sunxi_emac.c revision 1.20 1 /* $NetBSD: sunxi_emac.c,v 1.20 2018/10/18 13:33:10 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2016-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 */
32
33 #include "opt_net_mpsafe.h"
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.20 2018/10/18 13:33:10 martin Exp $");
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/device.h>
41 #include <sys/intr.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/mutex.h>
45 #include <sys/callout.h>
46 #include <sys/gpio.h>
47 #include <sys/cprng.h>
48
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/bpf.h>
54
55 #include <dev/mii/miivar.h>
56
57 #include <dev/fdt/fdtvar.h>
58 #include <dev/fdt/syscon.h>
59
60 #include <arm/sunxi/sunxi_emac.h>
61
62 #ifdef NET_MPSAFE
63 #define EMAC_MPSAFE 1
64 #define CALLOUT_FLAGS CALLOUT_MPSAFE
65 #define FDT_INTR_FLAGS FDT_INTR_MPSAFE
66 #else
67 #define CALLOUT_FLAGS 0
68 #define FDT_INTR_FLAGS 0
69 #endif
70
71 #define EMAC_IFNAME "emac%d"
72
73 #define ETHER_ALIGN 2
74
75 #define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx)
76 #define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx)
77 #define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx))
78
79 #define DESC_ALIGN sizeof(struct sunxi_emac_desc)
80 #define TX_DESC_COUNT 1024
81 #define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
82 #define RX_DESC_COUNT 256
83 #define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
84
85 #define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc))
86 #define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
87 #define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
88 #define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
89
90 #define TX_MAX_SEGS 128
91
92 #define SOFT_RST_RETRY 1000
93 #define MII_BUSY_RETRY 1000
94 #define MDIO_FREQ 2500000
95
96 #define BURST_LEN_DEFAULT 8
97 #define RX_TX_PRI_DEFAULT 0
98 #define PAUSE_TIME_DEFAULT 0x400
99
100 /* syscon EMAC clock register */
101 #define EMAC_CLK_REG 0x30
102 #define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
103 #define EMAC_CLK_EPHY_ADDR_SHIFT 20
104 #define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
105 #define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
106 #define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
107 #define EMAC_CLK_RMII_EN (1 << 13)
108 #define EMAC_CLK_ETXDC (0x7 << 10)
109 #define EMAC_CLK_ETXDC_SHIFT 10
110 #define EMAC_CLK_ERXDC (0x1f << 5)
111 #define EMAC_CLK_ERXDC_SHIFT 5
112 #define EMAC_CLK_PIT (0x1 << 2)
113 #define EMAC_CLK_PIT_MII (0 << 2)
114 #define EMAC_CLK_PIT_RGMII (1 << 2)
115 #define EMAC_CLK_SRC (0x3 << 0)
116 #define EMAC_CLK_SRC_MII (0 << 0)
117 #define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
118 #define EMAC_CLK_SRC_RGMII (2 << 0)
119
120 /* Burst length of RX and TX DMA transfers */
121 static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
122
123 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
124 static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
125
126 /* Pause time field in the transmitted control frame */
127 static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
128
129 enum sunxi_emac_type {
130 EMAC_A64 = 1,
131 EMAC_A83T,
132 EMAC_H3,
133 EMAC_H6,
134 };
135
136 static const struct of_compat_data compat_data[] = {
137 { "allwinner,sun8i-a83t-emac", EMAC_A83T },
138 { "allwinner,sun8i-h3-emac", EMAC_H3 },
139 { "allwinner,sun50i-a64-emac", EMAC_A64 },
140 { "allwinner,sun50i-h6-emac", EMAC_H6 },
141 { NULL }
142 };
143
144 struct sunxi_emac_bufmap {
145 bus_dmamap_t map;
146 struct mbuf *mbuf;
147 };
148
149 struct sunxi_emac_txring {
150 bus_dma_tag_t desc_tag;
151 bus_dmamap_t desc_map;
152 bus_dma_segment_t desc_dmaseg;
153 struct sunxi_emac_desc *desc_ring;
154 bus_addr_t desc_ring_paddr;
155 bus_dma_tag_t buf_tag;
156 struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
157 u_int cur, next, queued;
158 };
159
160 struct sunxi_emac_rxring {
161 bus_dma_tag_t desc_tag;
162 bus_dmamap_t desc_map;
163 bus_dma_segment_t desc_dmaseg;
164 struct sunxi_emac_desc *desc_ring;
165 bus_addr_t desc_ring_paddr;
166 bus_dma_tag_t buf_tag;
167 struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
168 u_int cur;
169 };
170
171 struct sunxi_emac_softc {
172 device_t dev;
173 int phandle;
174 enum sunxi_emac_type type;
175 bus_space_tag_t bst;
176 bus_dma_tag_t dmat;
177
178 bus_space_handle_t bsh;
179 struct clk *clk_ahb;
180 struct clk *clk_ephy;
181 struct fdtbus_reset *rst_ahb;
182 struct fdtbus_reset *rst_ephy;
183 struct fdtbus_regulator *reg_phy;
184 struct fdtbus_gpio_pin *pin_reset;
185
186 struct syscon *syscon;
187
188 int phy_id;
189
190 kmutex_t mtx;
191 struct ethercom ec;
192 struct mii_data mii;
193 callout_t stat_ch;
194 void *ih;
195 u_int mdc_div_ratio_m;
196
197 struct sunxi_emac_txring tx;
198 struct sunxi_emac_rxring rx;
199 };
200
201 #define RD4(sc, reg) \
202 bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
203 #define WR4(sc, reg, val) \
204 bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
205
206 static int
207 sunxi_emac_mii_readreg(device_t dev, int phy, int reg)
208 {
209 struct sunxi_emac_softc *sc = device_private(dev);
210 int retry, val;
211
212 val = 0;
213
214 WR4(sc, EMAC_MII_CMD,
215 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
216 (phy << PHY_ADDR_SHIFT) |
217 (reg << PHY_REG_ADDR_SHIFT) |
218 MII_BUSY);
219 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
220 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
221 val = RD4(sc, EMAC_MII_DATA);
222 break;
223 }
224 delay(10);
225 }
226
227 if (retry == 0)
228 device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
229 phy, reg);
230
231 return val;
232 }
233
234 static void
235 sunxi_emac_mii_writereg(device_t dev, int phy, int reg, int val)
236 {
237 struct sunxi_emac_softc *sc = device_private(dev);
238 int retry;
239
240 WR4(sc, EMAC_MII_DATA, val);
241 WR4(sc, EMAC_MII_CMD,
242 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
243 (phy << PHY_ADDR_SHIFT) |
244 (reg << PHY_REG_ADDR_SHIFT) |
245 MII_WR | MII_BUSY);
246 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
247 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
248 break;
249 delay(10);
250 }
251
252 if (retry == 0)
253 device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
254 phy, reg);
255 }
256
257 static void
258 sunxi_emac_update_link(struct sunxi_emac_softc *sc)
259 {
260 struct mii_data *mii = &sc->mii;
261 uint32_t val;
262
263 val = RD4(sc, EMAC_BASIC_CTL_0);
264 val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
265
266 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
267 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
268 val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
269 else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
270 val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
271 else
272 val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
273
274 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
275 val |= BASIC_CTL_DUPLEX;
276
277 WR4(sc, EMAC_BASIC_CTL_0, val);
278
279 val = RD4(sc, EMAC_RX_CTL_0);
280 val &= ~RX_FLOW_CTL_EN;
281 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
282 val |= RX_FLOW_CTL_EN;
283 WR4(sc, EMAC_RX_CTL_0, val);
284
285 val = RD4(sc, EMAC_TX_FLOW_CTL);
286 val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
287 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
288 val |= TX_FLOW_CTL_EN;
289 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
290 val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
291 WR4(sc, EMAC_TX_FLOW_CTL, val);
292 }
293
294 static void
295 sunxi_emac_mii_statchg(struct ifnet *ifp)
296 {
297 struct sunxi_emac_softc * const sc = ifp->if_softc;
298
299 sunxi_emac_update_link(sc);
300 }
301
302 static void
303 sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
304 bus_dmamap_t map, int start, int end, int total, int flags)
305 {
306 if (end > start) {
307 bus_dmamap_sync(dmat, map, DESC_OFF(start),
308 DESC_OFF(end) - DESC_OFF(start), flags);
309 } else {
310 bus_dmamap_sync(dmat, map, DESC_OFF(start),
311 DESC_OFF(total) - DESC_OFF(start), flags);
312 if (DESC_OFF(end) - DESC_OFF(0) > 0)
313 bus_dmamap_sync(dmat, map, DESC_OFF(0),
314 DESC_OFF(end) - DESC_OFF(0), flags);
315 }
316 }
317
318 static void
319 sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
320 bus_addr_t paddr, u_int len)
321 {
322 uint32_t status, size;
323
324 if (paddr == 0 || len == 0) {
325 status = 0;
326 size = 0;
327 --sc->tx.queued;
328 } else {
329 status = TX_DESC_CTL;
330 size = flags | len;
331 ++sc->tx.queued;
332 }
333
334 sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
335 sc->tx.desc_ring[index].size = htole32(size);
336 sc->tx.desc_ring[index].status = htole32(status);
337 }
338
339 static int
340 sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
341 {
342 bus_dma_segment_t *segs;
343 int error, nsegs, cur, i, flags;
344 u_int csum_flags;
345
346 error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
347 sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
348 if (error == EFBIG) {
349 device_printf(sc->dev,
350 "TX packet needs too many DMA segments, dropping...\n");
351 m_freem(m);
352 return 0;
353 }
354 if (error != 0)
355 return 0;
356
357 segs = sc->tx.buf_map[index].map->dm_segs;
358 nsegs = sc->tx.buf_map[index].map->dm_nsegs;
359
360 flags = TX_FIR_DESC;
361 if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
362 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
363 csum_flags = TX_CHECKSUM_CTL_FULL;
364 else
365 csum_flags = TX_CHECKSUM_CTL_IP;
366 flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
367 }
368
369 for (cur = index, i = 0; i < nsegs; i++) {
370 sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
371 if (i == nsegs - 1)
372 flags |= TX_LAST_DESC | TX_INT_CTL;
373
374 sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
375 segs[i].ds_len);
376 flags &= ~TX_FIR_DESC;
377 cur = TX_NEXT(cur);
378 }
379
380 bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
381 0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
382
383 return nsegs;
384 }
385
386 static void
387 sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
388 bus_addr_t paddr)
389 {
390 uint32_t status, size;
391
392 status = RX_DESC_CTL;
393 size = MCLBYTES - 1;
394
395 sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
396 sc->rx.desc_ring[index].size = htole32(size);
397 sc->rx.desc_ring[index].next =
398 htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
399 sc->rx.desc_ring[index].status = htole32(status);
400 }
401
402 static int
403 sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
404 {
405 int error;
406
407 m_adj(m, ETHER_ALIGN);
408
409 error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
410 sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT);
411 if (error != 0)
412 return error;
413
414 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
415 0, sc->rx.buf_map[index].map->dm_mapsize,
416 BUS_DMASYNC_PREREAD);
417
418 sc->rx.buf_map[index].mbuf = m;
419 sunxi_emac_setup_rxdesc(sc, index,
420 sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
421
422 return 0;
423 }
424
425 static struct mbuf *
426 sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
427 {
428 struct mbuf *m;
429
430 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
431 if (m != NULL)
432 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
433
434 return m;
435 }
436
437 static void
438 sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
439 {
440 struct ifnet *ifp = &sc->ec.ec_if;
441 struct mbuf *m;
442 uint32_t val;
443 int cnt, nsegs, start;
444
445 EMAC_ASSERT_LOCKED(sc);
446
447 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
448 return;
449
450 for (cnt = 0, start = sc->tx.cur; ; cnt++) {
451 if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
452 ifp->if_flags |= IFF_OACTIVE;
453 break;
454 }
455
456 IFQ_POLL(&ifp->if_snd, m);
457 if (m == NULL)
458 break;
459
460 nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
461 if (nsegs == 0) {
462 ifp->if_flags |= IFF_OACTIVE;
463 break;
464 }
465 IFQ_DEQUEUE(&ifp->if_snd, m);
466 bpf_mtap(ifp, m, BPF_D_OUT);
467
468 sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
469 }
470
471 if (cnt != 0) {
472 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
473 start, sc->tx.cur, TX_DESC_COUNT,
474 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
475
476 /* Start and run TX DMA */
477 val = RD4(sc, EMAC_TX_CTL_1);
478 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
479 }
480 }
481
482 static void
483 sunxi_emac_start(struct ifnet *ifp)
484 {
485 struct sunxi_emac_softc *sc = ifp->if_softc;
486
487 EMAC_LOCK(sc);
488 sunxi_emac_start_locked(sc);
489 EMAC_UNLOCK(sc);
490 }
491
492 static void
493 sunxi_emac_tick(void *softc)
494 {
495 struct sunxi_emac_softc *sc = softc;
496 struct mii_data *mii = &sc->mii;
497 #ifndef EMAC_MPSAFE
498 int s = splnet();
499 #endif
500
501 EMAC_LOCK(sc);
502 mii_tick(mii);
503 callout_schedule(&sc->stat_ch, hz);
504 EMAC_UNLOCK(sc);
505
506 #ifndef EMAC_MPSAFE
507 splx(s);
508 #endif
509 }
510
511 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
512 static uint32_t
513 bitrev32(uint32_t x)
514 {
515 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
516 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
517 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
518 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
519
520 return (x >> 16) | (x << 16);
521 }
522
523 static void
524 sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
525 {
526 struct ifnet *ifp = &sc->ec.ec_if;
527 uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
528 struct ether_multi *enm;
529 struct ether_multistep step;
530 const uint8_t *eaddr;
531
532 EMAC_ASSERT_LOCKED(sc);
533
534 val = 0;
535 hash[0] = hash[1] = 0;
536
537 if ((ifp->if_flags & IFF_PROMISC) != 0)
538 val |= DIS_ADDR_FILTER;
539 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
540 val |= RX_ALL_MULTICAST;
541 hash[0] = hash[1] = ~0;
542 } else {
543 val |= HASH_MULTICAST;
544 ETHER_FIRST_MULTI(step, &sc->ec, enm);
545 while (enm != NULL) {
546 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
547 crc &= 0x7f;
548 crc = bitrev32(~crc) >> 26;
549 hashreg = (crc >> 5);
550 hashbit = (crc & 0x1f);
551 hash[hashreg] |= (1 << hashbit);
552 ETHER_NEXT_MULTI(step, enm);
553 }
554 }
555
556 /* Write our unicast address */
557 eaddr = CLLADDR(ifp->if_sadl);
558 machi = (eaddr[5] << 8) | eaddr[4];
559 maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
560 (eaddr[0] << 0);
561 WR4(sc, EMAC_ADDR_HIGH(0), machi);
562 WR4(sc, EMAC_ADDR_LOW(0), maclo);
563
564 /* Multicast hash filters */
565 WR4(sc, EMAC_RX_HASH_0, hash[1]);
566 WR4(sc, EMAC_RX_HASH_1, hash[0]);
567
568 /* RX frame filter config */
569 WR4(sc, EMAC_RX_FRM_FLT, val);
570 }
571
572 static void
573 sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
574 {
575 /* Enable interrupts */
576 WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
577 }
578
579 static void
580 sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
581 {
582 /* Disable interrupts */
583 WR4(sc, EMAC_INT_EN, 0);
584 }
585
586 #ifdef SUNXI_EMAC_DEBUG
587 static void
588 sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
589 {
590 static const struct {
591 const char *name;
592 u_int reg;
593 } regs[] = {
594 { "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
595 { "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
596 { "INT_STA", EMAC_INT_STA },
597 { "INT_EN", EMAC_INT_EN },
598 { "TX_CTL_0", EMAC_TX_CTL_0 },
599 { "TX_CTL_1", EMAC_TX_CTL_1 },
600 { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
601 { "TX_DMA_LIST", EMAC_TX_DMA_LIST },
602 { "RX_CTL_0", EMAC_RX_CTL_0 },
603 { "RX_CTL_1", EMAC_RX_CTL_1 },
604 { "RX_DMA_LIST", EMAC_RX_DMA_LIST },
605 { "RX_FRM_FLT", EMAC_RX_FRM_FLT },
606 { "RX_HASH_0", EMAC_RX_HASH_0 },
607 { "RX_HASH_1", EMAC_RX_HASH_1 },
608 { "MII_CMD", EMAC_MII_CMD },
609 { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
610 { "ADDR_LOW0", EMAC_ADDR_LOW(0) },
611 { "TX_DMA_STA", EMAC_TX_DMA_STA },
612 { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
613 { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
614 { "RX_DMA_STA", EMAC_RX_DMA_STA },
615 { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
616 { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
617 { "RGMII_STA", EMAC_RGMII_STA },
618 };
619 u_int n;
620
621 for (n = 0; n < __arraycount(regs); n++)
622 device_printf(sc->dev, " %-20s %08x\n", regs[n].name,
623 RD4(sc, regs[n].reg));
624 }
625 #endif
626
627 static int
628 sunxi_emac_reset(struct sunxi_emac_softc *sc)
629 {
630 int retry;
631
632 /* Soft reset all registers and logic */
633 WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
634
635 /* Wait for soft reset bit to self-clear */
636 for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
637 if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
638 break;
639 delay(10);
640 }
641 if (retry == 0) {
642 aprint_debug_dev(sc->dev, "soft reset timed out\n");
643 #ifdef SUNXI_EMAC_DEBUG
644 sunxi_emac_dump_regs(sc);
645 #endif
646 return ETIMEDOUT;
647 }
648
649 return 0;
650 }
651
652 static int
653 sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
654 {
655 struct ifnet *ifp = &sc->ec.ec_if;
656 struct mii_data *mii = &sc->mii;
657 uint32_t val;
658
659 EMAC_ASSERT_LOCKED(sc);
660
661 if ((ifp->if_flags & IFF_RUNNING) != 0)
662 return 0;
663
664 /* Soft reset EMAC core */
665 sunxi_emac_reset(sc);
666
667 /* Write transmit and receive descriptor base address registers */
668 WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
669 WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
670
671 sunxi_emac_setup_rxfilter(sc);
672
673 /* Configure DMA burst length and priorities */
674 val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
675 if (sunxi_emac_rx_tx_pri)
676 val |= BASIC_CTL_RX_TX_PRI;
677 WR4(sc, EMAC_BASIC_CTL_1, val);
678
679 /* Enable interrupts */
680 sunxi_emac_enable_intr(sc);
681
682 /* Enable transmit DMA */
683 val = RD4(sc, EMAC_TX_CTL_1);
684 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
685
686 /* Enable receive DMA */
687 val = RD4(sc, EMAC_RX_CTL_1);
688 WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
689
690 /* Enable transmitter */
691 val = RD4(sc, EMAC_TX_CTL_0);
692 WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
693
694 /* Enable receiver */
695 val = RD4(sc, EMAC_RX_CTL_0);
696 WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
697
698 ifp->if_flags |= IFF_RUNNING;
699 ifp->if_flags &= ~IFF_OACTIVE;
700
701 mii_mediachg(mii);
702 callout_schedule(&sc->stat_ch, hz);
703
704 return 0;
705 }
706
707 static int
708 sunxi_emac_init(struct ifnet *ifp)
709 {
710 struct sunxi_emac_softc *sc = ifp->if_softc;
711 int error;
712
713 EMAC_LOCK(sc);
714 error = sunxi_emac_init_locked(sc);
715 EMAC_UNLOCK(sc);
716
717 return error;
718 }
719
720 static void
721 sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
722 {
723 struct ifnet *ifp = &sc->ec.ec_if;
724 uint32_t val;
725
726 EMAC_ASSERT_LOCKED(sc);
727
728 callout_stop(&sc->stat_ch);
729
730 mii_down(&sc->mii);
731
732 /* Stop transmit DMA and flush data in the TX FIFO */
733 val = RD4(sc, EMAC_TX_CTL_1);
734 val &= ~TX_DMA_EN;
735 val |= FLUSH_TX_FIFO;
736 WR4(sc, EMAC_TX_CTL_1, val);
737
738 /* Disable transmitter */
739 val = RD4(sc, EMAC_TX_CTL_0);
740 WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
741
742 /* Disable receiver */
743 val = RD4(sc, EMAC_RX_CTL_0);
744 WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
745
746 /* Disable interrupts */
747 sunxi_emac_disable_intr(sc);
748
749 /* Disable transmit DMA */
750 val = RD4(sc, EMAC_TX_CTL_1);
751 WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
752
753 /* Disable receive DMA */
754 val = RD4(sc, EMAC_RX_CTL_1);
755 WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
756
757 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
758 }
759
760 static void
761 sunxi_emac_stop(struct ifnet *ifp, int disable)
762 {
763 struct sunxi_emac_softc * const sc = ifp->if_softc;
764
765 EMAC_LOCK(sc);
766 sunxi_emac_stop_locked(sc, disable);
767 EMAC_UNLOCK(sc);
768 }
769
770 static int
771 sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
772 {
773 struct ifnet *ifp = &sc->ec.ec_if;
774 int error, index, len, npkt;
775 struct mbuf *m, *m0;
776 uint32_t status;
777
778 npkt = 0;
779
780 for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
781 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
782 index, index + 1,
783 RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
784
785 status = le32toh(sc->rx.desc_ring[index].status);
786 if ((status & RX_DESC_CTL) != 0)
787 break;
788
789 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
790 0, sc->rx.buf_map[index].map->dm_mapsize,
791 BUS_DMASYNC_POSTREAD);
792 bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
793
794 len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
795 if (len != 0) {
796 m = sc->rx.buf_map[index].mbuf;
797 m_set_rcvif(m, ifp);
798 m->m_flags |= M_HASFCS;
799 m->m_pkthdr.len = len;
800 m->m_len = len;
801 m->m_nextpkt = NULL;
802
803 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
804 (status & RX_FRM_TYPE) != 0) {
805 m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
806 M_CSUM_TCPv4 | M_CSUM_UDPv4;
807 if ((status & RX_HEADER_ERR) != 0)
808 m->m_pkthdr.csum_flags |=
809 M_CSUM_IPv4_BAD;
810 if ((status & RX_PAYLOAD_ERR) != 0)
811 m->m_pkthdr.csum_flags |=
812 M_CSUM_TCP_UDP_BAD;
813 }
814
815 ++npkt;
816
817 if_percpuq_enqueue(ifp->if_percpuq, m);
818 }
819
820 if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
821 error = sunxi_emac_setup_rxbuf(sc, index, m0);
822 if (error != 0) {
823 /* XXX hole in RX ring */
824 }
825 } else
826 ifp->if_ierrors++;
827
828 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
829 index, index + 1,
830 RX_DESC_COUNT, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
831 }
832
833 sc->rx.cur = index;
834
835 return npkt;
836 }
837
838 static void
839 sunxi_emac_txintr(struct sunxi_emac_softc *sc)
840 {
841 struct ifnet *ifp = &sc->ec.ec_if;
842 struct sunxi_emac_bufmap *bmap;
843 struct sunxi_emac_desc *desc;
844 uint32_t status;
845 int i;
846
847 EMAC_ASSERT_LOCKED(sc);
848
849 for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
850 KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
851 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
852 i, i + 1, TX_DESC_COUNT,
853 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
854 desc = &sc->tx.desc_ring[i];
855 status = le32toh(desc->status);
856 if ((status & TX_DESC_CTL) != 0)
857 break;
858 bmap = &sc->tx.buf_map[i];
859 if (bmap->mbuf != NULL) {
860 bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
861 0, bmap->map->dm_mapsize,
862 BUS_DMASYNC_POSTWRITE);
863 bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
864 m_freem(bmap->mbuf);
865 bmap->mbuf = NULL;
866 }
867
868 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
869 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
870 i, i + 1, TX_DESC_COUNT,
871 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
872
873 ifp->if_flags &= ~IFF_OACTIVE;
874 ifp->if_opackets++;
875 }
876
877 sc->tx.next = i;
878 }
879
880 static int
881 sunxi_emac_intr(void *arg)
882 {
883 struct sunxi_emac_softc *sc = arg;
884 struct ifnet *ifp = &sc->ec.ec_if;
885 uint32_t val;
886
887 EMAC_LOCK(sc);
888
889 val = RD4(sc, EMAC_INT_STA);
890 WR4(sc, EMAC_INT_STA, val);
891
892 if (val & RX_INT)
893 sunxi_emac_rxintr(sc);
894
895 if (val & (TX_INT|TX_BUF_UA_INT)) {
896 sunxi_emac_txintr(sc);
897 if_schedule_deferred_start(ifp);
898 }
899
900 EMAC_UNLOCK(sc);
901
902 return 1;
903 }
904
905 static int
906 sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
907 {
908 struct sunxi_emac_softc *sc = ifp->if_softc;
909 struct mii_data *mii = &sc->mii;
910 struct ifreq *ifr = data;
911 int error, s;
912
913 #ifndef EMAC_MPSAFE
914 s = splnet();
915 #endif
916
917 switch (cmd) {
918 case SIOCSIFMEDIA:
919 case SIOCGIFMEDIA:
920 #ifdef EMAC_MPSAFE
921 s = splnet();
922 #endif
923 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
924 #ifdef EMAC_MPSAFE
925 splx(s);
926 #endif
927 break;
928 default:
929 #ifdef EMAC_MPSAFE
930 s = splnet();
931 #endif
932 error = ether_ioctl(ifp, cmd, data);
933 #ifdef EMAC_MPSAFE
934 splx(s);
935 #endif
936 if (error != ENETRESET)
937 break;
938
939 error = 0;
940
941 if (cmd == SIOCSIFCAP)
942 error = (*ifp->if_init)(ifp);
943 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
944 ;
945 else if ((ifp->if_flags & IFF_RUNNING) != 0) {
946 EMAC_LOCK(sc);
947 sunxi_emac_setup_rxfilter(sc);
948 EMAC_UNLOCK(sc);
949 }
950 break;
951 }
952
953 #ifndef EMAC_MPSAFE
954 splx(s);
955 #endif
956
957 return error;
958 }
959
960 static bool
961 sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
962 {
963 const char * mdio_internal_compat[] = {
964 "allwinner,sun8i-h3-mdio-internal",
965 NULL
966 };
967 int phy;
968
969 /* Non-standard property, for compatible with old dts files */
970 if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
971 return true;
972
973 phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
974 if (phy == -1)
975 return false;
976
977 /* For internal PHY, check compatible string of parent node */
978 return of_compatible(OF_parent(phy), mdio_internal_compat) >= 0;
979 }
980
981 static int
982 sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
983 {
984 uint32_t reg, tx_delay, rx_delay;
985 const char *phy_type;
986
987 phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
988 if (phy_type == NULL)
989 return 0;
990
991 aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
992
993 syscon_lock(sc->syscon);
994 reg = syscon_read_4(sc->syscon, EMAC_CLK_REG);
995
996 reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
997 if (strcmp(phy_type, "rgmii") == 0)
998 reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
999 else if (strcmp(phy_type, "rmii") == 0)
1000 reg |= EMAC_CLK_RMII_EN;
1001 else
1002 reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1003
1004 if (of_getprop_uint32(sc->phandle, "allwinner,tx-delay-ps",
1005 &tx_delay) == 0) {
1006 reg &= ~EMAC_CLK_ETXDC;
1007 reg |= ((tx_delay / 100) << EMAC_CLK_ETXDC_SHIFT);
1008 } else if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
1009 reg &= ~EMAC_CLK_ETXDC;
1010 reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1011 }
1012 if (of_getprop_uint32(sc->phandle, "allwinner,rx-delay-ps",
1013 &rx_delay) == 0) {
1014 reg &= ~EMAC_CLK_ERXDC;
1015 reg |= ((rx_delay / 100) << EMAC_CLK_ERXDC_SHIFT);
1016 } else if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
1017 reg &= ~EMAC_CLK_ERXDC;
1018 reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1019 }
1020
1021 if (sc->type == EMAC_H3 || sc->type == EMAC_H6) {
1022 if (sunxi_emac_has_internal_phy(sc)) {
1023 reg |= EMAC_CLK_EPHY_SELECT;
1024 reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1025 if (of_hasprop(sc->phandle,
1026 "allwinner,leds-active-low"))
1027 reg |= EMAC_CLK_EPHY_LED_POL;
1028 else
1029 reg &= ~EMAC_CLK_EPHY_LED_POL;
1030
1031 /* Set internal PHY addr to 1 */
1032 reg &= ~EMAC_CLK_EPHY_ADDR;
1033 reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1034 } else {
1035 reg &= ~EMAC_CLK_EPHY_SELECT;
1036 }
1037 }
1038
1039 aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
1040
1041 syscon_write_4(sc->syscon, EMAC_CLK_REG, reg);
1042 syscon_unlock(sc->syscon);
1043
1044 return 0;
1045 }
1046
1047 static int
1048 sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
1049 {
1050 u_int freq;
1051 int error, div;
1052
1053 /* Configure PHY for MII or RGMII mode */
1054 if (sunxi_emac_setup_phy(sc) != 0)
1055 return ENXIO;
1056
1057 /* Enable clocks */
1058 error = clk_enable(sc->clk_ahb);
1059 if (error != 0) {
1060 aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
1061 return error;
1062 }
1063
1064 if (sc->clk_ephy != NULL) {
1065 error = clk_enable(sc->clk_ephy);
1066 if (error != 0) {
1067 aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
1068 return error;
1069 }
1070 }
1071
1072 /* De-assert reset */
1073 error = fdtbus_reset_deassert(sc->rst_ahb);
1074 if (error != 0) {
1075 aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
1076 return error;
1077 }
1078 if (sc->rst_ephy != NULL) {
1079 error = fdtbus_reset_deassert(sc->rst_ephy);
1080 if (error != 0) {
1081 aprint_error_dev(sc->dev,
1082 "cannot de-assert ephy reset\n");
1083 return error;
1084 }
1085 }
1086
1087 /* Enable PHY regulator if applicable */
1088 if (sc->reg_phy != NULL) {
1089 error = fdtbus_regulator_enable(sc->reg_phy);
1090 if (error != 0) {
1091 aprint_error_dev(sc->dev,
1092 "cannot enable PHY regulator\n");
1093 return error;
1094 }
1095 }
1096
1097 /* Determine MDC clock divide ratio based on AHB clock */
1098 freq = clk_get_rate(sc->clk_ahb);
1099 if (freq == 0) {
1100 aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1101 return ENXIO;
1102 }
1103 div = freq / MDIO_FREQ;
1104 if (div <= 16)
1105 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1106 else if (div <= 32)
1107 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1108 else if (div <= 64)
1109 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1110 else if (div <= 128)
1111 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1112 else {
1113 aprint_error_dev(sc->dev,
1114 "cannot determine MDC clock divide ratio\n");
1115 return ENXIO;
1116 }
1117
1118 aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1119 freq, sc->mdc_div_ratio_m);
1120
1121 return 0;
1122 }
1123
1124 static void
1125 sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1126 {
1127 uint32_t maclo, machi;
1128 #if notyet
1129 u_char rootkey[16];
1130 #endif
1131
1132 machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1133 maclo = RD4(sc, EMAC_ADDR_LOW(0));
1134
1135 if (maclo == 0xffffffff && machi == 0xffff) {
1136 #if notyet
1137 /* MAC address in hardware is invalid, create one */
1138 if (aw_sid_get_rootkey(rootkey) == 0 &&
1139 (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1140 rootkey[15]) != 0) {
1141 /* MAC address is derived from the root key in SID */
1142 maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1143 (rootkey[3] << 8) | 0x02;
1144 machi = (rootkey[15] << 8) | rootkey[14];
1145 } else {
1146 #endif
1147 /* Create one */
1148 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1149 machi = cprng_strong32() & 0xffff;
1150 #if notyet
1151 }
1152 #endif
1153 }
1154
1155 eaddr[0] = maclo & 0xff;
1156 eaddr[1] = (maclo >> 8) & 0xff;
1157 eaddr[2] = (maclo >> 16) & 0xff;
1158 eaddr[3] = (maclo >> 24) & 0xff;
1159 eaddr[4] = machi & 0xff;
1160 eaddr[5] = (machi >> 8) & 0xff;
1161 }
1162
1163 static int
1164 sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1165 {
1166 uint32_t delay_prop[3];
1167 int pin_value;
1168
1169 if (sc->pin_reset == NULL)
1170 return 0;
1171
1172 if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1173 sizeof(delay_prop)) <= 0)
1174 return ENXIO;
1175
1176 pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1177
1178 fdtbus_gpio_write(sc->pin_reset, pin_value);
1179 delay(htole32(delay_prop[0]));
1180 fdtbus_gpio_write(sc->pin_reset, !pin_value);
1181 delay(htole32(delay_prop[1]));
1182 fdtbus_gpio_write(sc->pin_reset, pin_value);
1183 delay(htole32(delay_prop[2]));
1184
1185 return 0;
1186 }
1187
1188 static int
1189 sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1190 {
1191 struct mbuf *m;
1192 int error, nsegs, i;
1193
1194 /* Setup TX ring */
1195 sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1196 error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1197 BUS_DMA_WAITOK, &sc->tx.desc_map);
1198 if (error)
1199 return error;
1200 error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1201 &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1202 if (error)
1203 return error;
1204 error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1205 TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1206 BUS_DMA_WAITOK);
1207 if (error)
1208 return error;
1209 error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1210 TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1211 if (error)
1212 return error;
1213 sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1214
1215 memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1216 bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1217 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1218
1219 for (i = 0; i < TX_DESC_COUNT; i++)
1220 sc->tx.desc_ring[i].next =
1221 htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1222
1223 sc->tx.queued = TX_DESC_COUNT;
1224 for (i = 0; i < TX_DESC_COUNT; i++) {
1225 error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1226 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1227 &sc->tx.buf_map[i].map);
1228 if (error != 0) {
1229 device_printf(sc->dev, "cannot create TX buffer map\n");
1230 return error;
1231 }
1232 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1233 }
1234
1235 /* Setup RX ring */
1236 sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1237 error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1238 BUS_DMA_WAITOK, &sc->rx.desc_map);
1239 if (error)
1240 return error;
1241 error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1242 &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1243 if (error)
1244 return error;
1245 error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1246 RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1247 BUS_DMA_WAITOK);
1248 if (error)
1249 return error;
1250 error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1251 RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1252 if (error)
1253 return error;
1254 sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1255
1256 memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1257
1258 for (i = 0; i < RX_DESC_COUNT; i++) {
1259 error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1260 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1261 &sc->rx.buf_map[i].map);
1262 if (error != 0) {
1263 device_printf(sc->dev, "cannot create RX buffer map\n");
1264 return error;
1265 }
1266 if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1267 device_printf(sc->dev, "cannot allocate RX mbuf\n");
1268 return ENOMEM;
1269 }
1270 error = sunxi_emac_setup_rxbuf(sc, i, m);
1271 if (error != 0) {
1272 device_printf(sc->dev, "cannot create RX buffer\n");
1273 return error;
1274 }
1275 }
1276 bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1277 0, sc->rx.desc_map->dm_mapsize,
1278 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1279
1280 return 0;
1281 }
1282
1283 static int
1284 sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1285 {
1286 const int phandle = sc->phandle;
1287 bus_addr_t addr, size;
1288
1289 /* Map EMAC registers */
1290 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0)
1291 return ENXIO;
1292 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh) != 0)
1293 return ENXIO;
1294
1295 /* Get SYSCON registers */
1296 sc->syscon = fdtbus_syscon_acquire(phandle, "syscon");
1297 if (sc->syscon == NULL)
1298 return ENXIO;
1299
1300 /* The "ahb"/"stmmaceth" clock and reset is required */
1301 if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1302 (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL)
1303 return ENXIO;
1304 if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1305 (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL)
1306 return ENXIO;
1307
1308 /* Internal PHY clock and reset are optional properties. */
1309 sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1310 if (sc->clk_ephy == NULL) {
1311 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1312 if (phy_phandle != -1)
1313 sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
1314 }
1315 sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
1316 if (sc->rst_ephy == NULL) {
1317 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1318 if (phy_phandle != -1)
1319 sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
1320 }
1321
1322 /* Regulator is optional */
1323 sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1324
1325 /* Reset GPIO is optional */
1326 sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1327 "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1328
1329 return 0;
1330 }
1331
1332 static int
1333 sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1334 {
1335 bus_addr_t addr;
1336 int phy_phandle;
1337
1338 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
1339 if (phy_phandle == -1)
1340 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1341 if (phy_phandle == -1)
1342 return MII_PHY_ANY;
1343
1344 if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1345 return MII_PHY_ANY;
1346
1347 return (int)addr;
1348 }
1349
1350 static int
1351 sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1352 {
1353 struct fdt_attach_args * const faa = aux;
1354
1355 return of_match_compat_data(faa->faa_phandle, compat_data);
1356 }
1357
1358 static void
1359 sunxi_emac_attach(device_t parent, device_t self, void *aux)
1360 {
1361 struct fdt_attach_args * const faa = aux;
1362 struct sunxi_emac_softc * const sc = device_private(self);
1363 const int phandle = faa->faa_phandle;
1364 struct mii_data *mii = &sc->mii;
1365 struct ifnet *ifp = &sc->ec.ec_if;
1366 uint8_t eaddr[ETHER_ADDR_LEN];
1367 char intrstr[128];
1368
1369 sc->dev = self;
1370 sc->phandle = phandle;
1371 sc->bst = faa->faa_bst;
1372 sc->dmat = faa->faa_dmat;
1373 sc->type = of_search_compatible(phandle, compat_data)->data;
1374 sc->phy_id = sunxi_emac_get_phyid(sc);
1375
1376 if (sunxi_emac_get_resources(sc) != 0) {
1377 aprint_error(": cannot allocate resources for device\n");
1378 return;
1379 }
1380 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1381 aprint_error(": cannot decode interrupt\n");
1382 return;
1383 }
1384
1385 mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1386 callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1387 callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1388
1389 aprint_naive("\n");
1390 aprint_normal(": EMAC\n");
1391
1392 /* Setup clocks and regulators */
1393 if (sunxi_emac_setup_resources(sc) != 0)
1394 return;
1395
1396 /* Read MAC address before resetting the chip */
1397 sunxi_emac_get_eaddr(sc, eaddr);
1398 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1399
1400 /* Reset PHY if necessary */
1401 if (sunxi_emac_phy_reset(sc) != 0) {
1402 aprint_error_dev(self, "failed to reset PHY\n");
1403 return;
1404 }
1405
1406 /* Setup DMA descriptors */
1407 if (sunxi_emac_setup_dma(sc) != 0) {
1408 aprint_error_dev(self, "failed to setup DMA descriptors\n");
1409 return;
1410 }
1411
1412 /* Install interrupt handler */
1413 sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
1414 FDT_INTR_FLAGS, sunxi_emac_intr, sc);
1415 if (sc->ih == NULL) {
1416 aprint_error_dev(self, "failed to establish interrupt on %s\n",
1417 intrstr);
1418 return;
1419 }
1420 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1421
1422 /* Setup ethernet interface */
1423 ifp->if_softc = sc;
1424 snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1425 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1426 #ifdef EMAC_MPSAFE
1427 ifp->if_extflags = IFEF_MPSAFE;
1428 #endif
1429 ifp->if_start = sunxi_emac_start;
1430 ifp->if_ioctl = sunxi_emac_ioctl;
1431 ifp->if_init = sunxi_emac_init;
1432 ifp->if_stop = sunxi_emac_stop;
1433 ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1434 IFCAP_CSUM_IPv4_Tx |
1435 IFCAP_CSUM_TCPv4_Rx |
1436 IFCAP_CSUM_TCPv4_Tx |
1437 IFCAP_CSUM_UDPv4_Rx |
1438 IFCAP_CSUM_UDPv4_Tx;
1439 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1440 IFQ_SET_READY(&ifp->if_snd);
1441
1442 /* 802.1Q VLAN-sized frames are supported */
1443 sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1444
1445 /* Attach MII driver */
1446 sc->ec.ec_mii = mii;
1447 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1448 mii->mii_ifp = ifp;
1449 mii->mii_readreg = sunxi_emac_mii_readreg;
1450 mii->mii_writereg = sunxi_emac_mii_writereg;
1451 mii->mii_statchg = sunxi_emac_mii_statchg;
1452 mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1453 MIIF_DOPAUSE);
1454
1455 if (LIST_EMPTY(&mii->mii_phys)) {
1456 aprint_error_dev(self, "no PHY found!\n");
1457 return;
1458 }
1459 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
1460
1461 /* Attach interface */
1462 if_attach(ifp);
1463 if_deferred_start_init(ifp, NULL);
1464
1465 /* Attach ethernet interface */
1466 ether_ifattach(ifp, eaddr);
1467 }
1468
1469 CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1470 sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1471