sunxi_emac.c revision 1.25 1 /* $NetBSD: sunxi_emac.c,v 1.25 2019/04/22 14:53:51 maya Exp $ */
2
3 /*-
4 * Copyright (c) 2016-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 */
32
33 #include "opt_net_mpsafe.h"
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.25 2019/04/22 14:53:51 maya Exp $");
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/device.h>
41 #include <sys/intr.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/mutex.h>
45 #include <sys/callout.h>
46 #include <sys/gpio.h>
47 #include <sys/cprng.h>
48
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/bpf.h>
54
55 #include <dev/mii/miivar.h>
56
57 #include <dev/fdt/fdtvar.h>
58 #include <dev/fdt/syscon.h>
59
60 #include <arm/sunxi/sunxi_emac.h>
61
62 #ifdef NET_MPSAFE
63 #define EMAC_MPSAFE 1
64 #define CALLOUT_FLAGS CALLOUT_MPSAFE
65 #define FDT_INTR_FLAGS FDT_INTR_MPSAFE
66 #else
67 #define CALLOUT_FLAGS 0
68 #define FDT_INTR_FLAGS 0
69 #endif
70
71 #define EMAC_IFNAME "emac%d"
72
73 #define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx)
74 #define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx)
75 #define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx))
76
77 #define DESC_ALIGN sizeof(struct sunxi_emac_desc)
78 #define TX_DESC_COUNT 1024
79 #define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
80 #define RX_DESC_COUNT 256
81 #define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
82
83 #define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc))
84 #define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
85 #define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
86 #define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
87
88 #define TX_MAX_SEGS 128
89
90 #define SOFT_RST_RETRY 1000
91 #define MII_BUSY_RETRY 1000
92 #define MDIO_FREQ 2500000
93
94 #define BURST_LEN_DEFAULT 8
95 #define RX_TX_PRI_DEFAULT 0
96 #define PAUSE_TIME_DEFAULT 0x400
97
98 /* syscon EMAC clock register */
99 #define EMAC_CLK_REG 0x30
100 #define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
101 #define EMAC_CLK_EPHY_ADDR_SHIFT 20
102 #define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
103 #define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
104 #define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
105 #define EMAC_CLK_RMII_EN (1 << 13)
106 #define EMAC_CLK_ETXDC (0x7 << 10)
107 #define EMAC_CLK_ETXDC_SHIFT 10
108 #define EMAC_CLK_ERXDC (0x1f << 5)
109 #define EMAC_CLK_ERXDC_SHIFT 5
110 #define EMAC_CLK_PIT (0x1 << 2)
111 #define EMAC_CLK_PIT_MII (0 << 2)
112 #define EMAC_CLK_PIT_RGMII (1 << 2)
113 #define EMAC_CLK_SRC (0x3 << 0)
114 #define EMAC_CLK_SRC_MII (0 << 0)
115 #define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
116 #define EMAC_CLK_SRC_RGMII (2 << 0)
117
118 /* Burst length of RX and TX DMA transfers */
119 static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
120
121 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
122 static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
123
124 /* Pause time field in the transmitted control frame */
125 static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
126
127 enum sunxi_emac_type {
128 EMAC_A64 = 1,
129 EMAC_A83T,
130 EMAC_H3,
131 EMAC_H6,
132 };
133
134 static const struct of_compat_data compat_data[] = {
135 { "allwinner,sun8i-a83t-emac", EMAC_A83T },
136 { "allwinner,sun8i-h3-emac", EMAC_H3 },
137 { "allwinner,sun50i-a64-emac", EMAC_A64 },
138 { "allwinner,sun50i-h6-emac", EMAC_H6 },
139 { NULL }
140 };
141
142 struct sunxi_emac_bufmap {
143 bus_dmamap_t map;
144 struct mbuf *mbuf;
145 };
146
147 struct sunxi_emac_txring {
148 bus_dma_tag_t desc_tag;
149 bus_dmamap_t desc_map;
150 bus_dma_segment_t desc_dmaseg;
151 struct sunxi_emac_desc *desc_ring;
152 bus_addr_t desc_ring_paddr;
153 bus_dma_tag_t buf_tag;
154 struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
155 u_int cur, next, queued;
156 };
157
158 struct sunxi_emac_rxring {
159 bus_dma_tag_t desc_tag;
160 bus_dmamap_t desc_map;
161 bus_dma_segment_t desc_dmaseg;
162 struct sunxi_emac_desc *desc_ring;
163 bus_addr_t desc_ring_paddr;
164 bus_dma_tag_t buf_tag;
165 struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
166 u_int cur;
167 };
168
169 struct sunxi_emac_softc {
170 device_t dev;
171 int phandle;
172 enum sunxi_emac_type type;
173 bus_space_tag_t bst;
174 bus_dma_tag_t dmat;
175
176 bus_space_handle_t bsh;
177 struct clk *clk_ahb;
178 struct clk *clk_ephy;
179 struct fdtbus_reset *rst_ahb;
180 struct fdtbus_reset *rst_ephy;
181 struct fdtbus_regulator *reg_phy;
182 struct fdtbus_gpio_pin *pin_reset;
183
184 struct syscon *syscon;
185
186 int phy_id;
187
188 kmutex_t mtx;
189 struct ethercom ec;
190 struct mii_data mii;
191 callout_t stat_ch;
192 void *ih;
193 u_int mdc_div_ratio_m;
194
195 struct sunxi_emac_txring tx;
196 struct sunxi_emac_rxring rx;
197 };
198
199 #define RD4(sc, reg) \
200 bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
201 #define WR4(sc, reg, val) \
202 bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
203
204 static int
205 sunxi_emac_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
206 {
207 struct sunxi_emac_softc *sc = device_private(dev);
208 int retry;
209
210 WR4(sc, EMAC_MII_CMD,
211 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
212 (phy << PHY_ADDR_SHIFT) |
213 (reg << PHY_REG_ADDR_SHIFT) |
214 MII_BUSY);
215 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
216 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
217 *val = RD4(sc, EMAC_MII_DATA) & 0xffff;
218 break;
219 }
220 delay(10);
221 }
222
223 if (retry == 0) {
224 device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
225 phy, reg);
226 return ETIMEDOUT;
227 }
228
229 return 0;
230 }
231
232 static int
233 sunxi_emac_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
234 {
235 struct sunxi_emac_softc *sc = device_private(dev);
236 int retry;
237
238 WR4(sc, EMAC_MII_DATA, val);
239 WR4(sc, EMAC_MII_CMD,
240 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
241 (phy << PHY_ADDR_SHIFT) |
242 (reg << PHY_REG_ADDR_SHIFT) |
243 MII_WR | MII_BUSY);
244 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
245 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
246 break;
247 delay(10);
248 }
249
250 if (retry == 0) {
251 device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
252 phy, reg);
253 return ETIMEDOUT;
254 }
255
256 return 0;
257 }
258
259 static void
260 sunxi_emac_update_link(struct sunxi_emac_softc *sc)
261 {
262 struct mii_data *mii = &sc->mii;
263 uint32_t val;
264
265 val = RD4(sc, EMAC_BASIC_CTL_0);
266 val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
267
268 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
269 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
270 val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
271 else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
272 val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
273 else
274 val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
275
276 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
277 val |= BASIC_CTL_DUPLEX;
278
279 WR4(sc, EMAC_BASIC_CTL_0, val);
280
281 val = RD4(sc, EMAC_RX_CTL_0);
282 val &= ~RX_FLOW_CTL_EN;
283 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
284 val |= RX_FLOW_CTL_EN;
285 WR4(sc, EMAC_RX_CTL_0, val);
286
287 val = RD4(sc, EMAC_TX_FLOW_CTL);
288 val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
289 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
290 val |= TX_FLOW_CTL_EN;
291 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
292 val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
293 WR4(sc, EMAC_TX_FLOW_CTL, val);
294 }
295
296 static void
297 sunxi_emac_mii_statchg(struct ifnet *ifp)
298 {
299 struct sunxi_emac_softc * const sc = ifp->if_softc;
300
301 sunxi_emac_update_link(sc);
302 }
303
304 static void
305 sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
306 bus_dmamap_t map, int start, int end, int total, int flags)
307 {
308 if (end > start) {
309 bus_dmamap_sync(dmat, map, DESC_OFF(start),
310 DESC_OFF(end) - DESC_OFF(start), flags);
311 } else {
312 bus_dmamap_sync(dmat, map, DESC_OFF(start),
313 DESC_OFF(total) - DESC_OFF(start), flags);
314 if (DESC_OFF(end) - DESC_OFF(0) > 0)
315 bus_dmamap_sync(dmat, map, DESC_OFF(0),
316 DESC_OFF(end) - DESC_OFF(0), flags);
317 }
318 }
319
320 static void
321 sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
322 bus_addr_t paddr, u_int len)
323 {
324 uint32_t status, size;
325
326 if (paddr == 0 || len == 0) {
327 status = 0;
328 size = 0;
329 --sc->tx.queued;
330 } else {
331 status = TX_DESC_CTL;
332 size = flags | len;
333 ++sc->tx.queued;
334 }
335
336 sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
337 sc->tx.desc_ring[index].size = htole32(size);
338 sc->tx.desc_ring[index].status = htole32(status);
339 }
340
341 static int
342 sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
343 {
344 bus_dma_segment_t *segs;
345 int error, nsegs, cur, i, flags;
346 u_int csum_flags;
347
348 error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
349 sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
350 if (error == EFBIG) {
351 device_printf(sc->dev,
352 "TX packet needs too many DMA segments, dropping...\n");
353 m_freem(m);
354 return 0;
355 }
356 if (error != 0)
357 return 0;
358
359 segs = sc->tx.buf_map[index].map->dm_segs;
360 nsegs = sc->tx.buf_map[index].map->dm_nsegs;
361
362 flags = TX_FIR_DESC;
363 if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
364 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
365 csum_flags = TX_CHECKSUM_CTL_FULL;
366 else
367 csum_flags = TX_CHECKSUM_CTL_IP;
368 flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
369 }
370
371 for (cur = index, i = 0; i < nsegs; i++) {
372 sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
373 if (i == nsegs - 1)
374 flags |= TX_LAST_DESC | TX_INT_CTL;
375
376 sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
377 segs[i].ds_len);
378 flags &= ~TX_FIR_DESC;
379 cur = TX_NEXT(cur);
380 }
381
382 bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
383 0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
384
385 return nsegs;
386 }
387
388 static void
389 sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
390 bus_addr_t paddr)
391 {
392 uint32_t status, size;
393
394 status = RX_DESC_CTL;
395 size = MCLBYTES - 1;
396
397 sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
398 sc->rx.desc_ring[index].size = htole32(size);
399 sc->rx.desc_ring[index].next =
400 htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
401 sc->rx.desc_ring[index].status = htole32(status);
402 }
403
404 static int
405 sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
406 {
407 int error;
408
409 m_adj(m, ETHER_ALIGN);
410
411 error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
412 sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT);
413 if (error != 0)
414 return error;
415
416 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
417 0, sc->rx.buf_map[index].map->dm_mapsize,
418 BUS_DMASYNC_PREREAD);
419
420 sc->rx.buf_map[index].mbuf = m;
421 sunxi_emac_setup_rxdesc(sc, index,
422 sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
423
424 return 0;
425 }
426
427 static struct mbuf *
428 sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
429 {
430 struct mbuf *m;
431
432 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
433 if (m != NULL)
434 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
435
436 return m;
437 }
438
439 static void
440 sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
441 {
442 struct ifnet *ifp = &sc->ec.ec_if;
443 struct mbuf *m;
444 uint32_t val;
445 int cnt, nsegs, start;
446
447 EMAC_ASSERT_LOCKED(sc);
448
449 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
450 return;
451
452 for (cnt = 0, start = sc->tx.cur; ; cnt++) {
453 if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
454 ifp->if_flags |= IFF_OACTIVE;
455 break;
456 }
457
458 IFQ_POLL(&ifp->if_snd, m);
459 if (m == NULL)
460 break;
461
462 nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
463 if (nsegs == 0) {
464 ifp->if_flags |= IFF_OACTIVE;
465 break;
466 }
467 IFQ_DEQUEUE(&ifp->if_snd, m);
468 bpf_mtap(ifp, m, BPF_D_OUT);
469
470 sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
471 }
472
473 if (cnt != 0) {
474 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
475 start, sc->tx.cur, TX_DESC_COUNT,
476 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
477
478 /* Start and run TX DMA */
479 val = RD4(sc, EMAC_TX_CTL_1);
480 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
481 }
482 }
483
484 static void
485 sunxi_emac_start(struct ifnet *ifp)
486 {
487 struct sunxi_emac_softc *sc = ifp->if_softc;
488
489 EMAC_LOCK(sc);
490 sunxi_emac_start_locked(sc);
491 EMAC_UNLOCK(sc);
492 }
493
494 static void
495 sunxi_emac_tick(void *softc)
496 {
497 struct sunxi_emac_softc *sc = softc;
498 struct mii_data *mii = &sc->mii;
499 #ifndef EMAC_MPSAFE
500 int s = splnet();
501 #endif
502
503 EMAC_LOCK(sc);
504 mii_tick(mii);
505 callout_schedule(&sc->stat_ch, hz);
506 EMAC_UNLOCK(sc);
507
508 #ifndef EMAC_MPSAFE
509 splx(s);
510 #endif
511 }
512
513 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
514 static uint32_t
515 bitrev32(uint32_t x)
516 {
517 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
518 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
519 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
520 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
521
522 return (x >> 16) | (x << 16);
523 }
524
525 static void
526 sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
527 {
528 struct ifnet *ifp = &sc->ec.ec_if;
529 uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
530 struct ether_multi *enm;
531 struct ether_multistep step;
532 const uint8_t *eaddr;
533
534 EMAC_ASSERT_LOCKED(sc);
535
536 val = 0;
537 hash[0] = hash[1] = 0;
538
539 if ((ifp->if_flags & IFF_PROMISC) != 0)
540 val |= DIS_ADDR_FILTER;
541 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
542 val |= RX_ALL_MULTICAST;
543 hash[0] = hash[1] = ~0;
544 } else {
545 val |= HASH_MULTICAST;
546 ETHER_FIRST_MULTI(step, &sc->ec, enm);
547 while (enm != NULL) {
548 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
549 crc &= 0x7f;
550 crc = bitrev32(~crc) >> 26;
551 hashreg = (crc >> 5);
552 hashbit = (crc & 0x1f);
553 hash[hashreg] |= (1 << hashbit);
554 ETHER_NEXT_MULTI(step, enm);
555 }
556 }
557
558 /* Write our unicast address */
559 eaddr = CLLADDR(ifp->if_sadl);
560 machi = (eaddr[5] << 8) | eaddr[4];
561 maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
562 (eaddr[0] << 0);
563 WR4(sc, EMAC_ADDR_HIGH(0), machi);
564 WR4(sc, EMAC_ADDR_LOW(0), maclo);
565
566 /* Multicast hash filters */
567 WR4(sc, EMAC_RX_HASH_0, hash[1]);
568 WR4(sc, EMAC_RX_HASH_1, hash[0]);
569
570 /* RX frame filter config */
571 WR4(sc, EMAC_RX_FRM_FLT, val);
572 }
573
574 static void
575 sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
576 {
577 /* Enable interrupts */
578 WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
579 }
580
581 static void
582 sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
583 {
584 /* Disable interrupts */
585 WR4(sc, EMAC_INT_EN, 0);
586 }
587
588 #ifdef SUNXI_EMAC_DEBUG
589 static void
590 sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
591 {
592 static const struct {
593 const char *name;
594 u_int reg;
595 } regs[] = {
596 { "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
597 { "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
598 { "INT_STA", EMAC_INT_STA },
599 { "INT_EN", EMAC_INT_EN },
600 { "TX_CTL_0", EMAC_TX_CTL_0 },
601 { "TX_CTL_1", EMAC_TX_CTL_1 },
602 { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
603 { "TX_DMA_LIST", EMAC_TX_DMA_LIST },
604 { "RX_CTL_0", EMAC_RX_CTL_0 },
605 { "RX_CTL_1", EMAC_RX_CTL_1 },
606 { "RX_DMA_LIST", EMAC_RX_DMA_LIST },
607 { "RX_FRM_FLT", EMAC_RX_FRM_FLT },
608 { "RX_HASH_0", EMAC_RX_HASH_0 },
609 { "RX_HASH_1", EMAC_RX_HASH_1 },
610 { "MII_CMD", EMAC_MII_CMD },
611 { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
612 { "ADDR_LOW0", EMAC_ADDR_LOW(0) },
613 { "TX_DMA_STA", EMAC_TX_DMA_STA },
614 { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
615 { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
616 { "RX_DMA_STA", EMAC_RX_DMA_STA },
617 { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
618 { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
619 { "RGMII_STA", EMAC_RGMII_STA },
620 };
621 u_int n;
622
623 for (n = 0; n < __arraycount(regs); n++)
624 device_printf(sc->dev, " %-20s %08x\n", regs[n].name,
625 RD4(sc, regs[n].reg));
626 }
627 #endif
628
629 static int
630 sunxi_emac_reset(struct sunxi_emac_softc *sc)
631 {
632 int retry;
633
634 /* Soft reset all registers and logic */
635 WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
636
637 /* Wait for soft reset bit to self-clear */
638 for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
639 if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
640 break;
641 delay(10);
642 }
643 if (retry == 0) {
644 aprint_debug_dev(sc->dev, "soft reset timed out\n");
645 #ifdef SUNXI_EMAC_DEBUG
646 sunxi_emac_dump_regs(sc);
647 #endif
648 return ETIMEDOUT;
649 }
650
651 return 0;
652 }
653
654 static int
655 sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
656 {
657 struct ifnet *ifp = &sc->ec.ec_if;
658 struct mii_data *mii = &sc->mii;
659 uint32_t val;
660
661 EMAC_ASSERT_LOCKED(sc);
662
663 if ((ifp->if_flags & IFF_RUNNING) != 0)
664 return 0;
665
666 /* Soft reset EMAC core */
667 sunxi_emac_reset(sc);
668
669 /* Write transmit and receive descriptor base address registers */
670 WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
671 WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
672
673 sunxi_emac_setup_rxfilter(sc);
674
675 /* Configure DMA burst length and priorities */
676 val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
677 if (sunxi_emac_rx_tx_pri)
678 val |= BASIC_CTL_RX_TX_PRI;
679 WR4(sc, EMAC_BASIC_CTL_1, val);
680
681 /* Enable interrupts */
682 sunxi_emac_enable_intr(sc);
683
684 /* Enable transmit DMA */
685 val = RD4(sc, EMAC_TX_CTL_1);
686 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
687
688 /* Enable receive DMA */
689 val = RD4(sc, EMAC_RX_CTL_1);
690 WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
691
692 /* Enable transmitter */
693 val = RD4(sc, EMAC_TX_CTL_0);
694 WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
695
696 /* Enable receiver */
697 val = RD4(sc, EMAC_RX_CTL_0);
698 WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
699
700 ifp->if_flags |= IFF_RUNNING;
701 ifp->if_flags &= ~IFF_OACTIVE;
702
703 mii_mediachg(mii);
704 callout_schedule(&sc->stat_ch, hz);
705
706 return 0;
707 }
708
709 static int
710 sunxi_emac_init(struct ifnet *ifp)
711 {
712 struct sunxi_emac_softc *sc = ifp->if_softc;
713 int error;
714
715 EMAC_LOCK(sc);
716 error = sunxi_emac_init_locked(sc);
717 EMAC_UNLOCK(sc);
718
719 return error;
720 }
721
722 static void
723 sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
724 {
725 struct ifnet *ifp = &sc->ec.ec_if;
726 uint32_t val;
727
728 EMAC_ASSERT_LOCKED(sc);
729
730 callout_stop(&sc->stat_ch);
731
732 mii_down(&sc->mii);
733
734 /* Stop transmit DMA and flush data in the TX FIFO */
735 val = RD4(sc, EMAC_TX_CTL_1);
736 val &= ~TX_DMA_EN;
737 val |= FLUSH_TX_FIFO;
738 WR4(sc, EMAC_TX_CTL_1, val);
739
740 /* Disable transmitter */
741 val = RD4(sc, EMAC_TX_CTL_0);
742 WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
743
744 /* Disable receiver */
745 val = RD4(sc, EMAC_RX_CTL_0);
746 WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
747
748 /* Disable interrupts */
749 sunxi_emac_disable_intr(sc);
750
751 /* Disable transmit DMA */
752 val = RD4(sc, EMAC_TX_CTL_1);
753 WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
754
755 /* Disable receive DMA */
756 val = RD4(sc, EMAC_RX_CTL_1);
757 WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
758
759 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
760 }
761
762 static void
763 sunxi_emac_stop(struct ifnet *ifp, int disable)
764 {
765 struct sunxi_emac_softc * const sc = ifp->if_softc;
766
767 EMAC_LOCK(sc);
768 sunxi_emac_stop_locked(sc, disable);
769 EMAC_UNLOCK(sc);
770 }
771
772 static int
773 sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
774 {
775 struct ifnet *ifp = &sc->ec.ec_if;
776 int error, index, len, npkt;
777 struct mbuf *m, *m0;
778 uint32_t status;
779
780 npkt = 0;
781
782 for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
783 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
784 index, index + 1,
785 RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
786
787 status = le32toh(sc->rx.desc_ring[index].status);
788 if ((status & RX_DESC_CTL) != 0)
789 break;
790
791 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
792 0, sc->rx.buf_map[index].map->dm_mapsize,
793 BUS_DMASYNC_POSTREAD);
794 bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
795
796 len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
797 if (len != 0) {
798 m = sc->rx.buf_map[index].mbuf;
799 m_set_rcvif(m, ifp);
800 m->m_flags |= M_HASFCS;
801 m->m_pkthdr.len = len;
802 m->m_len = len;
803 m->m_nextpkt = NULL;
804
805 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
806 (status & RX_FRM_TYPE) != 0) {
807 m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
808 M_CSUM_TCPv4 | M_CSUM_UDPv4;
809 if ((status & RX_HEADER_ERR) != 0)
810 m->m_pkthdr.csum_flags |=
811 M_CSUM_IPv4_BAD;
812 if ((status & RX_PAYLOAD_ERR) != 0)
813 m->m_pkthdr.csum_flags |=
814 M_CSUM_TCP_UDP_BAD;
815 }
816
817 ++npkt;
818
819 if_percpuq_enqueue(ifp->if_percpuq, m);
820 }
821
822 if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
823 error = sunxi_emac_setup_rxbuf(sc, index, m0);
824 if (error != 0) {
825 /* XXX hole in RX ring */
826 }
827 } else
828 ifp->if_ierrors++;
829
830 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
831 index, index + 1,
832 RX_DESC_COUNT, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
833 }
834
835 sc->rx.cur = index;
836
837 return npkt;
838 }
839
840 static void
841 sunxi_emac_txintr(struct sunxi_emac_softc *sc)
842 {
843 struct ifnet *ifp = &sc->ec.ec_if;
844 struct sunxi_emac_bufmap *bmap;
845 struct sunxi_emac_desc *desc;
846 uint32_t status;
847 int i;
848
849 EMAC_ASSERT_LOCKED(sc);
850
851 for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
852 KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
853 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
854 i, i + 1, TX_DESC_COUNT,
855 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
856 desc = &sc->tx.desc_ring[i];
857 status = le32toh(desc->status);
858 if ((status & TX_DESC_CTL) != 0)
859 break;
860 bmap = &sc->tx.buf_map[i];
861 if (bmap->mbuf != NULL) {
862 bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
863 0, bmap->map->dm_mapsize,
864 BUS_DMASYNC_POSTWRITE);
865 bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
866 m_freem(bmap->mbuf);
867 bmap->mbuf = NULL;
868 }
869
870 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
871 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
872 i, i + 1, TX_DESC_COUNT,
873 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
874
875 ifp->if_flags &= ~IFF_OACTIVE;
876 ifp->if_opackets++;
877 }
878
879 sc->tx.next = i;
880 }
881
882 static int
883 sunxi_emac_intr(void *arg)
884 {
885 struct sunxi_emac_softc *sc = arg;
886 struct ifnet *ifp = &sc->ec.ec_if;
887 uint32_t val;
888
889 EMAC_LOCK(sc);
890
891 val = RD4(sc, EMAC_INT_STA);
892 WR4(sc, EMAC_INT_STA, val);
893
894 if (val & RX_INT)
895 sunxi_emac_rxintr(sc);
896
897 if (val & (TX_INT|TX_BUF_UA_INT)) {
898 sunxi_emac_txintr(sc);
899 if_schedule_deferred_start(ifp);
900 }
901
902 EMAC_UNLOCK(sc);
903
904 return 1;
905 }
906
907 static int
908 sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
909 {
910 struct sunxi_emac_softc *sc = ifp->if_softc;
911 int error, s;
912
913 #ifndef EMAC_MPSAFE
914 s = splnet();
915 #endif
916
917 switch (cmd) {
918 default:
919 #ifdef EMAC_MPSAFE
920 s = splnet();
921 #endif
922 error = ether_ioctl(ifp, cmd, data);
923 #ifdef EMAC_MPSAFE
924 splx(s);
925 #endif
926 if (error != ENETRESET)
927 break;
928
929 error = 0;
930
931 if (cmd == SIOCSIFCAP)
932 error = (*ifp->if_init)(ifp);
933 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
934 ;
935 else if ((ifp->if_flags & IFF_RUNNING) != 0) {
936 EMAC_LOCK(sc);
937 sunxi_emac_setup_rxfilter(sc);
938 EMAC_UNLOCK(sc);
939 }
940 break;
941 }
942
943 #ifndef EMAC_MPSAFE
944 splx(s);
945 #endif
946
947 return error;
948 }
949
950 static bool
951 sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
952 {
953 const char * mdio_internal_compat[] = {
954 "allwinner,sun8i-h3-mdio-internal",
955 NULL
956 };
957 int phy;
958
959 /* Non-standard property, for compatible with old dts files */
960 if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
961 return true;
962
963 phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
964 if (phy == -1)
965 return false;
966
967 /* For internal PHY, check compatible string of parent node */
968 return of_compatible(OF_parent(phy), mdio_internal_compat) >= 0;
969 }
970
971 static int
972 sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
973 {
974 uint32_t reg, tx_delay, rx_delay;
975 const char *phy_type;
976
977 phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
978 if (phy_type == NULL)
979 return 0;
980
981 aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
982
983 syscon_lock(sc->syscon);
984 reg = syscon_read_4(sc->syscon, EMAC_CLK_REG);
985
986 reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
987 if (strcmp(phy_type, "rgmii") == 0)
988 reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
989 else if (strcmp(phy_type, "rmii") == 0)
990 reg |= EMAC_CLK_RMII_EN;
991 else
992 reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
993
994 if (of_getprop_uint32(sc->phandle, "allwinner,tx-delay-ps",
995 &tx_delay) == 0) {
996 reg &= ~EMAC_CLK_ETXDC;
997 reg |= ((tx_delay / 100) << EMAC_CLK_ETXDC_SHIFT);
998 } else if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
999 reg &= ~EMAC_CLK_ETXDC;
1000 reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1001 }
1002 if (of_getprop_uint32(sc->phandle, "allwinner,rx-delay-ps",
1003 &rx_delay) == 0) {
1004 reg &= ~EMAC_CLK_ERXDC;
1005 reg |= ((rx_delay / 100) << EMAC_CLK_ERXDC_SHIFT);
1006 } else if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
1007 reg &= ~EMAC_CLK_ERXDC;
1008 reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1009 }
1010
1011 if (sc->type == EMAC_H3 || sc->type == EMAC_H6) {
1012 if (sunxi_emac_has_internal_phy(sc)) {
1013 reg |= EMAC_CLK_EPHY_SELECT;
1014 reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1015 if (of_hasprop(sc->phandle,
1016 "allwinner,leds-active-low"))
1017 reg |= EMAC_CLK_EPHY_LED_POL;
1018 else
1019 reg &= ~EMAC_CLK_EPHY_LED_POL;
1020
1021 /* Set internal PHY addr to 1 */
1022 reg &= ~EMAC_CLK_EPHY_ADDR;
1023 reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1024 } else {
1025 reg &= ~EMAC_CLK_EPHY_SELECT;
1026 }
1027 }
1028
1029 aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
1030
1031 syscon_write_4(sc->syscon, EMAC_CLK_REG, reg);
1032 syscon_unlock(sc->syscon);
1033
1034 return 0;
1035 }
1036
1037 static int
1038 sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
1039 {
1040 u_int freq;
1041 int error, div;
1042
1043 /* Configure PHY for MII or RGMII mode */
1044 if (sunxi_emac_setup_phy(sc) != 0)
1045 return ENXIO;
1046
1047 /* Enable clocks */
1048 error = clk_enable(sc->clk_ahb);
1049 if (error != 0) {
1050 aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
1051 return error;
1052 }
1053
1054 if (sc->clk_ephy != NULL) {
1055 error = clk_enable(sc->clk_ephy);
1056 if (error != 0) {
1057 aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
1058 return error;
1059 }
1060 }
1061
1062 /* De-assert reset */
1063 error = fdtbus_reset_deassert(sc->rst_ahb);
1064 if (error != 0) {
1065 aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
1066 return error;
1067 }
1068 if (sc->rst_ephy != NULL) {
1069 error = fdtbus_reset_deassert(sc->rst_ephy);
1070 if (error != 0) {
1071 aprint_error_dev(sc->dev,
1072 "cannot de-assert ephy reset\n");
1073 return error;
1074 }
1075 }
1076
1077 /* Enable PHY regulator if applicable */
1078 if (sc->reg_phy != NULL) {
1079 error = fdtbus_regulator_enable(sc->reg_phy);
1080 if (error != 0) {
1081 aprint_error_dev(sc->dev,
1082 "cannot enable PHY regulator\n");
1083 return error;
1084 }
1085 }
1086
1087 /* Determine MDC clock divide ratio based on AHB clock */
1088 freq = clk_get_rate(sc->clk_ahb);
1089 if (freq == 0) {
1090 aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1091 return ENXIO;
1092 }
1093 div = freq / MDIO_FREQ;
1094 if (div <= 16)
1095 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1096 else if (div <= 32)
1097 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1098 else if (div <= 64)
1099 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1100 else if (div <= 128)
1101 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1102 else {
1103 aprint_error_dev(sc->dev,
1104 "cannot determine MDC clock divide ratio\n");
1105 return ENXIO;
1106 }
1107
1108 aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1109 freq, sc->mdc_div_ratio_m);
1110
1111 return 0;
1112 }
1113
1114 static void
1115 sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1116 {
1117 uint32_t maclo, machi;
1118 #if notyet
1119 u_char rootkey[16];
1120 #endif
1121
1122 machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1123 maclo = RD4(sc, EMAC_ADDR_LOW(0));
1124
1125 if (maclo == 0xffffffff && machi == 0xffff) {
1126 #if notyet
1127 /* MAC address in hardware is invalid, create one */
1128 if (aw_sid_get_rootkey(rootkey) == 0 &&
1129 (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1130 rootkey[15]) != 0) {
1131 /* MAC address is derived from the root key in SID */
1132 maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1133 (rootkey[3] << 8) | 0x02;
1134 machi = (rootkey[15] << 8) | rootkey[14];
1135 } else {
1136 #endif
1137 /* Create one */
1138 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1139 machi = cprng_strong32() & 0xffff;
1140 #if notyet
1141 }
1142 #endif
1143 }
1144
1145 eaddr[0] = maclo & 0xff;
1146 eaddr[1] = (maclo >> 8) & 0xff;
1147 eaddr[2] = (maclo >> 16) & 0xff;
1148 eaddr[3] = (maclo >> 24) & 0xff;
1149 eaddr[4] = machi & 0xff;
1150 eaddr[5] = (machi >> 8) & 0xff;
1151 }
1152
1153 static int
1154 sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1155 {
1156 uint32_t delay_prop[3];
1157 int pin_value;
1158
1159 if (sc->pin_reset == NULL)
1160 return 0;
1161
1162 if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1163 sizeof(delay_prop)) <= 0)
1164 return ENXIO;
1165
1166 pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1167
1168 fdtbus_gpio_write(sc->pin_reset, pin_value);
1169 delay(htole32(delay_prop[0]));
1170 fdtbus_gpio_write(sc->pin_reset, !pin_value);
1171 delay(htole32(delay_prop[1]));
1172 fdtbus_gpio_write(sc->pin_reset, pin_value);
1173 delay(htole32(delay_prop[2]));
1174
1175 return 0;
1176 }
1177
1178 static int
1179 sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1180 {
1181 struct mbuf *m;
1182 int error, nsegs, i;
1183
1184 /* Setup TX ring */
1185 sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1186 error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1187 BUS_DMA_WAITOK, &sc->tx.desc_map);
1188 if (error)
1189 return error;
1190 error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1191 &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1192 if (error)
1193 return error;
1194 error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1195 TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1196 BUS_DMA_WAITOK);
1197 if (error)
1198 return error;
1199 error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1200 TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1201 if (error)
1202 return error;
1203 sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1204
1205 memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1206 bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1207 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1208
1209 for (i = 0; i < TX_DESC_COUNT; i++)
1210 sc->tx.desc_ring[i].next =
1211 htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1212
1213 sc->tx.queued = TX_DESC_COUNT;
1214 for (i = 0; i < TX_DESC_COUNT; i++) {
1215 error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1216 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1217 &sc->tx.buf_map[i].map);
1218 if (error != 0) {
1219 device_printf(sc->dev, "cannot create TX buffer map\n");
1220 return error;
1221 }
1222 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1223 }
1224
1225 /* Setup RX ring */
1226 sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1227 error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1228 BUS_DMA_WAITOK, &sc->rx.desc_map);
1229 if (error)
1230 return error;
1231 error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1232 &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1233 if (error)
1234 return error;
1235 error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1236 RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1237 BUS_DMA_WAITOK);
1238 if (error)
1239 return error;
1240 error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1241 RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1242 if (error)
1243 return error;
1244 sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1245
1246 memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1247
1248 for (i = 0; i < RX_DESC_COUNT; i++) {
1249 error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1250 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1251 &sc->rx.buf_map[i].map);
1252 if (error != 0) {
1253 device_printf(sc->dev, "cannot create RX buffer map\n");
1254 return error;
1255 }
1256 if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1257 device_printf(sc->dev, "cannot allocate RX mbuf\n");
1258 return ENOMEM;
1259 }
1260 error = sunxi_emac_setup_rxbuf(sc, i, m);
1261 if (error != 0) {
1262 device_printf(sc->dev, "cannot create RX buffer\n");
1263 return error;
1264 }
1265 }
1266 bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1267 0, sc->rx.desc_map->dm_mapsize,
1268 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1269
1270 return 0;
1271 }
1272
1273 static int
1274 sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1275 {
1276 const int phandle = sc->phandle;
1277 bus_addr_t addr, size;
1278
1279 /* Map EMAC registers */
1280 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0)
1281 return ENXIO;
1282 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh) != 0)
1283 return ENXIO;
1284
1285 /* Get SYSCON registers */
1286 sc->syscon = fdtbus_syscon_acquire(phandle, "syscon");
1287 if (sc->syscon == NULL)
1288 return ENXIO;
1289
1290 /* The "ahb"/"stmmaceth" clock and reset is required */
1291 if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1292 (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL)
1293 return ENXIO;
1294 if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1295 (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL)
1296 return ENXIO;
1297
1298 /* Internal PHY clock and reset are optional properties. */
1299 sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1300 if (sc->clk_ephy == NULL) {
1301 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1302 if (phy_phandle != -1)
1303 sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
1304 }
1305 sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
1306 if (sc->rst_ephy == NULL) {
1307 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1308 if (phy_phandle != -1)
1309 sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
1310 }
1311
1312 /* Regulator is optional */
1313 sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1314
1315 /* Reset GPIO is optional */
1316 sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1317 "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1318
1319 return 0;
1320 }
1321
1322 static int
1323 sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1324 {
1325 bus_addr_t addr;
1326 int phy_phandle;
1327
1328 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
1329 if (phy_phandle == -1)
1330 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1331 if (phy_phandle == -1)
1332 return MII_PHY_ANY;
1333
1334 if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1335 return MII_PHY_ANY;
1336
1337 return (int)addr;
1338 }
1339
1340 static int
1341 sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1342 {
1343 struct fdt_attach_args * const faa = aux;
1344
1345 return of_match_compat_data(faa->faa_phandle, compat_data);
1346 }
1347
1348 static void
1349 sunxi_emac_attach(device_t parent, device_t self, void *aux)
1350 {
1351 struct fdt_attach_args * const faa = aux;
1352 struct sunxi_emac_softc * const sc = device_private(self);
1353 const int phandle = faa->faa_phandle;
1354 struct mii_data *mii = &sc->mii;
1355 struct ifnet *ifp = &sc->ec.ec_if;
1356 uint8_t eaddr[ETHER_ADDR_LEN];
1357 char intrstr[128];
1358
1359 sc->dev = self;
1360 sc->phandle = phandle;
1361 sc->bst = faa->faa_bst;
1362 sc->dmat = faa->faa_dmat;
1363 sc->type = of_search_compatible(phandle, compat_data)->data;
1364 sc->phy_id = sunxi_emac_get_phyid(sc);
1365
1366 if (sunxi_emac_get_resources(sc) != 0) {
1367 aprint_error(": cannot allocate resources for device\n");
1368 return;
1369 }
1370 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1371 aprint_error(": cannot decode interrupt\n");
1372 return;
1373 }
1374
1375 mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1376 callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1377 callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1378
1379 aprint_naive("\n");
1380 aprint_normal(": EMAC\n");
1381
1382 /* Setup clocks and regulators */
1383 if (sunxi_emac_setup_resources(sc) != 0)
1384 return;
1385
1386 /* Read MAC address before resetting the chip */
1387 sunxi_emac_get_eaddr(sc, eaddr);
1388 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1389
1390 /* Reset PHY if necessary */
1391 if (sunxi_emac_phy_reset(sc) != 0) {
1392 aprint_error_dev(self, "failed to reset PHY\n");
1393 return;
1394 }
1395
1396 /* Setup DMA descriptors */
1397 if (sunxi_emac_setup_dma(sc) != 0) {
1398 aprint_error_dev(self, "failed to setup DMA descriptors\n");
1399 return;
1400 }
1401
1402 /* Install interrupt handler */
1403 sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
1404 FDT_INTR_FLAGS, sunxi_emac_intr, sc);
1405 if (sc->ih == NULL) {
1406 aprint_error_dev(self, "failed to establish interrupt on %s\n",
1407 intrstr);
1408 return;
1409 }
1410 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1411
1412 /* Setup ethernet interface */
1413 ifp->if_softc = sc;
1414 snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1415 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1416 #ifdef EMAC_MPSAFE
1417 ifp->if_extflags = IFEF_MPSAFE;
1418 #endif
1419 ifp->if_start = sunxi_emac_start;
1420 ifp->if_ioctl = sunxi_emac_ioctl;
1421 ifp->if_init = sunxi_emac_init;
1422 ifp->if_stop = sunxi_emac_stop;
1423 ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1424 IFCAP_CSUM_IPv4_Tx |
1425 IFCAP_CSUM_TCPv4_Rx |
1426 IFCAP_CSUM_TCPv4_Tx |
1427 IFCAP_CSUM_UDPv4_Rx |
1428 IFCAP_CSUM_UDPv4_Tx;
1429 ifp->if_capenable = ifp->if_capabilities;
1430 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1431 IFQ_SET_READY(&ifp->if_snd);
1432
1433 /* 802.1Q VLAN-sized frames are supported */
1434 sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1435
1436 /* Attach MII driver */
1437 sc->ec.ec_mii = mii;
1438 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1439 mii->mii_ifp = ifp;
1440 mii->mii_readreg = sunxi_emac_mii_readreg;
1441 mii->mii_writereg = sunxi_emac_mii_writereg;
1442 mii->mii_statchg = sunxi_emac_mii_statchg;
1443 mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1444 MIIF_DOPAUSE);
1445
1446 if (LIST_EMPTY(&mii->mii_phys)) {
1447 aprint_error_dev(self, "no PHY found!\n");
1448 return;
1449 }
1450 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
1451
1452 /* Attach interface */
1453 if_attach(ifp);
1454 if_deferred_start_init(ifp, NULL);
1455
1456 /* Attach ethernet interface */
1457 ether_ifattach(ifp, eaddr);
1458 }
1459
1460 CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1461 sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1462