181 bus_dma_tag_t dmat;
182
183 bus_space_handle_t bsh[_RES_NITEMS];
184 struct clk *clk_ahb;
185 struct clk *clk_ephy;
186 struct fdtbus_reset *rst_ahb;
187 struct fdtbus_reset *rst_ephy;
188 struct fdtbus_regulator *reg_phy;
189 struct fdtbus_gpio_pin *pin_reset;
190
191 int phy_id;
192
193 kmutex_t mtx;
194 struct ethercom ec;
195 struct mii_data mii;
196 callout_t stat_ch;
197 void *ih;
198 u_int mdc_div_ratio_m;
199
200 struct sunxi_emac_txring tx;
201 struct sunxi_emac_rxring rx;
202 };
203
204 #define RD4(sc, reg) \
205 bus_space_read_4((sc)->bst, (sc)->bsh[_RES_EMAC], (reg))
206 #define WR4(sc, reg, val) \
207 bus_space_write_4((sc)->bst, (sc)->bsh[_RES_EMAC], (reg), (val))
208
209 #define SYSCONRD4(sc, reg) \
210 bus_space_read_4((sc)->bst, (sc)->bsh[_RES_SYSCON], (reg))
211 #define SYSCONWR4(sc, reg, val) \
212 bus_space_write_4((sc)->bst, (sc)->bsh[_RES_SYSCON], (reg), (val))
213
214 static int
215 sunxi_emac_mii_readreg(device_t dev, int phy, int reg)
216 {
217 struct sunxi_emac_softc *sc = device_private(dev);
218 int retry, val;
219
220 val = 0;
221
222 WR4(sc, EMAC_MII_CMD,
223 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
224 (phy << PHY_ADDR_SHIFT) |
225 (reg << PHY_REG_ADDR_SHIFT) |
226 MII_BUSY);
227 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
228 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
229 val = RD4(sc, EMAC_MII_DATA);
230 break;
231 }
232 delay(10);
233 }
234
235 if (retry == 0)
236 device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
237 phy, reg);
238
239 return val;
240 }
241
242 static void
243 sunxi_emac_mii_writereg(device_t dev, int phy, int reg, int val)
244 {
245 struct sunxi_emac_softc *sc = device_private(dev);
246 int retry;
247
248 WR4(sc, EMAC_MII_DATA, val);
249 WR4(sc, EMAC_MII_CMD,
250 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
251 (phy << PHY_ADDR_SHIFT) |
252 (reg << PHY_REG_ADDR_SHIFT) |
253 MII_WR | MII_BUSY);
254 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
255 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
256 break;
257 delay(10);
258 }
259
260 if (retry == 0)
261 device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
262 phy, reg);
263 }
264
265 static void
266 sunxi_emac_update_link(struct sunxi_emac_softc *sc)
267 {
268 struct mii_data *mii = &sc->mii;
269 uint32_t val;
270
271 val = RD4(sc, EMAC_BASIC_CTL_0);
272 val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
273
274 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
275 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
276 val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
277 else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
278 val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
279 else
280 val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
281
282 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
283 val |= BASIC_CTL_DUPLEX;
284
285 WR4(sc, EMAC_BASIC_CTL_0, val);
286
287 val = RD4(sc, EMAC_RX_CTL_0);
288 val &= ~RX_FLOW_CTL_EN;
289 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
290 val |= RX_FLOW_CTL_EN;
291 WR4(sc, EMAC_RX_CTL_0, val);
292
293 val = RD4(sc, EMAC_TX_FLOW_CTL);
294 val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
295 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
296 val |= TX_FLOW_CTL_EN;
297 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
298 val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
299 WR4(sc, EMAC_TX_FLOW_CTL, val);
300 }
301
302 static void
303 sunxi_emac_mii_statchg(struct ifnet *ifp)
304 {
305 struct sunxi_emac_softc * const sc = ifp->if_softc;
306
307 sunxi_emac_update_link(sc);
308 }
309
310 static void
311 sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
312 bus_dmamap_t map, int start, int end, int total, int flags)
313 {
314 if (end > start) {
315 bus_dmamap_sync(dmat, map, DESC_OFF(start),
316 DESC_OFF(end) - DESC_OFF(start), flags);
317 } else {
318 bus_dmamap_sync(dmat, map, DESC_OFF(start),
319 DESC_OFF(total) - DESC_OFF(start), flags);
320 if (DESC_OFF(end) - DESC_OFF(0) > 0)
321 bus_dmamap_sync(dmat, map, DESC_OFF(0),
322 DESC_OFF(end) - DESC_OFF(0), flags);
323 }
324 }
325
326 static void
327 sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
328 bus_addr_t paddr, u_int len)
329 {
330 uint32_t status, size;
331
332 if (paddr == 0 || len == 0) {
333 status = 0;
334 size = 0;
335 --sc->tx.queued;
336 } else {
337 status = TX_DESC_CTL;
338 size = flags | len;
339 ++sc->tx.queued;
340 }
341
342 sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
343 sc->tx.desc_ring[index].size = htole32(size);
344 sc->tx.desc_ring[index].status = htole32(status);
345 }
346
347 static int
348 sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
349 {
350 bus_dma_segment_t *segs;
351 int error, nsegs, cur, i, flags;
352 u_int csum_flags;
353
354 error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
355 sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
356 if (error == EFBIG) {
357 device_printf(sc->dev,
358 "TX packet needs too many DMA segments, dropping...\n");
359 m_freem(m);
360 return 0;
361 }
362 if (error != 0)
363 return 0;
364
365 segs = sc->tx.buf_map[index].map->dm_segs;
366 nsegs = sc->tx.buf_map[index].map->dm_nsegs;
367
368 flags = TX_FIR_DESC;
369 if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
370 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
371 csum_flags = TX_CHECKSUM_CTL_FULL;
372 else
373 csum_flags = TX_CHECKSUM_CTL_IP;
374 flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
375 }
376
377 for (cur = index, i = 0; i < nsegs; i++) {
378 sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
379 if (i == nsegs - 1)
380 flags |= TX_LAST_DESC | TX_INT_CTL;
381
382 sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
383 segs[i].ds_len);
384 flags &= ~TX_FIR_DESC;
385 cur = TX_NEXT(cur);
386 }
387
388 bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
389 0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
390
391 return nsegs;
392 }
393
394 static void
395 sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
396 bus_addr_t paddr)
397 {
398 uint32_t status, size;
399
400 status = RX_DESC_CTL;
401 size = MCLBYTES - 1;
402
403 sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
404 sc->rx.desc_ring[index].size = htole32(size);
405 sc->rx.desc_ring[index].next =
406 htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
407 sc->rx.desc_ring[index].status = htole32(status);
408 }
409
410 static int
411 sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
412 {
413 int error;
414
415 m_adj(m, ETHER_ALIGN);
416
417 error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
418 sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT);
419 if (error != 0)
420 return error;
421
422 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
423 0, sc->rx.buf_map[index].map->dm_mapsize,
424 BUS_DMASYNC_PREREAD);
425
426 sc->rx.buf_map[index].mbuf = m;
427 sunxi_emac_setup_rxdesc(sc, index,
428 sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
429
430 return 0;
431 }
432
433 static struct mbuf *
434 sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
435 {
436 struct mbuf *m;
437
438 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
439 if (m != NULL)
440 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
441
442 return m;
443 }
444
445 static void
446 sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
447 {
448 struct ifnet *ifp = &sc->ec.ec_if;
449 struct mbuf *m;
450 uint32_t val;
451 int cnt, nsegs, start;
452
453 EMAC_ASSERT_LOCKED(sc);
454
455 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
456 return;
457
458 for (cnt = 0, start = sc->tx.cur; ; cnt++) {
459 if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
460 ifp->if_flags |= IFF_OACTIVE;
461 break;
462 }
463
464 IFQ_POLL(&ifp->if_snd, m);
465 if (m == NULL)
466 break;
467
468 nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
469 if (nsegs == 0) {
470 ifp->if_flags |= IFF_OACTIVE;
471 break;
472 }
473 IFQ_DEQUEUE(&ifp->if_snd, m);
474 bpf_mtap(ifp, m);
475
476 sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
477 }
478
479 if (cnt != 0) {
480 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
481 start, sc->tx.cur, TX_DESC_COUNT,
482 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
483
484 /* Start and run TX DMA */
485 val = RD4(sc, EMAC_TX_CTL_1);
486 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
487 }
488 }
489
490 static void
491 sunxi_emac_start(struct ifnet *ifp)
492 {
493 struct sunxi_emac_softc *sc = ifp->if_softc;
494
495 EMAC_LOCK(sc);
496 sunxi_emac_start_locked(sc);
497 EMAC_UNLOCK(sc);
498 }
499
500 static void
501 sunxi_emac_tick(void *softc)
502 {
503 struct sunxi_emac_softc *sc = softc;
504 struct mii_data *mii = &sc->mii;
505 #ifndef EMAC_MPSAFE
506 int s = splnet();
507 #endif
508
509 EMAC_LOCK(sc);
510 mii_tick(mii);
511 callout_schedule(&sc->stat_ch, hz);
512 EMAC_UNLOCK(sc);
513
514 #ifndef EMAC_MPSAFE
515 splx(s);
516 #endif
517 }
518
519 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
520 static uint32_t
521 bitrev32(uint32_t x)
522 {
523 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
524 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
525 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
526 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
527
528 return (x >> 16) | (x << 16);
529 }
530
531 static void
532 sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
533 {
534 struct ifnet *ifp = &sc->ec.ec_if;
535 uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
536 struct ether_multi *enm;
537 struct ether_multistep step;
538 const uint8_t *eaddr;
539
540 EMAC_ASSERT_LOCKED(sc);
541
542 val = 0;
543 hash[0] = hash[1] = 0;
544
545 if ((ifp->if_flags & IFF_PROMISC) != 0)
546 val |= DIS_ADDR_FILTER;
547 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
548 val |= RX_ALL_MULTICAST;
549 hash[0] = hash[1] = ~0;
550 } else {
551 val |= HASH_MULTICAST;
552 ETHER_FIRST_MULTI(step, &sc->ec, enm);
553 while (enm != NULL) {
554 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
555 crc &= 0x7f;
556 crc = bitrev32(~crc) >> 26;
557 hashreg = (crc >> 5);
558 hashbit = (crc & 0x1f);
559 hash[hashreg] |= (1 << hashbit);
560 ETHER_NEXT_MULTI(step, enm);
561 }
562 }
563
564 /* Write our unicast address */
565 eaddr = CLLADDR(ifp->if_sadl);
566 machi = (eaddr[5] << 8) | eaddr[4];
567 maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
568 (eaddr[0] << 0);
569 WR4(sc, EMAC_ADDR_HIGH(0), machi);
570 WR4(sc, EMAC_ADDR_LOW(0), maclo);
571
572 /* Multicast hash filters */
573 WR4(sc, EMAC_RX_HASH_0, hash[1]);
574 WR4(sc, EMAC_RX_HASH_1, hash[0]);
575
576 /* RX frame filter config */
577 WR4(sc, EMAC_RX_FRM_FLT, val);
578 }
579
580 static void
581 sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
582 {
583 /* Enable interrupts */
584 WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
585 }
586
587 static void
588 sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
589 {
590 /* Disable interrupts */
591 WR4(sc, EMAC_INT_EN, 0);
592 }
593
594 static int
595 sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
596 {
597 struct ifnet *ifp = &sc->ec.ec_if;
598 struct mii_data *mii = &sc->mii;
599 uint32_t val;
600
601 EMAC_ASSERT_LOCKED(sc);
602
603 if ((ifp->if_flags & IFF_RUNNING) != 0)
604 return 0;
605
606 sunxi_emac_setup_rxfilter(sc);
607
608 /* Configure DMA burst length and priorities */
609 val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
610 if (sunxi_emac_rx_tx_pri)
611 val |= BASIC_CTL_RX_TX_PRI;
612 WR4(sc, EMAC_BASIC_CTL_1, val);
613
614 /* Enable interrupts */
615 sunxi_emac_enable_intr(sc);
616
617 /* Enable transmit DMA */
618 val = RD4(sc, EMAC_TX_CTL_1);
619 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
620
621 /* Enable receive DMA */
622 val = RD4(sc, EMAC_RX_CTL_1);
623 WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
624
625 /* Enable transmitter */
626 val = RD4(sc, EMAC_TX_CTL_0);
627 WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
628
629 /* Enable receiver */
630 val = RD4(sc, EMAC_RX_CTL_0);
631 WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
632
633 ifp->if_flags |= IFF_RUNNING;
634 ifp->if_flags &= ~IFF_OACTIVE;
635
636 mii_mediachg(mii);
637 callout_schedule(&sc->stat_ch, hz);
638
639 return 0;
640 }
641
642 static int
643 sunxi_emac_init(struct ifnet *ifp)
644 {
645 struct sunxi_emac_softc *sc = ifp->if_softc;
646 int error;
647
648 EMAC_LOCK(sc);
649 error = sunxi_emac_init_locked(sc);
650 EMAC_UNLOCK(sc);
651
652 return error;
653 }
654
655 static void
656 sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
657 {
658 struct ifnet *ifp = &sc->ec.ec_if;
659 uint32_t val;
660
661 EMAC_ASSERT_LOCKED(sc);
662
663 callout_stop(&sc->stat_ch);
664
665 mii_down(&sc->mii);
666
667 /* Stop transmit DMA and flush data in the TX FIFO */
668 val = RD4(sc, EMAC_TX_CTL_1);
669 val &= ~TX_DMA_EN;
670 val |= FLUSH_TX_FIFO;
671 WR4(sc, EMAC_TX_CTL_1, val);
672
673 /* Disable transmitter */
674 val = RD4(sc, EMAC_TX_CTL_0);
675 WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
676
677 /* Disable receiver */
678 val = RD4(sc, EMAC_RX_CTL_0);
679 WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
680
681 /* Disable interrupts */
682 sunxi_emac_disable_intr(sc);
683
684 /* Disable transmit DMA */
685 val = RD4(sc, EMAC_TX_CTL_1);
686 WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
687
688 /* Disable receive DMA */
689 val = RD4(sc, EMAC_RX_CTL_1);
690 WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
691
692 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
693 }
694
695 static void
696 sunxi_emac_stop(struct ifnet *ifp, int disable)
697 {
698 struct sunxi_emac_softc * const sc = ifp->if_softc;
699
700 EMAC_LOCK(sc);
701 sunxi_emac_stop_locked(sc, disable);
702 EMAC_UNLOCK(sc);
703 }
704
705 static int
706 sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
707 {
708 struct ifnet *ifp = &sc->ec.ec_if;
709 int error, index, len, npkt;
710 struct mbuf *m, *m0;
711 uint32_t status;
712
713 npkt = 0;
714
715 for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
716 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
717 index, index + 1,
718 RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
719
720 status = le32toh(sc->rx.desc_ring[index].status);
721 if ((status & RX_DESC_CTL) != 0)
722 break;
723
724 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
725 0, sc->rx.buf_map[index].map->dm_mapsize,
726 BUS_DMASYNC_POSTREAD);
727 bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
728
729 len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
730 if (len != 0) {
731 m = sc->rx.buf_map[index].mbuf;
732 m_set_rcvif(m, ifp);
733 m->m_flags |= M_HASFCS;
734 m->m_pkthdr.len = len;
735 m->m_len = len;
736 m->m_nextpkt = NULL;
737
738 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
739 (status & RX_FRM_TYPE) != 0) {
740 m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
741 M_CSUM_TCPv4 | M_CSUM_UDPv4;
742 if ((status & RX_HEADER_ERR) != 0)
743 m->m_pkthdr.csum_flags |=
744 M_CSUM_IPv4_BAD;
745 if ((status & RX_PAYLOAD_ERR) != 0)
746 m->m_pkthdr.csum_flags |=
747 M_CSUM_TCP_UDP_BAD;
748 }
749
750 ++npkt;
751
752 if_percpuq_enqueue(ifp->if_percpuq, m);
753 }
754
755 if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
756 error = sunxi_emac_setup_rxbuf(sc, index, m0);
757 if (error != 0) {
758 /* XXX hole in RX ring */
759 }
760 } else
761 ifp->if_ierrors++;
762
763 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
764 index, index + 1,
765 RX_DESC_COUNT, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
766 }
767
768 sc->rx.cur = index;
769
770 return npkt;
771 }
772
773 static void
774 sunxi_emac_txintr(struct sunxi_emac_softc *sc)
775 {
776 struct ifnet *ifp = &sc->ec.ec_if;
777 struct sunxi_emac_bufmap *bmap;
778 struct sunxi_emac_desc *desc;
779 uint32_t status;
780 int i;
781
782 EMAC_ASSERT_LOCKED(sc);
783
784 for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
785 KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
786 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
787 i, i + 1, TX_DESC_COUNT,
788 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
789 desc = &sc->tx.desc_ring[i];
790 status = le32toh(desc->status);
791 if ((status & TX_DESC_CTL) != 0)
792 break;
793 bmap = &sc->tx.buf_map[i];
794 if (bmap->mbuf != NULL) {
795 bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
796 0, bmap->map->dm_mapsize,
797 BUS_DMASYNC_POSTWRITE);
798 bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
799 m_freem(bmap->mbuf);
800 bmap->mbuf = NULL;
801 }
802
803 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
804 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
805 i, i + 1, TX_DESC_COUNT,
806 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
807
808 ifp->if_flags &= ~IFF_OACTIVE;
809 ifp->if_opackets++;
810 }
811
812 sc->tx.next = i;
813 }
814
815 static int
816 sunxi_emac_intr(void *arg)
817 {
818 struct sunxi_emac_softc *sc = arg;
819 struct ifnet *ifp = &sc->ec.ec_if;
820 uint32_t val;
821
822 EMAC_LOCK(sc);
823
824 val = RD4(sc, EMAC_INT_STA);
825 WR4(sc, EMAC_INT_STA, val);
826
827 if (val & RX_INT)
828 sunxi_emac_rxintr(sc);
829
830 if (val & (TX_INT|TX_BUF_UA_INT)) {
831 sunxi_emac_txintr(sc);
832 if_schedule_deferred_start(ifp);
833 }
834
835 EMAC_UNLOCK(sc);
836
837 return 1;
838 }
839
840 static int
841 sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
842 {
843 struct sunxi_emac_softc *sc = ifp->if_softc;
844 struct mii_data *mii = &sc->mii;
845 struct ifreq *ifr = data;
846 int error, s;
847
848 #ifndef EMAC_MPSAFE
849 s = splnet();
850 #endif
851
852 switch (cmd) {
853 case SIOCSIFMEDIA:
854 case SIOCGIFMEDIA:
855 #ifdef EMAC_MPSAFE
856 s = splnet();
857 #endif
858 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
859 #ifdef EMAC_MPSAFE
860 splx(s);
861 #endif
862 break;
863 default:
864 #ifdef EMAC_MPSAFE
865 s = splnet();
866 #endif
867 error = ether_ioctl(ifp, cmd, data);
868 #ifdef EMAC_MPSAFE
869 splx(s);
870 #endif
871 if (error != ENETRESET)
872 break;
873
874 error = 0;
875
876 if (cmd == SIOCSIFCAP)
877 error = (*ifp->if_init)(ifp);
878 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
879 ;
880 else if ((ifp->if_flags & IFF_RUNNING) != 0) {
881 EMAC_LOCK(sc);
882 sunxi_emac_setup_rxfilter(sc);
883 EMAC_UNLOCK(sc);
884 }
885 break;
886 }
887
888 #ifndef EMAC_MPSAFE
889 splx(s);
890 #endif
891
892 return error;
893 }
894
895 static bool
896 sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
897 {
898 const char * mdio_internal_compat[] = {
899 "allwinner,sun8i-h3-mdio-internal",
900 NULL
901 };
902 int phy;
903
904 /* Non-standard property, for compatible with old dts files */
905 if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
906 return true;
907
908 phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
909 if (phy == -1)
910 return false;
911
912 /* For internal PHY, check compatible string of parent node */
913 return of_compatible(OF_parent(phy), mdio_internal_compat) >= 0;
914 }
915
916 static int
917 sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
918 {
919 uint32_t reg, tx_delay, rx_delay;
920 const char *phy_type;
921
922 phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
923 if (phy_type == NULL)
924 return 0;
925
926 aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
927
928 reg = SYSCONRD4(sc, 0);
929
930 reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
931 if (strcmp(phy_type, "rgmii") == 0)
932 reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
933 else if (strcmp(phy_type, "rmii") == 0)
934 reg |= EMAC_CLK_RMII_EN;
935 else
936 reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
937
938 if (of_getprop_uint32(sc->phandle, "allwinner,tx-delay-ps",
939 &tx_delay) == 0) {
940 reg &= ~EMAC_CLK_ETXDC;
941 reg |= ((tx_delay / 100) << EMAC_CLK_ETXDC_SHIFT);
942 } else if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
943 reg &= ~EMAC_CLK_ETXDC;
944 reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
945 }
946 if (of_getprop_uint32(sc->phandle, "allwinner,rx-delay-ps",
947 &rx_delay) == 0) {
948 reg &= ~EMAC_CLK_ERXDC;
949 reg |= ((rx_delay / 100) << EMAC_CLK_ERXDC_SHIFT);
950 } else if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
951 reg &= ~EMAC_CLK_ERXDC;
952 reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
953 }
954
955 if (sc->type == EMAC_H3 || sc->type == EMAC_H6) {
956 if (sunxi_emac_has_internal_phy(sc)) {
957 reg |= EMAC_CLK_EPHY_SELECT;
958 reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
959 if (of_hasprop(sc->phandle,
960 "allwinner,leds-active-low"))
961 reg |= EMAC_CLK_EPHY_LED_POL;
962 else
963 reg &= ~EMAC_CLK_EPHY_LED_POL;
964
965 /* Set internal PHY addr to 1 */
966 reg &= ~EMAC_CLK_EPHY_ADDR;
967 reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
968 } else {
969 reg &= ~EMAC_CLK_EPHY_SELECT;
970 }
971 }
972
973 aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
974
975 SYSCONWR4(sc, 0, reg);
976
977 return 0;
978 }
979
980 static int
981 sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
982 {
983 u_int freq;
984 int error, div;
985
986 /* Configure PHY for MII or RGMII mode */
987 if (sunxi_emac_setup_phy(sc) != 0)
988 return ENXIO;
989
990 /* Enable clocks */
991 error = clk_enable(sc->clk_ahb);
992 if (error != 0) {
993 aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
994 return error;
995 }
996
997 if (sc->clk_ephy != NULL) {
998 error = clk_enable(sc->clk_ephy);
999 if (error != 0) {
1000 aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
1001 return error;
1002 }
1003 }
1004
1005 /* De-assert reset */
1006 error = fdtbus_reset_deassert(sc->rst_ahb);
1007 if (error != 0) {
1008 aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
1009 return error;
1010 }
1011 if (sc->rst_ephy != NULL) {
1012 error = fdtbus_reset_deassert(sc->rst_ephy);
1013 if (error != 0) {
1014 aprint_error_dev(sc->dev,
1015 "cannot de-assert ephy reset\n");
1016 return error;
1017 }
1018 }
1019
1020 /* Enable PHY regulator if applicable */
1021 if (sc->reg_phy != NULL) {
1022 error = fdtbus_regulator_enable(sc->reg_phy);
1023 if (error != 0) {
1024 aprint_error_dev(sc->dev,
1025 "cannot enable PHY regulator\n");
1026 return error;
1027 }
1028 }
1029
1030 /* Determine MDC clock divide ratio based on AHB clock */
1031 freq = clk_get_rate(sc->clk_ahb);
1032 if (freq == 0) {
1033 aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1034 return ENXIO;
1035 }
1036 div = freq / MDIO_FREQ;
1037 if (div <= 16)
1038 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1039 else if (div <= 32)
1040 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1041 else if (div <= 64)
1042 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1043 else if (div <= 128)
1044 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1045 else {
1046 aprint_error_dev(sc->dev,
1047 "cannot determine MDC clock divide ratio\n");
1048 return ENXIO;
1049 }
1050
1051 aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1052 freq, sc->mdc_div_ratio_m);
1053
1054 return 0;
1055 }
1056
1057 static void
1058 sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1059 {
1060 uint32_t maclo, machi;
1061 #if notyet
1062 u_char rootkey[16];
1063 #endif
1064
1065 machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1066 maclo = RD4(sc, EMAC_ADDR_LOW(0));
1067
1068 if (maclo == 0xffffffff && machi == 0xffff) {
1069 #if notyet
1070 /* MAC address in hardware is invalid, create one */
1071 if (aw_sid_get_rootkey(rootkey) == 0 &&
1072 (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1073 rootkey[15]) != 0) {
1074 /* MAC address is derived from the root key in SID */
1075 maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1076 (rootkey[3] << 8) | 0x02;
1077 machi = (rootkey[15] << 8) | rootkey[14];
1078 } else {
1079 #endif
1080 /* Create one */
1081 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1082 machi = cprng_strong32() & 0xffff;
1083 #if notyet
1084 }
1085 #endif
1086 }
1087
1088 eaddr[0] = maclo & 0xff;
1089 eaddr[1] = (maclo >> 8) & 0xff;
1090 eaddr[2] = (maclo >> 16) & 0xff;
1091 eaddr[3] = (maclo >> 24) & 0xff;
1092 eaddr[4] = machi & 0xff;
1093 eaddr[5] = (machi >> 8) & 0xff;
1094 }
1095
1096 #ifdef SUNXI_EMAC_DEBUG
1097 static void
1098 sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
1099 {
1100 static const struct {
1101 const char *name;
1102 u_int reg;
1103 } regs[] = {
1104 { "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1105 { "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1106 { "INT_STA", EMAC_INT_STA },
1107 { "INT_EN", EMAC_INT_EN },
1108 { "TX_CTL_0", EMAC_TX_CTL_0 },
1109 { "TX_CTL_1", EMAC_TX_CTL_1 },
1110 { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1111 { "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1112 { "RX_CTL_0", EMAC_RX_CTL_0 },
1113 { "RX_CTL_1", EMAC_RX_CTL_1 },
1114 { "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1115 { "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1116 { "RX_HASH_0", EMAC_RX_HASH_0 },
1117 { "RX_HASH_1", EMAC_RX_HASH_1 },
1118 { "MII_CMD", EMAC_MII_CMD },
1119 { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1120 { "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1121 { "TX_DMA_STA", EMAC_TX_DMA_STA },
1122 { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1123 { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1124 { "RX_DMA_STA", EMAC_RX_DMA_STA },
1125 { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1126 { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1127 { "RGMII_STA", EMAC_RGMII_STA },
1128 };
1129 u_int n;
1130
1131 for (n = 0; n < __arraycount(regs); n++)
1132 device_printf(dev, " %-20s %08x\n", regs[n].name,
1133 RD4(sc, regs[n].reg));
1134 }
1135 #endif
1136
1137 static int
1138 sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1139 {
1140 uint32_t delay_prop[3];
1141 int pin_value;
1142
1143 if (sc->pin_reset == NULL)
1144 return 0;
1145
1146 if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1147 sizeof(delay_prop)) <= 0)
1148 return ENXIO;
1149
1150 pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1151
1152 fdtbus_gpio_write(sc->pin_reset, pin_value);
1153 delay(htole32(delay_prop[0]));
1154 fdtbus_gpio_write(sc->pin_reset, !pin_value);
1155 delay(htole32(delay_prop[1]));
1156 fdtbus_gpio_write(sc->pin_reset, pin_value);
1157 delay(htole32(delay_prop[2]));
1158
1159 return 0;
1160 }
1161
1162 static int
1163 sunxi_emac_reset(struct sunxi_emac_softc *sc)
1164 {
1165 int retry;
1166
1167 /* Reset PHY if necessary */
1168 if (sunxi_emac_phy_reset(sc) != 0) {
1169 aprint_error_dev(sc->dev, "failed to reset PHY\n");
1170 return ENXIO;
1171 }
1172
1173 /* Soft reset all registers and logic */
1174 WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1175
1176 /* Wait for soft reset bit to self-clear */
1177 for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1178 if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1179 break;
1180 delay(10);
1181 }
1182 if (retry == 0) {
1183 aprint_error_dev(sc->dev, "soft reset timed out\n");
1184 #ifdef SUNXI_EMAC_DEBUG
1185 sunxi_emac_dump_regs(sc);
1186 #endif
1187 return ETIMEDOUT;
1188 }
1189
1190 return 0;
1191 }
1192
1193 static int
1194 sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1195 {
1196 struct mbuf *m;
1197 int error, nsegs, i;
1198
1199 /* Setup TX ring */
1200 sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1201 error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1202 BUS_DMA_WAITOK, &sc->tx.desc_map);
1203 if (error)
1204 return error;
1205 error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1206 &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1207 if (error)
1208 return error;
1209 error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1210 TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1211 BUS_DMA_WAITOK);
1212 if (error)
1213 return error;
1214 error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1215 TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1216 if (error)
1217 return error;
1218 sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1219
1220 memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1221 bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1222 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1223
1224 for (i = 0; i < TX_DESC_COUNT; i++)
1225 sc->tx.desc_ring[i].next =
1226 htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1227
1228 sc->tx.queued = TX_DESC_COUNT;
1229 for (i = 0; i < TX_DESC_COUNT; i++) {
1230 error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1231 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1232 &sc->tx.buf_map[i].map);
1233 if (error != 0) {
1234 device_printf(sc->dev, "cannot create TX buffer map\n");
1235 return error;
1236 }
1237 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1238 }
1239
1240 /* Setup RX ring */
1241 sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1242 error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1243 BUS_DMA_WAITOK, &sc->rx.desc_map);
1244 if (error)
1245 return error;
1246 error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1247 &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1248 if (error)
1249 return error;
1250 error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1251 RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1252 BUS_DMA_WAITOK);
1253 if (error)
1254 return error;
1255 error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1256 RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1257 if (error)
1258 return error;
1259 sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1260
1261 memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1262
1263 for (i = 0; i < RX_DESC_COUNT; i++) {
1264 error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1265 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1266 &sc->rx.buf_map[i].map);
1267 if (error != 0) {
1268 device_printf(sc->dev, "cannot create RX buffer map\n");
1269 return error;
1270 }
1271 if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1272 device_printf(sc->dev, "cannot allocate RX mbuf\n");
1273 return ENOMEM;
1274 }
1275 error = sunxi_emac_setup_rxbuf(sc, i, m);
1276 if (error != 0) {
1277 device_printf(sc->dev, "cannot create RX buffer\n");
1278 return error;
1279 }
1280 }
1281 bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1282 0, sc->rx.desc_map->dm_mapsize,
1283 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1284
1285 /* Write transmit and receive descriptor base address registers */
1286 WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1287 WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1288
1289 return 0;
1290 }
1291
1292 static int
1293 sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1294 {
1295 const int phandle = sc->phandle;
1296 bus_addr_t addr, size;
1297
1298 /* Map EMAC registers */
1299 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0)
1300 return ENXIO;
1301 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh[_RES_EMAC]) != 0)
1302 return ENXIO;
1303
1304 /* Map SYSCON registers */
1305 if (of_hasprop(phandle, "syscon")) {
1306 const int syscon_phandle = fdtbus_get_phandle(phandle,
1307 "syscon");
1308 if (syscon_phandle == -1)
1309 return ENXIO;
1310 if (fdtbus_get_reg(syscon_phandle, 0, &addr, &size) != 0)
1311 return ENXIO;
1312 if (size < EMAC_CLK_REG + 4)
1313 return ENXIO;
1314 addr += EMAC_CLK_REG;
1315 size -= EMAC_CLK_REG;
1316 } else {
1317 if (fdtbus_get_reg(phandle, 1, &addr, &size) != 0)
1318 return ENXIO;
1319 }
1320 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh[_RES_SYSCON]) != 0)
1321 return ENXIO;
1322
1323 /* The "ahb"/"stmmaceth" clock and reset is required */
1324 if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1325 (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL)
1326 return ENXIO;
1327 if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1328 (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL)
1329 return ENXIO;
1330
1331 /* Internal PHY clock and reset are optional properties. */
1332 sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1333 if (sc->clk_ephy == NULL) {
1334 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1335 if (phy_phandle != -1)
1336 sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
1337 }
1338 sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
1339 if (sc->rst_ephy == NULL) {
1340 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1341 if (phy_phandle != -1)
1342 sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
1343 }
1344
1345 /* Regulator is optional */
1346 sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1347
1348 /* Reset GPIO is optional */
1349 sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1350 "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1351
1352 return 0;
1353 }
1354
1355 static int
1356 sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1357 {
1358 bus_addr_t addr;
1359 int phy_phandle;
1360
1361 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
1362 if (phy_phandle == -1)
1363 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1364 if (phy_phandle == -1)
1365 return MII_PHY_ANY;
1366
1367 if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1368 return MII_PHY_ANY;
1369
1370 return (int)addr;
1371 }
1372
1373 static int
1374 sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1375 {
1376 struct fdt_attach_args * const faa = aux;
1377
1378 return of_match_compat_data(faa->faa_phandle, compat_data);
1379 }
1380
1381 static void
1382 sunxi_emac_attach(device_t parent, device_t self, void *aux)
1383 {
1384 struct fdt_attach_args * const faa = aux;
1385 struct sunxi_emac_softc * const sc = device_private(self);
1386 const int phandle = faa->faa_phandle;
1387 struct mii_data *mii = &sc->mii;
1388 struct ifnet *ifp = &sc->ec.ec_if;
1389 uint8_t eaddr[ETHER_ADDR_LEN];
1390 char intrstr[128];
1391
1392 sc->dev = self;
1393 sc->phandle = phandle;
1394 sc->bst = faa->faa_bst;
1395 sc->dmat = faa->faa_dmat;
1396 sc->type = of_search_compatible(phandle, compat_data)->data;
1397 sc->phy_id = sunxi_emac_get_phyid(sc);
1398
1399 if (sunxi_emac_get_resources(sc) != 0) {
1400 aprint_error(": cannot allocate resources for device\n");
1401 return;
1402 }
1403 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1404 aprint_error(": cannot decode interrupt\n");
1405 return;
1406 }
1407
1408 mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1409 callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1410 callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1411
1412 aprint_naive("\n");
1413 aprint_normal(": EMAC\n");
1414
1415 /* Setup clocks and regulators */
1416 if (sunxi_emac_setup_resources(sc) != 0)
1417 return;
1418
1419 /* Read MAC address before resetting the chip */
1420 sunxi_emac_get_eaddr(sc, eaddr);
1421
1422 /* Soft reset EMAC core */
1423 if (sunxi_emac_reset(sc) != 0)
1424 return;
1425
1426 /* Setup DMA descriptors */
1427 if (sunxi_emac_setup_dma(sc) != 0) {
1428 aprint_error_dev(self, "failed to setup DMA descriptors\n");
1429 return;
1430 }
1431
1432 /* Install interrupt handler */
1433 sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
1434 FDT_INTR_FLAGS, sunxi_emac_intr, sc);
1435 if (sc->ih == NULL) {
1436 aprint_error_dev(self, "failed to establish interrupt on %s\n",
1437 intrstr);
1438 return;
1439 }
1440 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1441
1442 /* Setup ethernet interface */
1443 ifp->if_softc = sc;
1444 snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1445 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1446 #ifdef EMAC_MPSAFE
1447 ifp->if_extflags = IFEF_MPSAFE;
1448 #endif
1449 ifp->if_start = sunxi_emac_start;
1450 ifp->if_ioctl = sunxi_emac_ioctl;
1451 ifp->if_init = sunxi_emac_init;
1452 ifp->if_stop = sunxi_emac_stop;
1453 ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1454 IFCAP_CSUM_IPv4_Tx |
1455 IFCAP_CSUM_TCPv4_Rx |
1456 IFCAP_CSUM_TCPv4_Tx |
1457 IFCAP_CSUM_UDPv4_Rx |
1458 IFCAP_CSUM_UDPv4_Tx;
1459 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1460 IFQ_SET_READY(&ifp->if_snd);
1461
1462 /* 802.1Q VLAN-sized frames are supported */
1463 sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1464
1465 /* Attach MII driver */
1466 sc->ec.ec_mii = mii;
1467 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1468 mii->mii_ifp = ifp;
1469 mii->mii_readreg = sunxi_emac_mii_readreg;
1470 mii->mii_writereg = sunxi_emac_mii_writereg;
1471 mii->mii_statchg = sunxi_emac_mii_statchg;
1472 mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1473 MIIF_DOPAUSE);
1474
1475 if (LIST_EMPTY(&mii->mii_phys)) {
1476 aprint_error_dev(self, "no PHY found!\n");
1477 return;
1478 }
1479 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
1480
1481 /* Attach interface */
1482 if_attach(ifp);
1483 if_deferred_start_init(ifp, NULL);
1484
1485 /* Attach ethernet interface */
1486 ether_ifattach(ifp, eaddr);
1487 }
1488
1489 CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1490 sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1491