sunxi_emac.c revision 1.26 1 /* $NetBSD: sunxi_emac.c,v 1.26 2019/05/09 01:46:37 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2016-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 */
32
33 #include "opt_net_mpsafe.h"
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.26 2019/05/09 01:46:37 ozaki-r Exp $");
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/device.h>
41 #include <sys/intr.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/mutex.h>
45 #include <sys/callout.h>
46 #include <sys/gpio.h>
47 #include <sys/cprng.h>
48
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/bpf.h>
54
55 #include <dev/mii/miivar.h>
56
57 #include <dev/fdt/fdtvar.h>
58 #include <dev/fdt/syscon.h>
59
60 #include <arm/sunxi/sunxi_emac.h>
61
62 #ifdef NET_MPSAFE
63 #define EMAC_MPSAFE 1
64 #define CALLOUT_FLAGS CALLOUT_MPSAFE
65 #define FDT_INTR_FLAGS FDT_INTR_MPSAFE
66 #else
67 #define CALLOUT_FLAGS 0
68 #define FDT_INTR_FLAGS 0
69 #endif
70
71 #define EMAC_IFNAME "emac%d"
72
73 #define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx)
74 #define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx)
75 #define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx))
76
77 #define DESC_ALIGN sizeof(struct sunxi_emac_desc)
78 #define TX_DESC_COUNT 1024
79 #define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
80 #define RX_DESC_COUNT 256
81 #define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
82
83 #define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc))
84 #define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
85 #define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
86 #define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
87
88 #define TX_MAX_SEGS 128
89
90 #define SOFT_RST_RETRY 1000
91 #define MII_BUSY_RETRY 1000
92 #define MDIO_FREQ 2500000
93
94 #define BURST_LEN_DEFAULT 8
95 #define RX_TX_PRI_DEFAULT 0
96 #define PAUSE_TIME_DEFAULT 0x400
97
98 /* syscon EMAC clock register */
99 #define EMAC_CLK_REG 0x30
100 #define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
101 #define EMAC_CLK_EPHY_ADDR_SHIFT 20
102 #define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
103 #define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
104 #define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
105 #define EMAC_CLK_RMII_EN (1 << 13)
106 #define EMAC_CLK_ETXDC (0x7 << 10)
107 #define EMAC_CLK_ETXDC_SHIFT 10
108 #define EMAC_CLK_ERXDC (0x1f << 5)
109 #define EMAC_CLK_ERXDC_SHIFT 5
110 #define EMAC_CLK_PIT (0x1 << 2)
111 #define EMAC_CLK_PIT_MII (0 << 2)
112 #define EMAC_CLK_PIT_RGMII (1 << 2)
113 #define EMAC_CLK_SRC (0x3 << 0)
114 #define EMAC_CLK_SRC_MII (0 << 0)
115 #define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
116 #define EMAC_CLK_SRC_RGMII (2 << 0)
117
118 /* Burst length of RX and TX DMA transfers */
119 static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
120
121 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
122 static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
123
124 /* Pause time field in the transmitted control frame */
125 static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
126
127 enum sunxi_emac_type {
128 EMAC_A64 = 1,
129 EMAC_A83T,
130 EMAC_H3,
131 EMAC_H6,
132 };
133
134 static const struct of_compat_data compat_data[] = {
135 { "allwinner,sun8i-a83t-emac", EMAC_A83T },
136 { "allwinner,sun8i-h3-emac", EMAC_H3 },
137 { "allwinner,sun50i-a64-emac", EMAC_A64 },
138 { "allwinner,sun50i-h6-emac", EMAC_H6 },
139 { NULL }
140 };
141
142 struct sunxi_emac_bufmap {
143 bus_dmamap_t map;
144 struct mbuf *mbuf;
145 };
146
147 struct sunxi_emac_txring {
148 bus_dma_tag_t desc_tag;
149 bus_dmamap_t desc_map;
150 bus_dma_segment_t desc_dmaseg;
151 struct sunxi_emac_desc *desc_ring;
152 bus_addr_t desc_ring_paddr;
153 bus_dma_tag_t buf_tag;
154 struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
155 u_int cur, next, queued;
156 };
157
158 struct sunxi_emac_rxring {
159 bus_dma_tag_t desc_tag;
160 bus_dmamap_t desc_map;
161 bus_dma_segment_t desc_dmaseg;
162 struct sunxi_emac_desc *desc_ring;
163 bus_addr_t desc_ring_paddr;
164 bus_dma_tag_t buf_tag;
165 struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
166 u_int cur;
167 };
168
169 struct sunxi_emac_softc {
170 device_t dev;
171 int phandle;
172 enum sunxi_emac_type type;
173 bus_space_tag_t bst;
174 bus_dma_tag_t dmat;
175
176 bus_space_handle_t bsh;
177 struct clk *clk_ahb;
178 struct clk *clk_ephy;
179 struct fdtbus_reset *rst_ahb;
180 struct fdtbus_reset *rst_ephy;
181 struct fdtbus_regulator *reg_phy;
182 struct fdtbus_gpio_pin *pin_reset;
183
184 struct syscon *syscon;
185
186 int phy_id;
187
188 kmutex_t mtx;
189 struct ethercom ec;
190 struct mii_data mii;
191 callout_t stat_ch;
192 void *ih;
193 u_int mdc_div_ratio_m;
194
195 struct sunxi_emac_txring tx;
196 struct sunxi_emac_rxring rx;
197 };
198
199 #define RD4(sc, reg) \
200 bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
201 #define WR4(sc, reg, val) \
202 bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
203
204 static int
205 sunxi_emac_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
206 {
207 struct sunxi_emac_softc *sc = device_private(dev);
208 int retry;
209
210 WR4(sc, EMAC_MII_CMD,
211 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
212 (phy << PHY_ADDR_SHIFT) |
213 (reg << PHY_REG_ADDR_SHIFT) |
214 MII_BUSY);
215 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
216 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
217 *val = RD4(sc, EMAC_MII_DATA) & 0xffff;
218 break;
219 }
220 delay(10);
221 }
222
223 if (retry == 0) {
224 device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
225 phy, reg);
226 return ETIMEDOUT;
227 }
228
229 return 0;
230 }
231
232 static int
233 sunxi_emac_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
234 {
235 struct sunxi_emac_softc *sc = device_private(dev);
236 int retry;
237
238 WR4(sc, EMAC_MII_DATA, val);
239 WR4(sc, EMAC_MII_CMD,
240 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
241 (phy << PHY_ADDR_SHIFT) |
242 (reg << PHY_REG_ADDR_SHIFT) |
243 MII_WR | MII_BUSY);
244 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
245 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
246 break;
247 delay(10);
248 }
249
250 if (retry == 0) {
251 device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
252 phy, reg);
253 return ETIMEDOUT;
254 }
255
256 return 0;
257 }
258
259 static void
260 sunxi_emac_update_link(struct sunxi_emac_softc *sc)
261 {
262 struct mii_data *mii = &sc->mii;
263 uint32_t val;
264
265 val = RD4(sc, EMAC_BASIC_CTL_0);
266 val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
267
268 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
269 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
270 val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
271 else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
272 val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
273 else
274 val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
275
276 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
277 val |= BASIC_CTL_DUPLEX;
278
279 WR4(sc, EMAC_BASIC_CTL_0, val);
280
281 val = RD4(sc, EMAC_RX_CTL_0);
282 val &= ~RX_FLOW_CTL_EN;
283 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
284 val |= RX_FLOW_CTL_EN;
285 WR4(sc, EMAC_RX_CTL_0, val);
286
287 val = RD4(sc, EMAC_TX_FLOW_CTL);
288 val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
289 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
290 val |= TX_FLOW_CTL_EN;
291 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
292 val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
293 WR4(sc, EMAC_TX_FLOW_CTL, val);
294 }
295
296 static void
297 sunxi_emac_mii_statchg(struct ifnet *ifp)
298 {
299 struct sunxi_emac_softc * const sc = ifp->if_softc;
300
301 sunxi_emac_update_link(sc);
302 }
303
304 static void
305 sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
306 bus_dmamap_t map, int start, int end, int total, int flags)
307 {
308 if (end > start) {
309 bus_dmamap_sync(dmat, map, DESC_OFF(start),
310 DESC_OFF(end) - DESC_OFF(start), flags);
311 } else {
312 bus_dmamap_sync(dmat, map, DESC_OFF(start),
313 DESC_OFF(total) - DESC_OFF(start), flags);
314 if (DESC_OFF(end) - DESC_OFF(0) > 0)
315 bus_dmamap_sync(dmat, map, DESC_OFF(0),
316 DESC_OFF(end) - DESC_OFF(0), flags);
317 }
318 }
319
320 static void
321 sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
322 bus_addr_t paddr, u_int len)
323 {
324 uint32_t status, size;
325
326 if (paddr == 0 || len == 0) {
327 status = 0;
328 size = 0;
329 --sc->tx.queued;
330 } else {
331 status = TX_DESC_CTL;
332 size = flags | len;
333 ++sc->tx.queued;
334 }
335
336 sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
337 sc->tx.desc_ring[index].size = htole32(size);
338 sc->tx.desc_ring[index].status = htole32(status);
339 }
340
341 static int
342 sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
343 {
344 bus_dma_segment_t *segs;
345 int error, nsegs, cur, i, flags;
346 u_int csum_flags;
347
348 error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
349 sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
350 if (error == EFBIG) {
351 device_printf(sc->dev,
352 "TX packet needs too many DMA segments, dropping...\n");
353 m_freem(m);
354 return 0;
355 }
356 if (error != 0)
357 return 0;
358
359 segs = sc->tx.buf_map[index].map->dm_segs;
360 nsegs = sc->tx.buf_map[index].map->dm_nsegs;
361
362 flags = TX_FIR_DESC;
363 if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
364 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
365 csum_flags = TX_CHECKSUM_CTL_FULL;
366 else
367 csum_flags = TX_CHECKSUM_CTL_IP;
368 flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
369 }
370
371 for (cur = index, i = 0; i < nsegs; i++) {
372 sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
373 if (i == nsegs - 1)
374 flags |= TX_LAST_DESC | TX_INT_CTL;
375
376 sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
377 segs[i].ds_len);
378 flags &= ~TX_FIR_DESC;
379 cur = TX_NEXT(cur);
380 }
381
382 bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
383 0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
384
385 return nsegs;
386 }
387
388 static void
389 sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
390 bus_addr_t paddr)
391 {
392 uint32_t status, size;
393
394 status = RX_DESC_CTL;
395 size = MCLBYTES - 1;
396
397 sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
398 sc->rx.desc_ring[index].size = htole32(size);
399 sc->rx.desc_ring[index].next =
400 htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
401 sc->rx.desc_ring[index].status = htole32(status);
402 }
403
404 static int
405 sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
406 {
407 int error;
408
409 m_adj(m, ETHER_ALIGN);
410
411 error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
412 sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT);
413 if (error != 0)
414 return error;
415
416 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
417 0, sc->rx.buf_map[index].map->dm_mapsize,
418 BUS_DMASYNC_PREREAD);
419
420 sc->rx.buf_map[index].mbuf = m;
421 sunxi_emac_setup_rxdesc(sc, index,
422 sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
423
424 return 0;
425 }
426
427 static struct mbuf *
428 sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
429 {
430 struct mbuf *m;
431
432 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
433 if (m != NULL)
434 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
435
436 return m;
437 }
438
439 static void
440 sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
441 {
442 struct ifnet *ifp = &sc->ec.ec_if;
443 struct mbuf *m;
444 uint32_t val;
445 int cnt, nsegs, start;
446
447 EMAC_ASSERT_LOCKED(sc);
448
449 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
450 return;
451
452 for (cnt = 0, start = sc->tx.cur; ; cnt++) {
453 if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
454 ifp->if_flags |= IFF_OACTIVE;
455 break;
456 }
457
458 IFQ_POLL(&ifp->if_snd, m);
459 if (m == NULL)
460 break;
461
462 nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
463 if (nsegs == 0) {
464 ifp->if_flags |= IFF_OACTIVE;
465 break;
466 }
467 IFQ_DEQUEUE(&ifp->if_snd, m);
468 bpf_mtap(ifp, m, BPF_D_OUT);
469
470 sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
471 }
472
473 if (cnt != 0) {
474 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
475 start, sc->tx.cur, TX_DESC_COUNT,
476 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
477
478 /* Start and run TX DMA */
479 val = RD4(sc, EMAC_TX_CTL_1);
480 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
481 }
482 }
483
484 static void
485 sunxi_emac_start(struct ifnet *ifp)
486 {
487 struct sunxi_emac_softc *sc = ifp->if_softc;
488
489 EMAC_LOCK(sc);
490 sunxi_emac_start_locked(sc);
491 EMAC_UNLOCK(sc);
492 }
493
494 static void
495 sunxi_emac_tick(void *softc)
496 {
497 struct sunxi_emac_softc *sc = softc;
498 struct mii_data *mii = &sc->mii;
499 #ifndef EMAC_MPSAFE
500 int s = splnet();
501 #endif
502
503 EMAC_LOCK(sc);
504 mii_tick(mii);
505 callout_schedule(&sc->stat_ch, hz);
506 EMAC_UNLOCK(sc);
507
508 #ifndef EMAC_MPSAFE
509 splx(s);
510 #endif
511 }
512
513 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
514 static uint32_t
515 bitrev32(uint32_t x)
516 {
517 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
518 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
519 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
520 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
521
522 return (x >> 16) | (x << 16);
523 }
524
525 static void
526 sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
527 {
528 struct ifnet *ifp = &sc->ec.ec_if;
529 uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
530 struct ether_multi *enm;
531 struct ether_multistep step;
532 const uint8_t *eaddr;
533
534 EMAC_ASSERT_LOCKED(sc);
535
536 val = 0;
537 hash[0] = hash[1] = 0;
538
539 if ((ifp->if_flags & IFF_PROMISC) != 0)
540 val |= DIS_ADDR_FILTER;
541 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
542 val |= RX_ALL_MULTICAST;
543 hash[0] = hash[1] = ~0;
544 } else {
545 val |= HASH_MULTICAST;
546 ETHER_LOCK(&sc->ec);
547 ETHER_FIRST_MULTI(step, &sc->ec, enm);
548 while (enm != NULL) {
549 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
550 crc &= 0x7f;
551 crc = bitrev32(~crc) >> 26;
552 hashreg = (crc >> 5);
553 hashbit = (crc & 0x1f);
554 hash[hashreg] |= (1 << hashbit);
555 ETHER_NEXT_MULTI(step, enm);
556 }
557 ETHER_UNLOCK(&sc->ec);
558 }
559
560 /* Write our unicast address */
561 eaddr = CLLADDR(ifp->if_sadl);
562 machi = (eaddr[5] << 8) | eaddr[4];
563 maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
564 (eaddr[0] << 0);
565 WR4(sc, EMAC_ADDR_HIGH(0), machi);
566 WR4(sc, EMAC_ADDR_LOW(0), maclo);
567
568 /* Multicast hash filters */
569 WR4(sc, EMAC_RX_HASH_0, hash[1]);
570 WR4(sc, EMAC_RX_HASH_1, hash[0]);
571
572 /* RX frame filter config */
573 WR4(sc, EMAC_RX_FRM_FLT, val);
574 }
575
576 static void
577 sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
578 {
579 /* Enable interrupts */
580 WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
581 }
582
583 static void
584 sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
585 {
586 /* Disable interrupts */
587 WR4(sc, EMAC_INT_EN, 0);
588 }
589
590 #ifdef SUNXI_EMAC_DEBUG
591 static void
592 sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
593 {
594 static const struct {
595 const char *name;
596 u_int reg;
597 } regs[] = {
598 { "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
599 { "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
600 { "INT_STA", EMAC_INT_STA },
601 { "INT_EN", EMAC_INT_EN },
602 { "TX_CTL_0", EMAC_TX_CTL_0 },
603 { "TX_CTL_1", EMAC_TX_CTL_1 },
604 { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
605 { "TX_DMA_LIST", EMAC_TX_DMA_LIST },
606 { "RX_CTL_0", EMAC_RX_CTL_0 },
607 { "RX_CTL_1", EMAC_RX_CTL_1 },
608 { "RX_DMA_LIST", EMAC_RX_DMA_LIST },
609 { "RX_FRM_FLT", EMAC_RX_FRM_FLT },
610 { "RX_HASH_0", EMAC_RX_HASH_0 },
611 { "RX_HASH_1", EMAC_RX_HASH_1 },
612 { "MII_CMD", EMAC_MII_CMD },
613 { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
614 { "ADDR_LOW0", EMAC_ADDR_LOW(0) },
615 { "TX_DMA_STA", EMAC_TX_DMA_STA },
616 { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
617 { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
618 { "RX_DMA_STA", EMAC_RX_DMA_STA },
619 { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
620 { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
621 { "RGMII_STA", EMAC_RGMII_STA },
622 };
623 u_int n;
624
625 for (n = 0; n < __arraycount(regs); n++)
626 device_printf(sc->dev, " %-20s %08x\n", regs[n].name,
627 RD4(sc, regs[n].reg));
628 }
629 #endif
630
631 static int
632 sunxi_emac_reset(struct sunxi_emac_softc *sc)
633 {
634 int retry;
635
636 /* Soft reset all registers and logic */
637 WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
638
639 /* Wait for soft reset bit to self-clear */
640 for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
641 if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
642 break;
643 delay(10);
644 }
645 if (retry == 0) {
646 aprint_debug_dev(sc->dev, "soft reset timed out\n");
647 #ifdef SUNXI_EMAC_DEBUG
648 sunxi_emac_dump_regs(sc);
649 #endif
650 return ETIMEDOUT;
651 }
652
653 return 0;
654 }
655
656 static int
657 sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
658 {
659 struct ifnet *ifp = &sc->ec.ec_if;
660 struct mii_data *mii = &sc->mii;
661 uint32_t val;
662
663 EMAC_ASSERT_LOCKED(sc);
664
665 if ((ifp->if_flags & IFF_RUNNING) != 0)
666 return 0;
667
668 /* Soft reset EMAC core */
669 sunxi_emac_reset(sc);
670
671 /* Write transmit and receive descriptor base address registers */
672 WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
673 WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
674
675 sunxi_emac_setup_rxfilter(sc);
676
677 /* Configure DMA burst length and priorities */
678 val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
679 if (sunxi_emac_rx_tx_pri)
680 val |= BASIC_CTL_RX_TX_PRI;
681 WR4(sc, EMAC_BASIC_CTL_1, val);
682
683 /* Enable interrupts */
684 sunxi_emac_enable_intr(sc);
685
686 /* Enable transmit DMA */
687 val = RD4(sc, EMAC_TX_CTL_1);
688 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
689
690 /* Enable receive DMA */
691 val = RD4(sc, EMAC_RX_CTL_1);
692 WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
693
694 /* Enable transmitter */
695 val = RD4(sc, EMAC_TX_CTL_0);
696 WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
697
698 /* Enable receiver */
699 val = RD4(sc, EMAC_RX_CTL_0);
700 WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
701
702 ifp->if_flags |= IFF_RUNNING;
703 ifp->if_flags &= ~IFF_OACTIVE;
704
705 mii_mediachg(mii);
706 callout_schedule(&sc->stat_ch, hz);
707
708 return 0;
709 }
710
711 static int
712 sunxi_emac_init(struct ifnet *ifp)
713 {
714 struct sunxi_emac_softc *sc = ifp->if_softc;
715 int error;
716
717 EMAC_LOCK(sc);
718 error = sunxi_emac_init_locked(sc);
719 EMAC_UNLOCK(sc);
720
721 return error;
722 }
723
724 static void
725 sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
726 {
727 struct ifnet *ifp = &sc->ec.ec_if;
728 uint32_t val;
729
730 EMAC_ASSERT_LOCKED(sc);
731
732 callout_stop(&sc->stat_ch);
733
734 mii_down(&sc->mii);
735
736 /* Stop transmit DMA and flush data in the TX FIFO */
737 val = RD4(sc, EMAC_TX_CTL_1);
738 val &= ~TX_DMA_EN;
739 val |= FLUSH_TX_FIFO;
740 WR4(sc, EMAC_TX_CTL_1, val);
741
742 /* Disable transmitter */
743 val = RD4(sc, EMAC_TX_CTL_0);
744 WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
745
746 /* Disable receiver */
747 val = RD4(sc, EMAC_RX_CTL_0);
748 WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
749
750 /* Disable interrupts */
751 sunxi_emac_disable_intr(sc);
752
753 /* Disable transmit DMA */
754 val = RD4(sc, EMAC_TX_CTL_1);
755 WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
756
757 /* Disable receive DMA */
758 val = RD4(sc, EMAC_RX_CTL_1);
759 WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
760
761 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
762 }
763
764 static void
765 sunxi_emac_stop(struct ifnet *ifp, int disable)
766 {
767 struct sunxi_emac_softc * const sc = ifp->if_softc;
768
769 EMAC_LOCK(sc);
770 sunxi_emac_stop_locked(sc, disable);
771 EMAC_UNLOCK(sc);
772 }
773
774 static int
775 sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
776 {
777 struct ifnet *ifp = &sc->ec.ec_if;
778 int error, index, len, npkt;
779 struct mbuf *m, *m0;
780 uint32_t status;
781
782 npkt = 0;
783
784 for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
785 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
786 index, index + 1,
787 RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
788
789 status = le32toh(sc->rx.desc_ring[index].status);
790 if ((status & RX_DESC_CTL) != 0)
791 break;
792
793 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
794 0, sc->rx.buf_map[index].map->dm_mapsize,
795 BUS_DMASYNC_POSTREAD);
796 bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
797
798 len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
799 if (len != 0) {
800 m = sc->rx.buf_map[index].mbuf;
801 m_set_rcvif(m, ifp);
802 m->m_flags |= M_HASFCS;
803 m->m_pkthdr.len = len;
804 m->m_len = len;
805 m->m_nextpkt = NULL;
806
807 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
808 (status & RX_FRM_TYPE) != 0) {
809 m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
810 M_CSUM_TCPv4 | M_CSUM_UDPv4;
811 if ((status & RX_HEADER_ERR) != 0)
812 m->m_pkthdr.csum_flags |=
813 M_CSUM_IPv4_BAD;
814 if ((status & RX_PAYLOAD_ERR) != 0)
815 m->m_pkthdr.csum_flags |=
816 M_CSUM_TCP_UDP_BAD;
817 }
818
819 ++npkt;
820
821 if_percpuq_enqueue(ifp->if_percpuq, m);
822 }
823
824 if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
825 error = sunxi_emac_setup_rxbuf(sc, index, m0);
826 if (error != 0) {
827 /* XXX hole in RX ring */
828 }
829 } else
830 ifp->if_ierrors++;
831
832 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
833 index, index + 1,
834 RX_DESC_COUNT, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
835 }
836
837 sc->rx.cur = index;
838
839 return npkt;
840 }
841
842 static void
843 sunxi_emac_txintr(struct sunxi_emac_softc *sc)
844 {
845 struct ifnet *ifp = &sc->ec.ec_if;
846 struct sunxi_emac_bufmap *bmap;
847 struct sunxi_emac_desc *desc;
848 uint32_t status;
849 int i;
850
851 EMAC_ASSERT_LOCKED(sc);
852
853 for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
854 KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
855 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
856 i, i + 1, TX_DESC_COUNT,
857 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
858 desc = &sc->tx.desc_ring[i];
859 status = le32toh(desc->status);
860 if ((status & TX_DESC_CTL) != 0)
861 break;
862 bmap = &sc->tx.buf_map[i];
863 if (bmap->mbuf != NULL) {
864 bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
865 0, bmap->map->dm_mapsize,
866 BUS_DMASYNC_POSTWRITE);
867 bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
868 m_freem(bmap->mbuf);
869 bmap->mbuf = NULL;
870 }
871
872 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
873 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
874 i, i + 1, TX_DESC_COUNT,
875 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
876
877 ifp->if_flags &= ~IFF_OACTIVE;
878 ifp->if_opackets++;
879 }
880
881 sc->tx.next = i;
882 }
883
884 static int
885 sunxi_emac_intr(void *arg)
886 {
887 struct sunxi_emac_softc *sc = arg;
888 struct ifnet *ifp = &sc->ec.ec_if;
889 uint32_t val;
890
891 EMAC_LOCK(sc);
892
893 val = RD4(sc, EMAC_INT_STA);
894 WR4(sc, EMAC_INT_STA, val);
895
896 if (val & RX_INT)
897 sunxi_emac_rxintr(sc);
898
899 if (val & (TX_INT|TX_BUF_UA_INT)) {
900 sunxi_emac_txintr(sc);
901 if_schedule_deferred_start(ifp);
902 }
903
904 EMAC_UNLOCK(sc);
905
906 return 1;
907 }
908
909 static int
910 sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
911 {
912 struct sunxi_emac_softc *sc = ifp->if_softc;
913 int error, s;
914
915 #ifndef EMAC_MPSAFE
916 s = splnet();
917 #endif
918
919 switch (cmd) {
920 default:
921 #ifdef EMAC_MPSAFE
922 s = splnet();
923 #endif
924 error = ether_ioctl(ifp, cmd, data);
925 #ifdef EMAC_MPSAFE
926 splx(s);
927 #endif
928 if (error != ENETRESET)
929 break;
930
931 error = 0;
932
933 if (cmd == SIOCSIFCAP)
934 error = (*ifp->if_init)(ifp);
935 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
936 ;
937 else if ((ifp->if_flags & IFF_RUNNING) != 0) {
938 EMAC_LOCK(sc);
939 sunxi_emac_setup_rxfilter(sc);
940 EMAC_UNLOCK(sc);
941 }
942 break;
943 }
944
945 #ifndef EMAC_MPSAFE
946 splx(s);
947 #endif
948
949 return error;
950 }
951
952 static bool
953 sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
954 {
955 const char * mdio_internal_compat[] = {
956 "allwinner,sun8i-h3-mdio-internal",
957 NULL
958 };
959 int phy;
960
961 /* Non-standard property, for compatible with old dts files */
962 if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
963 return true;
964
965 phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
966 if (phy == -1)
967 return false;
968
969 /* For internal PHY, check compatible string of parent node */
970 return of_compatible(OF_parent(phy), mdio_internal_compat) >= 0;
971 }
972
973 static int
974 sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
975 {
976 uint32_t reg, tx_delay, rx_delay;
977 const char *phy_type;
978
979 phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
980 if (phy_type == NULL)
981 return 0;
982
983 aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
984
985 syscon_lock(sc->syscon);
986 reg = syscon_read_4(sc->syscon, EMAC_CLK_REG);
987
988 reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
989 if (strcmp(phy_type, "rgmii") == 0)
990 reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
991 else if (strcmp(phy_type, "rmii") == 0)
992 reg |= EMAC_CLK_RMII_EN;
993 else
994 reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
995
996 if (of_getprop_uint32(sc->phandle, "allwinner,tx-delay-ps",
997 &tx_delay) == 0) {
998 reg &= ~EMAC_CLK_ETXDC;
999 reg |= ((tx_delay / 100) << EMAC_CLK_ETXDC_SHIFT);
1000 } else if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
1001 reg &= ~EMAC_CLK_ETXDC;
1002 reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1003 }
1004 if (of_getprop_uint32(sc->phandle, "allwinner,rx-delay-ps",
1005 &rx_delay) == 0) {
1006 reg &= ~EMAC_CLK_ERXDC;
1007 reg |= ((rx_delay / 100) << EMAC_CLK_ERXDC_SHIFT);
1008 } else if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
1009 reg &= ~EMAC_CLK_ERXDC;
1010 reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1011 }
1012
1013 if (sc->type == EMAC_H3 || sc->type == EMAC_H6) {
1014 if (sunxi_emac_has_internal_phy(sc)) {
1015 reg |= EMAC_CLK_EPHY_SELECT;
1016 reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1017 if (of_hasprop(sc->phandle,
1018 "allwinner,leds-active-low"))
1019 reg |= EMAC_CLK_EPHY_LED_POL;
1020 else
1021 reg &= ~EMAC_CLK_EPHY_LED_POL;
1022
1023 /* Set internal PHY addr to 1 */
1024 reg &= ~EMAC_CLK_EPHY_ADDR;
1025 reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1026 } else {
1027 reg &= ~EMAC_CLK_EPHY_SELECT;
1028 }
1029 }
1030
1031 aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
1032
1033 syscon_write_4(sc->syscon, EMAC_CLK_REG, reg);
1034 syscon_unlock(sc->syscon);
1035
1036 return 0;
1037 }
1038
1039 static int
1040 sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
1041 {
1042 u_int freq;
1043 int error, div;
1044
1045 /* Configure PHY for MII or RGMII mode */
1046 if (sunxi_emac_setup_phy(sc) != 0)
1047 return ENXIO;
1048
1049 /* Enable clocks */
1050 error = clk_enable(sc->clk_ahb);
1051 if (error != 0) {
1052 aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
1053 return error;
1054 }
1055
1056 if (sc->clk_ephy != NULL) {
1057 error = clk_enable(sc->clk_ephy);
1058 if (error != 0) {
1059 aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
1060 return error;
1061 }
1062 }
1063
1064 /* De-assert reset */
1065 error = fdtbus_reset_deassert(sc->rst_ahb);
1066 if (error != 0) {
1067 aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
1068 return error;
1069 }
1070 if (sc->rst_ephy != NULL) {
1071 error = fdtbus_reset_deassert(sc->rst_ephy);
1072 if (error != 0) {
1073 aprint_error_dev(sc->dev,
1074 "cannot de-assert ephy reset\n");
1075 return error;
1076 }
1077 }
1078
1079 /* Enable PHY regulator if applicable */
1080 if (sc->reg_phy != NULL) {
1081 error = fdtbus_regulator_enable(sc->reg_phy);
1082 if (error != 0) {
1083 aprint_error_dev(sc->dev,
1084 "cannot enable PHY regulator\n");
1085 return error;
1086 }
1087 }
1088
1089 /* Determine MDC clock divide ratio based on AHB clock */
1090 freq = clk_get_rate(sc->clk_ahb);
1091 if (freq == 0) {
1092 aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1093 return ENXIO;
1094 }
1095 div = freq / MDIO_FREQ;
1096 if (div <= 16)
1097 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1098 else if (div <= 32)
1099 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1100 else if (div <= 64)
1101 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1102 else if (div <= 128)
1103 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1104 else {
1105 aprint_error_dev(sc->dev,
1106 "cannot determine MDC clock divide ratio\n");
1107 return ENXIO;
1108 }
1109
1110 aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1111 freq, sc->mdc_div_ratio_m);
1112
1113 return 0;
1114 }
1115
1116 static void
1117 sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1118 {
1119 uint32_t maclo, machi;
1120 #if notyet
1121 u_char rootkey[16];
1122 #endif
1123
1124 machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1125 maclo = RD4(sc, EMAC_ADDR_LOW(0));
1126
1127 if (maclo == 0xffffffff && machi == 0xffff) {
1128 #if notyet
1129 /* MAC address in hardware is invalid, create one */
1130 if (aw_sid_get_rootkey(rootkey) == 0 &&
1131 (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1132 rootkey[15]) != 0) {
1133 /* MAC address is derived from the root key in SID */
1134 maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1135 (rootkey[3] << 8) | 0x02;
1136 machi = (rootkey[15] << 8) | rootkey[14];
1137 } else {
1138 #endif
1139 /* Create one */
1140 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1141 machi = cprng_strong32() & 0xffff;
1142 #if notyet
1143 }
1144 #endif
1145 }
1146
1147 eaddr[0] = maclo & 0xff;
1148 eaddr[1] = (maclo >> 8) & 0xff;
1149 eaddr[2] = (maclo >> 16) & 0xff;
1150 eaddr[3] = (maclo >> 24) & 0xff;
1151 eaddr[4] = machi & 0xff;
1152 eaddr[5] = (machi >> 8) & 0xff;
1153 }
1154
1155 static int
1156 sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1157 {
1158 uint32_t delay_prop[3];
1159 int pin_value;
1160
1161 if (sc->pin_reset == NULL)
1162 return 0;
1163
1164 if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1165 sizeof(delay_prop)) <= 0)
1166 return ENXIO;
1167
1168 pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1169
1170 fdtbus_gpio_write(sc->pin_reset, pin_value);
1171 delay(htole32(delay_prop[0]));
1172 fdtbus_gpio_write(sc->pin_reset, !pin_value);
1173 delay(htole32(delay_prop[1]));
1174 fdtbus_gpio_write(sc->pin_reset, pin_value);
1175 delay(htole32(delay_prop[2]));
1176
1177 return 0;
1178 }
1179
1180 static int
1181 sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1182 {
1183 struct mbuf *m;
1184 int error, nsegs, i;
1185
1186 /* Setup TX ring */
1187 sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1188 error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1189 BUS_DMA_WAITOK, &sc->tx.desc_map);
1190 if (error)
1191 return error;
1192 error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1193 &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1194 if (error)
1195 return error;
1196 error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1197 TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1198 BUS_DMA_WAITOK);
1199 if (error)
1200 return error;
1201 error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1202 TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1203 if (error)
1204 return error;
1205 sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1206
1207 memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1208 bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1209 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1210
1211 for (i = 0; i < TX_DESC_COUNT; i++)
1212 sc->tx.desc_ring[i].next =
1213 htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1214
1215 sc->tx.queued = TX_DESC_COUNT;
1216 for (i = 0; i < TX_DESC_COUNT; i++) {
1217 error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1218 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1219 &sc->tx.buf_map[i].map);
1220 if (error != 0) {
1221 device_printf(sc->dev, "cannot create TX buffer map\n");
1222 return error;
1223 }
1224 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1225 }
1226
1227 /* Setup RX ring */
1228 sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1229 error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1230 BUS_DMA_WAITOK, &sc->rx.desc_map);
1231 if (error)
1232 return error;
1233 error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1234 &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1235 if (error)
1236 return error;
1237 error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1238 RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1239 BUS_DMA_WAITOK);
1240 if (error)
1241 return error;
1242 error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1243 RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1244 if (error)
1245 return error;
1246 sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1247
1248 memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1249
1250 for (i = 0; i < RX_DESC_COUNT; i++) {
1251 error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1252 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1253 &sc->rx.buf_map[i].map);
1254 if (error != 0) {
1255 device_printf(sc->dev, "cannot create RX buffer map\n");
1256 return error;
1257 }
1258 if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1259 device_printf(sc->dev, "cannot allocate RX mbuf\n");
1260 return ENOMEM;
1261 }
1262 error = sunxi_emac_setup_rxbuf(sc, i, m);
1263 if (error != 0) {
1264 device_printf(sc->dev, "cannot create RX buffer\n");
1265 return error;
1266 }
1267 }
1268 bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1269 0, sc->rx.desc_map->dm_mapsize,
1270 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1271
1272 return 0;
1273 }
1274
1275 static int
1276 sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1277 {
1278 const int phandle = sc->phandle;
1279 bus_addr_t addr, size;
1280
1281 /* Map EMAC registers */
1282 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0)
1283 return ENXIO;
1284 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh) != 0)
1285 return ENXIO;
1286
1287 /* Get SYSCON registers */
1288 sc->syscon = fdtbus_syscon_acquire(phandle, "syscon");
1289 if (sc->syscon == NULL)
1290 return ENXIO;
1291
1292 /* The "ahb"/"stmmaceth" clock and reset is required */
1293 if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1294 (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL)
1295 return ENXIO;
1296 if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1297 (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL)
1298 return ENXIO;
1299
1300 /* Internal PHY clock and reset are optional properties. */
1301 sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1302 if (sc->clk_ephy == NULL) {
1303 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1304 if (phy_phandle != -1)
1305 sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
1306 }
1307 sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
1308 if (sc->rst_ephy == NULL) {
1309 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1310 if (phy_phandle != -1)
1311 sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
1312 }
1313
1314 /* Regulator is optional */
1315 sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1316
1317 /* Reset GPIO is optional */
1318 sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1319 "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1320
1321 return 0;
1322 }
1323
1324 static int
1325 sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1326 {
1327 bus_addr_t addr;
1328 int phy_phandle;
1329
1330 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
1331 if (phy_phandle == -1)
1332 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1333 if (phy_phandle == -1)
1334 return MII_PHY_ANY;
1335
1336 if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1337 return MII_PHY_ANY;
1338
1339 return (int)addr;
1340 }
1341
1342 static int
1343 sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1344 {
1345 struct fdt_attach_args * const faa = aux;
1346
1347 return of_match_compat_data(faa->faa_phandle, compat_data);
1348 }
1349
1350 static void
1351 sunxi_emac_attach(device_t parent, device_t self, void *aux)
1352 {
1353 struct fdt_attach_args * const faa = aux;
1354 struct sunxi_emac_softc * const sc = device_private(self);
1355 const int phandle = faa->faa_phandle;
1356 struct mii_data *mii = &sc->mii;
1357 struct ifnet *ifp = &sc->ec.ec_if;
1358 uint8_t eaddr[ETHER_ADDR_LEN];
1359 char intrstr[128];
1360
1361 sc->dev = self;
1362 sc->phandle = phandle;
1363 sc->bst = faa->faa_bst;
1364 sc->dmat = faa->faa_dmat;
1365 sc->type = of_search_compatible(phandle, compat_data)->data;
1366 sc->phy_id = sunxi_emac_get_phyid(sc);
1367
1368 if (sunxi_emac_get_resources(sc) != 0) {
1369 aprint_error(": cannot allocate resources for device\n");
1370 return;
1371 }
1372 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1373 aprint_error(": cannot decode interrupt\n");
1374 return;
1375 }
1376
1377 mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1378 callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1379 callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1380
1381 aprint_naive("\n");
1382 aprint_normal(": EMAC\n");
1383
1384 /* Setup clocks and regulators */
1385 if (sunxi_emac_setup_resources(sc) != 0)
1386 return;
1387
1388 /* Read MAC address before resetting the chip */
1389 sunxi_emac_get_eaddr(sc, eaddr);
1390 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1391
1392 /* Reset PHY if necessary */
1393 if (sunxi_emac_phy_reset(sc) != 0) {
1394 aprint_error_dev(self, "failed to reset PHY\n");
1395 return;
1396 }
1397
1398 /* Setup DMA descriptors */
1399 if (sunxi_emac_setup_dma(sc) != 0) {
1400 aprint_error_dev(self, "failed to setup DMA descriptors\n");
1401 return;
1402 }
1403
1404 /* Install interrupt handler */
1405 sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
1406 FDT_INTR_FLAGS, sunxi_emac_intr, sc);
1407 if (sc->ih == NULL) {
1408 aprint_error_dev(self, "failed to establish interrupt on %s\n",
1409 intrstr);
1410 return;
1411 }
1412 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1413
1414 /* Setup ethernet interface */
1415 ifp->if_softc = sc;
1416 snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1417 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1418 #ifdef EMAC_MPSAFE
1419 ifp->if_extflags = IFEF_MPSAFE;
1420 #endif
1421 ifp->if_start = sunxi_emac_start;
1422 ifp->if_ioctl = sunxi_emac_ioctl;
1423 ifp->if_init = sunxi_emac_init;
1424 ifp->if_stop = sunxi_emac_stop;
1425 ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1426 IFCAP_CSUM_IPv4_Tx |
1427 IFCAP_CSUM_TCPv4_Rx |
1428 IFCAP_CSUM_TCPv4_Tx |
1429 IFCAP_CSUM_UDPv4_Rx |
1430 IFCAP_CSUM_UDPv4_Tx;
1431 ifp->if_capenable = ifp->if_capabilities;
1432 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1433 IFQ_SET_READY(&ifp->if_snd);
1434
1435 /* 802.1Q VLAN-sized frames are supported */
1436 sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1437
1438 /* Attach MII driver */
1439 sc->ec.ec_mii = mii;
1440 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1441 mii->mii_ifp = ifp;
1442 mii->mii_readreg = sunxi_emac_mii_readreg;
1443 mii->mii_writereg = sunxi_emac_mii_writereg;
1444 mii->mii_statchg = sunxi_emac_mii_statchg;
1445 mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1446 MIIF_DOPAUSE);
1447
1448 if (LIST_EMPTY(&mii->mii_phys)) {
1449 aprint_error_dev(self, "no PHY found!\n");
1450 return;
1451 }
1452 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
1453
1454 /* Attach interface */
1455 if_attach(ifp);
1456 if_deferred_start_init(ifp, NULL);
1457
1458 /* Attach ethernet interface */
1459 ether_ifattach(ifp, eaddr);
1460 }
1461
1462 CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1463 sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1464