sunxi_emac.c revision 1.22 1 /* $NetBSD: sunxi_emac.c,v 1.22 2019/03/04 11:35:38 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2016-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 */
32
33 #include "opt_net_mpsafe.h"
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.22 2019/03/04 11:35:38 jmcneill Exp $");
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/device.h>
41 #include <sys/intr.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/mutex.h>
45 #include <sys/callout.h>
46 #include <sys/gpio.h>
47 #include <sys/cprng.h>
48
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/bpf.h>
54
55 #include <dev/mii/miivar.h>
56
57 #include <dev/fdt/fdtvar.h>
58 #include <dev/fdt/syscon.h>
59
60 #include <arm/sunxi/sunxi_emac.h>
61
62 #ifdef NET_MPSAFE
63 #define EMAC_MPSAFE 1
64 #define CALLOUT_FLAGS CALLOUT_MPSAFE
65 #define FDT_INTR_FLAGS FDT_INTR_MPSAFE
66 #else
67 #define CALLOUT_FLAGS 0
68 #define FDT_INTR_FLAGS 0
69 #endif
70
71 #define EMAC_IFNAME "emac%d"
72
73 #define ETHER_ALIGN 2
74
75 #define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx)
76 #define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx)
77 #define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx))
78
79 #define DESC_ALIGN sizeof(struct sunxi_emac_desc)
80 #define TX_DESC_COUNT 1024
81 #define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
82 #define RX_DESC_COUNT 256
83 #define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
84
85 #define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc))
86 #define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
87 #define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
88 #define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
89
90 #define TX_MAX_SEGS 128
91
92 #define SOFT_RST_RETRY 1000
93 #define MII_BUSY_RETRY 1000
94 #define MDIO_FREQ 2500000
95
96 #define BURST_LEN_DEFAULT 8
97 #define RX_TX_PRI_DEFAULT 0
98 #define PAUSE_TIME_DEFAULT 0x400
99
100 /* syscon EMAC clock register */
101 #define EMAC_CLK_REG 0x30
102 #define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
103 #define EMAC_CLK_EPHY_ADDR_SHIFT 20
104 #define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
105 #define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
106 #define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
107 #define EMAC_CLK_RMII_EN (1 << 13)
108 #define EMAC_CLK_ETXDC (0x7 << 10)
109 #define EMAC_CLK_ETXDC_SHIFT 10
110 #define EMAC_CLK_ERXDC (0x1f << 5)
111 #define EMAC_CLK_ERXDC_SHIFT 5
112 #define EMAC_CLK_PIT (0x1 << 2)
113 #define EMAC_CLK_PIT_MII (0 << 2)
114 #define EMAC_CLK_PIT_RGMII (1 << 2)
115 #define EMAC_CLK_SRC (0x3 << 0)
116 #define EMAC_CLK_SRC_MII (0 << 0)
117 #define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
118 #define EMAC_CLK_SRC_RGMII (2 << 0)
119
120 /* Burst length of RX and TX DMA transfers */
121 static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
122
123 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
124 static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
125
126 /* Pause time field in the transmitted control frame */
127 static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
128
129 enum sunxi_emac_type {
130 EMAC_A64 = 1,
131 EMAC_A83T,
132 EMAC_H3,
133 EMAC_H6,
134 };
135
136 static const struct of_compat_data compat_data[] = {
137 { "allwinner,sun8i-a83t-emac", EMAC_A83T },
138 { "allwinner,sun8i-h3-emac", EMAC_H3 },
139 { "allwinner,sun50i-a64-emac", EMAC_A64 },
140 { "allwinner,sun50i-h6-emac", EMAC_H6 },
141 { NULL }
142 };
143
144 struct sunxi_emac_bufmap {
145 bus_dmamap_t map;
146 struct mbuf *mbuf;
147 };
148
149 struct sunxi_emac_txring {
150 bus_dma_tag_t desc_tag;
151 bus_dmamap_t desc_map;
152 bus_dma_segment_t desc_dmaseg;
153 struct sunxi_emac_desc *desc_ring;
154 bus_addr_t desc_ring_paddr;
155 bus_dma_tag_t buf_tag;
156 struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
157 u_int cur, next, queued;
158 };
159
160 struct sunxi_emac_rxring {
161 bus_dma_tag_t desc_tag;
162 bus_dmamap_t desc_map;
163 bus_dma_segment_t desc_dmaseg;
164 struct sunxi_emac_desc *desc_ring;
165 bus_addr_t desc_ring_paddr;
166 bus_dma_tag_t buf_tag;
167 struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
168 u_int cur;
169 };
170
171 struct sunxi_emac_softc {
172 device_t dev;
173 int phandle;
174 enum sunxi_emac_type type;
175 bus_space_tag_t bst;
176 bus_dma_tag_t dmat;
177
178 bus_space_handle_t bsh;
179 struct clk *clk_ahb;
180 struct clk *clk_ephy;
181 struct fdtbus_reset *rst_ahb;
182 struct fdtbus_reset *rst_ephy;
183 struct fdtbus_regulator *reg_phy;
184 struct fdtbus_gpio_pin *pin_reset;
185
186 struct syscon *syscon;
187
188 int phy_id;
189
190 kmutex_t mtx;
191 struct ethercom ec;
192 struct mii_data mii;
193 callout_t stat_ch;
194 void *ih;
195 u_int mdc_div_ratio_m;
196
197 struct sunxi_emac_txring tx;
198 struct sunxi_emac_rxring rx;
199 };
200
201 #define RD4(sc, reg) \
202 bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
203 #define WR4(sc, reg, val) \
204 bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
205
206 static int
207 sunxi_emac_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
208 {
209 struct sunxi_emac_softc *sc = device_private(dev);
210 int retry;
211
212 WR4(sc, EMAC_MII_CMD,
213 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
214 (phy << PHY_ADDR_SHIFT) |
215 (reg << PHY_REG_ADDR_SHIFT) |
216 MII_BUSY);
217 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
218 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
219 *val = RD4(sc, EMAC_MII_DATA) & 0xffff;
220 break;
221 }
222 delay(10);
223 }
224
225 if (retry == 0) {
226 device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
227 phy, reg);
228 return ETIMEDOUT;
229 }
230
231 return 0;
232 }
233
234 static int
235 sunxi_emac_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
236 {
237 struct sunxi_emac_softc *sc = device_private(dev);
238 int retry;
239
240 WR4(sc, EMAC_MII_DATA, val);
241 WR4(sc, EMAC_MII_CMD,
242 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
243 (phy << PHY_ADDR_SHIFT) |
244 (reg << PHY_REG_ADDR_SHIFT) |
245 MII_WR | MII_BUSY);
246 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
247 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
248 break;
249 delay(10);
250 }
251
252 if (retry == 0) {
253 device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
254 phy, reg);
255 return ETIMEDOUT;
256 }
257
258 return 0;
259 }
260
261 static void
262 sunxi_emac_update_link(struct sunxi_emac_softc *sc)
263 {
264 struct mii_data *mii = &sc->mii;
265 uint32_t val;
266
267 val = RD4(sc, EMAC_BASIC_CTL_0);
268 val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
269
270 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
271 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
272 val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
273 else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
274 val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
275 else
276 val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
277
278 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
279 val |= BASIC_CTL_DUPLEX;
280
281 WR4(sc, EMAC_BASIC_CTL_0, val);
282
283 val = RD4(sc, EMAC_RX_CTL_0);
284 val &= ~RX_FLOW_CTL_EN;
285 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
286 val |= RX_FLOW_CTL_EN;
287 WR4(sc, EMAC_RX_CTL_0, val);
288
289 val = RD4(sc, EMAC_TX_FLOW_CTL);
290 val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
291 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
292 val |= TX_FLOW_CTL_EN;
293 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
294 val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
295 WR4(sc, EMAC_TX_FLOW_CTL, val);
296 }
297
298 static void
299 sunxi_emac_mii_statchg(struct ifnet *ifp)
300 {
301 struct sunxi_emac_softc * const sc = ifp->if_softc;
302
303 sunxi_emac_update_link(sc);
304 }
305
306 static void
307 sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
308 bus_dmamap_t map, int start, int end, int total, int flags)
309 {
310 if (end > start) {
311 bus_dmamap_sync(dmat, map, DESC_OFF(start),
312 DESC_OFF(end) - DESC_OFF(start), flags);
313 } else {
314 bus_dmamap_sync(dmat, map, DESC_OFF(start),
315 DESC_OFF(total) - DESC_OFF(start), flags);
316 if (DESC_OFF(end) - DESC_OFF(0) > 0)
317 bus_dmamap_sync(dmat, map, DESC_OFF(0),
318 DESC_OFF(end) - DESC_OFF(0), flags);
319 }
320 }
321
322 static void
323 sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
324 bus_addr_t paddr, u_int len)
325 {
326 uint32_t status, size;
327
328 if (paddr == 0 || len == 0) {
329 status = 0;
330 size = 0;
331 --sc->tx.queued;
332 } else {
333 status = TX_DESC_CTL;
334 size = flags | len;
335 ++sc->tx.queued;
336 }
337
338 sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
339 sc->tx.desc_ring[index].size = htole32(size);
340 sc->tx.desc_ring[index].status = htole32(status);
341 }
342
343 static int
344 sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
345 {
346 bus_dma_segment_t *segs;
347 int error, nsegs, cur, i, flags;
348 u_int csum_flags;
349
350 error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
351 sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
352 if (error == EFBIG) {
353 device_printf(sc->dev,
354 "TX packet needs too many DMA segments, dropping...\n");
355 m_freem(m);
356 return 0;
357 }
358 if (error != 0)
359 return 0;
360
361 segs = sc->tx.buf_map[index].map->dm_segs;
362 nsegs = sc->tx.buf_map[index].map->dm_nsegs;
363
364 flags = TX_FIR_DESC;
365 if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
366 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
367 csum_flags = TX_CHECKSUM_CTL_FULL;
368 else
369 csum_flags = TX_CHECKSUM_CTL_IP;
370 flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
371 }
372
373 for (cur = index, i = 0; i < nsegs; i++) {
374 sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
375 if (i == nsegs - 1)
376 flags |= TX_LAST_DESC | TX_INT_CTL;
377
378 sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
379 segs[i].ds_len);
380 flags &= ~TX_FIR_DESC;
381 cur = TX_NEXT(cur);
382 }
383
384 bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
385 0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
386
387 return nsegs;
388 }
389
390 static void
391 sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
392 bus_addr_t paddr)
393 {
394 uint32_t status, size;
395
396 status = RX_DESC_CTL;
397 size = MCLBYTES - 1;
398
399 sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
400 sc->rx.desc_ring[index].size = htole32(size);
401 sc->rx.desc_ring[index].next =
402 htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
403 sc->rx.desc_ring[index].status = htole32(status);
404 }
405
406 static int
407 sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
408 {
409 int error;
410
411 m_adj(m, ETHER_ALIGN);
412
413 error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
414 sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT);
415 if (error != 0)
416 return error;
417
418 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
419 0, sc->rx.buf_map[index].map->dm_mapsize,
420 BUS_DMASYNC_PREREAD);
421
422 sc->rx.buf_map[index].mbuf = m;
423 sunxi_emac_setup_rxdesc(sc, index,
424 sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
425
426 return 0;
427 }
428
429 static struct mbuf *
430 sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
431 {
432 struct mbuf *m;
433
434 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
435 if (m != NULL)
436 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
437
438 return m;
439 }
440
441 static void
442 sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
443 {
444 struct ifnet *ifp = &sc->ec.ec_if;
445 struct mbuf *m;
446 uint32_t val;
447 int cnt, nsegs, start;
448
449 EMAC_ASSERT_LOCKED(sc);
450
451 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
452 return;
453
454 for (cnt = 0, start = sc->tx.cur; ; cnt++) {
455 if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
456 ifp->if_flags |= IFF_OACTIVE;
457 break;
458 }
459
460 IFQ_POLL(&ifp->if_snd, m);
461 if (m == NULL)
462 break;
463
464 nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
465 if (nsegs == 0) {
466 ifp->if_flags |= IFF_OACTIVE;
467 break;
468 }
469 IFQ_DEQUEUE(&ifp->if_snd, m);
470 bpf_mtap(ifp, m, BPF_D_OUT);
471
472 sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
473 }
474
475 if (cnt != 0) {
476 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
477 start, sc->tx.cur, TX_DESC_COUNT,
478 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
479
480 /* Start and run TX DMA */
481 val = RD4(sc, EMAC_TX_CTL_1);
482 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
483 }
484 }
485
486 static void
487 sunxi_emac_start(struct ifnet *ifp)
488 {
489 struct sunxi_emac_softc *sc = ifp->if_softc;
490
491 EMAC_LOCK(sc);
492 sunxi_emac_start_locked(sc);
493 EMAC_UNLOCK(sc);
494 }
495
496 static void
497 sunxi_emac_tick(void *softc)
498 {
499 struct sunxi_emac_softc *sc = softc;
500 struct mii_data *mii = &sc->mii;
501 #ifndef EMAC_MPSAFE
502 int s = splnet();
503 #endif
504
505 EMAC_LOCK(sc);
506 mii_tick(mii);
507 callout_schedule(&sc->stat_ch, hz);
508 EMAC_UNLOCK(sc);
509
510 #ifndef EMAC_MPSAFE
511 splx(s);
512 #endif
513 }
514
515 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
516 static uint32_t
517 bitrev32(uint32_t x)
518 {
519 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
520 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
521 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
522 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
523
524 return (x >> 16) | (x << 16);
525 }
526
527 static void
528 sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
529 {
530 struct ifnet *ifp = &sc->ec.ec_if;
531 uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
532 struct ether_multi *enm;
533 struct ether_multistep step;
534 const uint8_t *eaddr;
535
536 EMAC_ASSERT_LOCKED(sc);
537
538 val = 0;
539 hash[0] = hash[1] = 0;
540
541 if ((ifp->if_flags & IFF_PROMISC) != 0)
542 val |= DIS_ADDR_FILTER;
543 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
544 val |= RX_ALL_MULTICAST;
545 hash[0] = hash[1] = ~0;
546 } else {
547 val |= HASH_MULTICAST;
548 ETHER_FIRST_MULTI(step, &sc->ec, enm);
549 while (enm != NULL) {
550 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
551 crc &= 0x7f;
552 crc = bitrev32(~crc) >> 26;
553 hashreg = (crc >> 5);
554 hashbit = (crc & 0x1f);
555 hash[hashreg] |= (1 << hashbit);
556 ETHER_NEXT_MULTI(step, enm);
557 }
558 }
559
560 /* Write our unicast address */
561 eaddr = CLLADDR(ifp->if_sadl);
562 machi = (eaddr[5] << 8) | eaddr[4];
563 maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
564 (eaddr[0] << 0);
565 WR4(sc, EMAC_ADDR_HIGH(0), machi);
566 WR4(sc, EMAC_ADDR_LOW(0), maclo);
567
568 /* Multicast hash filters */
569 WR4(sc, EMAC_RX_HASH_0, hash[1]);
570 WR4(sc, EMAC_RX_HASH_1, hash[0]);
571
572 /* RX frame filter config */
573 WR4(sc, EMAC_RX_FRM_FLT, val);
574 }
575
576 static void
577 sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
578 {
579 /* Enable interrupts */
580 WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
581 }
582
583 static void
584 sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
585 {
586 /* Disable interrupts */
587 WR4(sc, EMAC_INT_EN, 0);
588 }
589
590 #ifdef SUNXI_EMAC_DEBUG
591 static void
592 sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
593 {
594 static const struct {
595 const char *name;
596 u_int reg;
597 } regs[] = {
598 { "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
599 { "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
600 { "INT_STA", EMAC_INT_STA },
601 { "INT_EN", EMAC_INT_EN },
602 { "TX_CTL_0", EMAC_TX_CTL_0 },
603 { "TX_CTL_1", EMAC_TX_CTL_1 },
604 { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
605 { "TX_DMA_LIST", EMAC_TX_DMA_LIST },
606 { "RX_CTL_0", EMAC_RX_CTL_0 },
607 { "RX_CTL_1", EMAC_RX_CTL_1 },
608 { "RX_DMA_LIST", EMAC_RX_DMA_LIST },
609 { "RX_FRM_FLT", EMAC_RX_FRM_FLT },
610 { "RX_HASH_0", EMAC_RX_HASH_0 },
611 { "RX_HASH_1", EMAC_RX_HASH_1 },
612 { "MII_CMD", EMAC_MII_CMD },
613 { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
614 { "ADDR_LOW0", EMAC_ADDR_LOW(0) },
615 { "TX_DMA_STA", EMAC_TX_DMA_STA },
616 { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
617 { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
618 { "RX_DMA_STA", EMAC_RX_DMA_STA },
619 { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
620 { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
621 { "RGMII_STA", EMAC_RGMII_STA },
622 };
623 u_int n;
624
625 for (n = 0; n < __arraycount(regs); n++)
626 device_printf(sc->dev, " %-20s %08x\n", regs[n].name,
627 RD4(sc, regs[n].reg));
628 }
629 #endif
630
631 static int
632 sunxi_emac_reset(struct sunxi_emac_softc *sc)
633 {
634 int retry;
635
636 /* Soft reset all registers and logic */
637 WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
638
639 /* Wait for soft reset bit to self-clear */
640 for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
641 if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
642 break;
643 delay(10);
644 }
645 if (retry == 0) {
646 aprint_debug_dev(sc->dev, "soft reset timed out\n");
647 #ifdef SUNXI_EMAC_DEBUG
648 sunxi_emac_dump_regs(sc);
649 #endif
650 return ETIMEDOUT;
651 }
652
653 return 0;
654 }
655
656 static int
657 sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
658 {
659 struct ifnet *ifp = &sc->ec.ec_if;
660 struct mii_data *mii = &sc->mii;
661 uint32_t val;
662
663 EMAC_ASSERT_LOCKED(sc);
664
665 if ((ifp->if_flags & IFF_RUNNING) != 0)
666 return 0;
667
668 /* Soft reset EMAC core */
669 sunxi_emac_reset(sc);
670
671 /* Write transmit and receive descriptor base address registers */
672 WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
673 WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
674
675 sunxi_emac_setup_rxfilter(sc);
676
677 /* Configure DMA burst length and priorities */
678 val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
679 if (sunxi_emac_rx_tx_pri)
680 val |= BASIC_CTL_RX_TX_PRI;
681 WR4(sc, EMAC_BASIC_CTL_1, val);
682
683 /* Enable interrupts */
684 sunxi_emac_enable_intr(sc);
685
686 /* Enable transmit DMA */
687 val = RD4(sc, EMAC_TX_CTL_1);
688 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
689
690 /* Enable receive DMA */
691 val = RD4(sc, EMAC_RX_CTL_1);
692 WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
693
694 /* Enable transmitter */
695 val = RD4(sc, EMAC_TX_CTL_0);
696 WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
697
698 /* Enable receiver */
699 val = RD4(sc, EMAC_RX_CTL_0);
700 WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
701
702 ifp->if_flags |= IFF_RUNNING;
703 ifp->if_flags &= ~IFF_OACTIVE;
704
705 mii_mediachg(mii);
706 callout_schedule(&sc->stat_ch, hz);
707
708 return 0;
709 }
710
711 static int
712 sunxi_emac_init(struct ifnet *ifp)
713 {
714 struct sunxi_emac_softc *sc = ifp->if_softc;
715 int error;
716
717 EMAC_LOCK(sc);
718 error = sunxi_emac_init_locked(sc);
719 EMAC_UNLOCK(sc);
720
721 return error;
722 }
723
724 static void
725 sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
726 {
727 struct ifnet *ifp = &sc->ec.ec_if;
728 uint32_t val;
729
730 EMAC_ASSERT_LOCKED(sc);
731
732 callout_stop(&sc->stat_ch);
733
734 mii_down(&sc->mii);
735
736 /* Stop transmit DMA and flush data in the TX FIFO */
737 val = RD4(sc, EMAC_TX_CTL_1);
738 val &= ~TX_DMA_EN;
739 val |= FLUSH_TX_FIFO;
740 WR4(sc, EMAC_TX_CTL_1, val);
741
742 /* Disable transmitter */
743 val = RD4(sc, EMAC_TX_CTL_0);
744 WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
745
746 /* Disable receiver */
747 val = RD4(sc, EMAC_RX_CTL_0);
748 WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
749
750 /* Disable interrupts */
751 sunxi_emac_disable_intr(sc);
752
753 /* Disable transmit DMA */
754 val = RD4(sc, EMAC_TX_CTL_1);
755 WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
756
757 /* Disable receive DMA */
758 val = RD4(sc, EMAC_RX_CTL_1);
759 WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
760
761 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
762 }
763
764 static void
765 sunxi_emac_stop(struct ifnet *ifp, int disable)
766 {
767 struct sunxi_emac_softc * const sc = ifp->if_softc;
768
769 EMAC_LOCK(sc);
770 sunxi_emac_stop_locked(sc, disable);
771 EMAC_UNLOCK(sc);
772 }
773
774 static int
775 sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
776 {
777 struct ifnet *ifp = &sc->ec.ec_if;
778 int error, index, len, npkt;
779 struct mbuf *m, *m0;
780 uint32_t status;
781
782 npkt = 0;
783
784 for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
785 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
786 index, index + 1,
787 RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
788
789 status = le32toh(sc->rx.desc_ring[index].status);
790 if ((status & RX_DESC_CTL) != 0)
791 break;
792
793 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
794 0, sc->rx.buf_map[index].map->dm_mapsize,
795 BUS_DMASYNC_POSTREAD);
796 bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
797
798 len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
799 if (len != 0) {
800 m = sc->rx.buf_map[index].mbuf;
801 m_set_rcvif(m, ifp);
802 m->m_flags |= M_HASFCS;
803 m->m_pkthdr.len = len;
804 m->m_len = len;
805 m->m_nextpkt = NULL;
806
807 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
808 (status & RX_FRM_TYPE) != 0) {
809 m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
810 M_CSUM_TCPv4 | M_CSUM_UDPv4;
811 if ((status & RX_HEADER_ERR) != 0)
812 m->m_pkthdr.csum_flags |=
813 M_CSUM_IPv4_BAD;
814 if ((status & RX_PAYLOAD_ERR) != 0)
815 m->m_pkthdr.csum_flags |=
816 M_CSUM_TCP_UDP_BAD;
817 }
818
819 ++npkt;
820
821 if_percpuq_enqueue(ifp->if_percpuq, m);
822 }
823
824 if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
825 error = sunxi_emac_setup_rxbuf(sc, index, m0);
826 if (error != 0) {
827 /* XXX hole in RX ring */
828 }
829 } else
830 ifp->if_ierrors++;
831
832 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
833 index, index + 1,
834 RX_DESC_COUNT, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
835 }
836
837 sc->rx.cur = index;
838
839 return npkt;
840 }
841
842 static void
843 sunxi_emac_txintr(struct sunxi_emac_softc *sc)
844 {
845 struct ifnet *ifp = &sc->ec.ec_if;
846 struct sunxi_emac_bufmap *bmap;
847 struct sunxi_emac_desc *desc;
848 uint32_t status;
849 int i;
850
851 EMAC_ASSERT_LOCKED(sc);
852
853 for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
854 KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
855 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
856 i, i + 1, TX_DESC_COUNT,
857 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
858 desc = &sc->tx.desc_ring[i];
859 status = le32toh(desc->status);
860 if ((status & TX_DESC_CTL) != 0)
861 break;
862 bmap = &sc->tx.buf_map[i];
863 if (bmap->mbuf != NULL) {
864 bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
865 0, bmap->map->dm_mapsize,
866 BUS_DMASYNC_POSTWRITE);
867 bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
868 m_freem(bmap->mbuf);
869 bmap->mbuf = NULL;
870 }
871
872 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
873 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
874 i, i + 1, TX_DESC_COUNT,
875 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
876
877 ifp->if_flags &= ~IFF_OACTIVE;
878 ifp->if_opackets++;
879 }
880
881 sc->tx.next = i;
882 }
883
884 static int
885 sunxi_emac_intr(void *arg)
886 {
887 struct sunxi_emac_softc *sc = arg;
888 struct ifnet *ifp = &sc->ec.ec_if;
889 uint32_t val;
890
891 EMAC_LOCK(sc);
892
893 val = RD4(sc, EMAC_INT_STA);
894 WR4(sc, EMAC_INT_STA, val);
895
896 if (val & RX_INT)
897 sunxi_emac_rxintr(sc);
898
899 if (val & (TX_INT|TX_BUF_UA_INT)) {
900 sunxi_emac_txintr(sc);
901 if_schedule_deferred_start(ifp);
902 }
903
904 EMAC_UNLOCK(sc);
905
906 return 1;
907 }
908
909 static int
910 sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
911 {
912 struct sunxi_emac_softc *sc = ifp->if_softc;
913 struct mii_data *mii = &sc->mii;
914 struct ifreq *ifr = data;
915 int error, s;
916
917 #ifndef EMAC_MPSAFE
918 s = splnet();
919 #endif
920
921 switch (cmd) {
922 case SIOCSIFMEDIA:
923 case SIOCGIFMEDIA:
924 #ifdef EMAC_MPSAFE
925 s = splnet();
926 #endif
927 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
928 #ifdef EMAC_MPSAFE
929 splx(s);
930 #endif
931 break;
932 default:
933 #ifdef EMAC_MPSAFE
934 s = splnet();
935 #endif
936 error = ether_ioctl(ifp, cmd, data);
937 #ifdef EMAC_MPSAFE
938 splx(s);
939 #endif
940 if (error != ENETRESET)
941 break;
942
943 error = 0;
944
945 if (cmd == SIOCSIFCAP)
946 error = (*ifp->if_init)(ifp);
947 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
948 ;
949 else if ((ifp->if_flags & IFF_RUNNING) != 0) {
950 EMAC_LOCK(sc);
951 sunxi_emac_setup_rxfilter(sc);
952 EMAC_UNLOCK(sc);
953 }
954 break;
955 }
956
957 #ifndef EMAC_MPSAFE
958 splx(s);
959 #endif
960
961 return error;
962 }
963
964 static bool
965 sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
966 {
967 const char * mdio_internal_compat[] = {
968 "allwinner,sun8i-h3-mdio-internal",
969 NULL
970 };
971 int phy;
972
973 /* Non-standard property, for compatible with old dts files */
974 if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
975 return true;
976
977 phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
978 if (phy == -1)
979 return false;
980
981 /* For internal PHY, check compatible string of parent node */
982 return of_compatible(OF_parent(phy), mdio_internal_compat) >= 0;
983 }
984
985 static int
986 sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
987 {
988 uint32_t reg, tx_delay, rx_delay;
989 const char *phy_type;
990
991 phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
992 if (phy_type == NULL)
993 return 0;
994
995 aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
996
997 syscon_lock(sc->syscon);
998 reg = syscon_read_4(sc->syscon, EMAC_CLK_REG);
999
1000 reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1001 if (strcmp(phy_type, "rgmii") == 0)
1002 reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1003 else if (strcmp(phy_type, "rmii") == 0)
1004 reg |= EMAC_CLK_RMII_EN;
1005 else
1006 reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1007
1008 if (of_getprop_uint32(sc->phandle, "allwinner,tx-delay-ps",
1009 &tx_delay) == 0) {
1010 reg &= ~EMAC_CLK_ETXDC;
1011 reg |= ((tx_delay / 100) << EMAC_CLK_ETXDC_SHIFT);
1012 } else if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
1013 reg &= ~EMAC_CLK_ETXDC;
1014 reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1015 }
1016 if (of_getprop_uint32(sc->phandle, "allwinner,rx-delay-ps",
1017 &rx_delay) == 0) {
1018 reg &= ~EMAC_CLK_ERXDC;
1019 reg |= ((rx_delay / 100) << EMAC_CLK_ERXDC_SHIFT);
1020 } else if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
1021 reg &= ~EMAC_CLK_ERXDC;
1022 reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1023 }
1024
1025 if (sc->type == EMAC_H3 || sc->type == EMAC_H6) {
1026 if (sunxi_emac_has_internal_phy(sc)) {
1027 reg |= EMAC_CLK_EPHY_SELECT;
1028 reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1029 if (of_hasprop(sc->phandle,
1030 "allwinner,leds-active-low"))
1031 reg |= EMAC_CLK_EPHY_LED_POL;
1032 else
1033 reg &= ~EMAC_CLK_EPHY_LED_POL;
1034
1035 /* Set internal PHY addr to 1 */
1036 reg &= ~EMAC_CLK_EPHY_ADDR;
1037 reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1038 } else {
1039 reg &= ~EMAC_CLK_EPHY_SELECT;
1040 }
1041 }
1042
1043 aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
1044
1045 syscon_write_4(sc->syscon, EMAC_CLK_REG, reg);
1046 syscon_unlock(sc->syscon);
1047
1048 return 0;
1049 }
1050
1051 static int
1052 sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
1053 {
1054 u_int freq;
1055 int error, div;
1056
1057 /* Configure PHY for MII or RGMII mode */
1058 if (sunxi_emac_setup_phy(sc) != 0)
1059 return ENXIO;
1060
1061 /* Enable clocks */
1062 error = clk_enable(sc->clk_ahb);
1063 if (error != 0) {
1064 aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
1065 return error;
1066 }
1067
1068 if (sc->clk_ephy != NULL) {
1069 error = clk_enable(sc->clk_ephy);
1070 if (error != 0) {
1071 aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
1072 return error;
1073 }
1074 }
1075
1076 /* De-assert reset */
1077 error = fdtbus_reset_deassert(sc->rst_ahb);
1078 if (error != 0) {
1079 aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
1080 return error;
1081 }
1082 if (sc->rst_ephy != NULL) {
1083 error = fdtbus_reset_deassert(sc->rst_ephy);
1084 if (error != 0) {
1085 aprint_error_dev(sc->dev,
1086 "cannot de-assert ephy reset\n");
1087 return error;
1088 }
1089 }
1090
1091 /* Enable PHY regulator if applicable */
1092 if (sc->reg_phy != NULL) {
1093 error = fdtbus_regulator_enable(sc->reg_phy);
1094 if (error != 0) {
1095 aprint_error_dev(sc->dev,
1096 "cannot enable PHY regulator\n");
1097 return error;
1098 }
1099 }
1100
1101 /* Determine MDC clock divide ratio based on AHB clock */
1102 freq = clk_get_rate(sc->clk_ahb);
1103 if (freq == 0) {
1104 aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1105 return ENXIO;
1106 }
1107 div = freq / MDIO_FREQ;
1108 if (div <= 16)
1109 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1110 else if (div <= 32)
1111 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1112 else if (div <= 64)
1113 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1114 else if (div <= 128)
1115 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1116 else {
1117 aprint_error_dev(sc->dev,
1118 "cannot determine MDC clock divide ratio\n");
1119 return ENXIO;
1120 }
1121
1122 aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1123 freq, sc->mdc_div_ratio_m);
1124
1125 return 0;
1126 }
1127
1128 static void
1129 sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1130 {
1131 uint32_t maclo, machi;
1132 #if notyet
1133 u_char rootkey[16];
1134 #endif
1135
1136 machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1137 maclo = RD4(sc, EMAC_ADDR_LOW(0));
1138
1139 if (maclo == 0xffffffff && machi == 0xffff) {
1140 #if notyet
1141 /* MAC address in hardware is invalid, create one */
1142 if (aw_sid_get_rootkey(rootkey) == 0 &&
1143 (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1144 rootkey[15]) != 0) {
1145 /* MAC address is derived from the root key in SID */
1146 maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1147 (rootkey[3] << 8) | 0x02;
1148 machi = (rootkey[15] << 8) | rootkey[14];
1149 } else {
1150 #endif
1151 /* Create one */
1152 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1153 machi = cprng_strong32() & 0xffff;
1154 #if notyet
1155 }
1156 #endif
1157 }
1158
1159 eaddr[0] = maclo & 0xff;
1160 eaddr[1] = (maclo >> 8) & 0xff;
1161 eaddr[2] = (maclo >> 16) & 0xff;
1162 eaddr[3] = (maclo >> 24) & 0xff;
1163 eaddr[4] = machi & 0xff;
1164 eaddr[5] = (machi >> 8) & 0xff;
1165 }
1166
1167 static int
1168 sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1169 {
1170 uint32_t delay_prop[3];
1171 int pin_value;
1172
1173 if (sc->pin_reset == NULL)
1174 return 0;
1175
1176 if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1177 sizeof(delay_prop)) <= 0)
1178 return ENXIO;
1179
1180 pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1181
1182 fdtbus_gpio_write(sc->pin_reset, pin_value);
1183 delay(htole32(delay_prop[0]));
1184 fdtbus_gpio_write(sc->pin_reset, !pin_value);
1185 delay(htole32(delay_prop[1]));
1186 fdtbus_gpio_write(sc->pin_reset, pin_value);
1187 delay(htole32(delay_prop[2]));
1188
1189 return 0;
1190 }
1191
1192 static int
1193 sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1194 {
1195 struct mbuf *m;
1196 int error, nsegs, i;
1197
1198 /* Setup TX ring */
1199 sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1200 error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1201 BUS_DMA_WAITOK, &sc->tx.desc_map);
1202 if (error)
1203 return error;
1204 error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1205 &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1206 if (error)
1207 return error;
1208 error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1209 TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1210 BUS_DMA_WAITOK);
1211 if (error)
1212 return error;
1213 error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1214 TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1215 if (error)
1216 return error;
1217 sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1218
1219 memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1220 bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1221 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1222
1223 for (i = 0; i < TX_DESC_COUNT; i++)
1224 sc->tx.desc_ring[i].next =
1225 htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1226
1227 sc->tx.queued = TX_DESC_COUNT;
1228 for (i = 0; i < TX_DESC_COUNT; i++) {
1229 error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1230 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1231 &sc->tx.buf_map[i].map);
1232 if (error != 0) {
1233 device_printf(sc->dev, "cannot create TX buffer map\n");
1234 return error;
1235 }
1236 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1237 }
1238
1239 /* Setup RX ring */
1240 sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1241 error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1242 BUS_DMA_WAITOK, &sc->rx.desc_map);
1243 if (error)
1244 return error;
1245 error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1246 &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1247 if (error)
1248 return error;
1249 error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1250 RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1251 BUS_DMA_WAITOK);
1252 if (error)
1253 return error;
1254 error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1255 RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1256 if (error)
1257 return error;
1258 sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1259
1260 memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1261
1262 for (i = 0; i < RX_DESC_COUNT; i++) {
1263 error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1264 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1265 &sc->rx.buf_map[i].map);
1266 if (error != 0) {
1267 device_printf(sc->dev, "cannot create RX buffer map\n");
1268 return error;
1269 }
1270 if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1271 device_printf(sc->dev, "cannot allocate RX mbuf\n");
1272 return ENOMEM;
1273 }
1274 error = sunxi_emac_setup_rxbuf(sc, i, m);
1275 if (error != 0) {
1276 device_printf(sc->dev, "cannot create RX buffer\n");
1277 return error;
1278 }
1279 }
1280 bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1281 0, sc->rx.desc_map->dm_mapsize,
1282 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1283
1284 return 0;
1285 }
1286
1287 static int
1288 sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1289 {
1290 const int phandle = sc->phandle;
1291 bus_addr_t addr, size;
1292
1293 /* Map EMAC registers */
1294 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0)
1295 return ENXIO;
1296 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh) != 0)
1297 return ENXIO;
1298
1299 /* Get SYSCON registers */
1300 sc->syscon = fdtbus_syscon_acquire(phandle, "syscon");
1301 if (sc->syscon == NULL)
1302 return ENXIO;
1303
1304 /* The "ahb"/"stmmaceth" clock and reset is required */
1305 if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1306 (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL)
1307 return ENXIO;
1308 if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1309 (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL)
1310 return ENXIO;
1311
1312 /* Internal PHY clock and reset are optional properties. */
1313 sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1314 if (sc->clk_ephy == NULL) {
1315 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1316 if (phy_phandle != -1)
1317 sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
1318 }
1319 sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
1320 if (sc->rst_ephy == NULL) {
1321 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1322 if (phy_phandle != -1)
1323 sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
1324 }
1325
1326 /* Regulator is optional */
1327 sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1328
1329 /* Reset GPIO is optional */
1330 sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1331 "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1332
1333 return 0;
1334 }
1335
1336 static int
1337 sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1338 {
1339 bus_addr_t addr;
1340 int phy_phandle;
1341
1342 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
1343 if (phy_phandle == -1)
1344 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1345 if (phy_phandle == -1)
1346 return MII_PHY_ANY;
1347
1348 if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1349 return MII_PHY_ANY;
1350
1351 return (int)addr;
1352 }
1353
1354 static int
1355 sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1356 {
1357 struct fdt_attach_args * const faa = aux;
1358
1359 return of_match_compat_data(faa->faa_phandle, compat_data);
1360 }
1361
1362 static void
1363 sunxi_emac_attach(device_t parent, device_t self, void *aux)
1364 {
1365 struct fdt_attach_args * const faa = aux;
1366 struct sunxi_emac_softc * const sc = device_private(self);
1367 const int phandle = faa->faa_phandle;
1368 struct mii_data *mii = &sc->mii;
1369 struct ifnet *ifp = &sc->ec.ec_if;
1370 uint8_t eaddr[ETHER_ADDR_LEN];
1371 char intrstr[128];
1372
1373 sc->dev = self;
1374 sc->phandle = phandle;
1375 sc->bst = faa->faa_bst;
1376 sc->dmat = faa->faa_dmat;
1377 sc->type = of_search_compatible(phandle, compat_data)->data;
1378 sc->phy_id = sunxi_emac_get_phyid(sc);
1379
1380 if (sunxi_emac_get_resources(sc) != 0) {
1381 aprint_error(": cannot allocate resources for device\n");
1382 return;
1383 }
1384 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1385 aprint_error(": cannot decode interrupt\n");
1386 return;
1387 }
1388
1389 mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1390 callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1391 callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1392
1393 aprint_naive("\n");
1394 aprint_normal(": EMAC\n");
1395
1396 /* Setup clocks and regulators */
1397 if (sunxi_emac_setup_resources(sc) != 0)
1398 return;
1399
1400 /* Read MAC address before resetting the chip */
1401 sunxi_emac_get_eaddr(sc, eaddr);
1402 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1403
1404 /* Reset PHY if necessary */
1405 if (sunxi_emac_phy_reset(sc) != 0) {
1406 aprint_error_dev(self, "failed to reset PHY\n");
1407 return;
1408 }
1409
1410 /* Setup DMA descriptors */
1411 if (sunxi_emac_setup_dma(sc) != 0) {
1412 aprint_error_dev(self, "failed to setup DMA descriptors\n");
1413 return;
1414 }
1415
1416 /* Install interrupt handler */
1417 sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
1418 FDT_INTR_FLAGS, sunxi_emac_intr, sc);
1419 if (sc->ih == NULL) {
1420 aprint_error_dev(self, "failed to establish interrupt on %s\n",
1421 intrstr);
1422 return;
1423 }
1424 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1425
1426 /* Setup ethernet interface */
1427 ifp->if_softc = sc;
1428 snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1429 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1430 #ifdef EMAC_MPSAFE
1431 ifp->if_extflags = IFEF_MPSAFE;
1432 #endif
1433 ifp->if_start = sunxi_emac_start;
1434 ifp->if_ioctl = sunxi_emac_ioctl;
1435 ifp->if_init = sunxi_emac_init;
1436 ifp->if_stop = sunxi_emac_stop;
1437 ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1438 IFCAP_CSUM_IPv4_Tx |
1439 IFCAP_CSUM_TCPv4_Rx |
1440 IFCAP_CSUM_TCPv4_Tx |
1441 IFCAP_CSUM_UDPv4_Rx |
1442 IFCAP_CSUM_UDPv4_Tx;
1443 ifp->if_capenable = ifp->if_capabilities;
1444 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1445 IFQ_SET_READY(&ifp->if_snd);
1446
1447 /* 802.1Q VLAN-sized frames are supported */
1448 sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1449
1450 /* Attach MII driver */
1451 sc->ec.ec_mii = mii;
1452 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1453 mii->mii_ifp = ifp;
1454 mii->mii_readreg = sunxi_emac_mii_readreg;
1455 mii->mii_writereg = sunxi_emac_mii_writereg;
1456 mii->mii_statchg = sunxi_emac_mii_statchg;
1457 mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1458 MIIF_DOPAUSE);
1459
1460 if (LIST_EMPTY(&mii->mii_phys)) {
1461 aprint_error_dev(self, "no PHY found!\n");
1462 return;
1463 }
1464 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
1465
1466 /* Attach interface */
1467 if_attach(ifp);
1468 if_deferred_start_init(ifp, NULL);
1469
1470 /* Attach ethernet interface */
1471 ether_ifattach(ifp, eaddr);
1472 }
1473
1474 CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1475 sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1476