sunxi_emac.c revision 1.31 1 /* $NetBSD: sunxi_emac.c,v 1.31 2021/01/18 02:35:49 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2016-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 */
32
33 #include "opt_net_mpsafe.h"
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.31 2021/01/18 02:35:49 thorpej Exp $");
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/device.h>
41 #include <sys/intr.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/mutex.h>
45 #include <sys/callout.h>
46 #include <sys/gpio.h>
47 #include <sys/cprng.h>
48
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/bpf.h>
54
55 #include <dev/mii/miivar.h>
56
57 #include <dev/fdt/fdtvar.h>
58 #include <dev/fdt/syscon.h>
59
60 #include <arm/sunxi/sunxi_emac.h>
61
62 #ifdef NET_MPSAFE
63 #define EMAC_MPSAFE 1
64 #define CALLOUT_FLAGS CALLOUT_MPSAFE
65 #define FDT_INTR_FLAGS FDT_INTR_MPSAFE
66 #else
67 #define CALLOUT_FLAGS 0
68 #define FDT_INTR_FLAGS 0
69 #endif
70
71 #define EMAC_IFNAME "emac%d"
72
73 #define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx)
74 #define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx)
75 #define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx))
76
77 #define DESC_ALIGN sizeof(struct sunxi_emac_desc)
78 #define TX_DESC_COUNT 1024
79 #define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
80 #define RX_DESC_COUNT 256
81 #define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
82
83 #define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc))
84 #define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
85 #define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
86 #define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
87
88 #define TX_MAX_SEGS 128
89
90 #define SOFT_RST_RETRY 1000
91 #define MII_BUSY_RETRY 1000
92 #define MDIO_FREQ 2500000
93
94 #define BURST_LEN_DEFAULT 8
95 #define RX_TX_PRI_DEFAULT 0
96 #define PAUSE_TIME_DEFAULT 0x400
97
98 /* syscon EMAC clock register */
99 #define EMAC_CLK_REG 0x30
100 #define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
101 #define EMAC_CLK_EPHY_ADDR_SHIFT 20
102 #define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
103 #define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
104 #define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
105 #define EMAC_CLK_RMII_EN (1 << 13)
106 #define EMAC_CLK_ETXDC (0x7 << 10)
107 #define EMAC_CLK_ETXDC_SHIFT 10
108 #define EMAC_CLK_ERXDC (0x1f << 5)
109 #define EMAC_CLK_ERXDC_SHIFT 5
110 #define EMAC_CLK_PIT (0x1 << 2)
111 #define EMAC_CLK_PIT_MII (0 << 2)
112 #define EMAC_CLK_PIT_RGMII (1 << 2)
113 #define EMAC_CLK_SRC (0x3 << 0)
114 #define EMAC_CLK_SRC_MII (0 << 0)
115 #define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
116 #define EMAC_CLK_SRC_RGMII (2 << 0)
117
118 /* Burst length of RX and TX DMA transfers */
119 static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
120
121 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
122 static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
123
124 /* Pause time field in the transmitted control frame */
125 static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
126
127 enum sunxi_emac_type {
128 EMAC_A64 = 1,
129 EMAC_A83T,
130 EMAC_H3,
131 EMAC_H6,
132 };
133
134 static const struct device_compatible_entry compat_data[] = {
135 { .compat = "allwinner,sun8i-a83t-emac", .value = EMAC_A83T },
136 { .compat = "allwinner,sun8i-h3-emac", .value = EMAC_H3 },
137 { .compat = "allwinner,sun50i-a64-emac", .value = EMAC_A64 },
138 { .compat = "allwinner,sun50i-h6-emac", .value = EMAC_H6 },
139
140 { 0 }
141 };
142
143 struct sunxi_emac_bufmap {
144 bus_dmamap_t map;
145 struct mbuf *mbuf;
146 };
147
148 struct sunxi_emac_txring {
149 bus_dma_tag_t desc_tag;
150 bus_dmamap_t desc_map;
151 bus_dma_segment_t desc_dmaseg;
152 struct sunxi_emac_desc *desc_ring;
153 bus_addr_t desc_ring_paddr;
154 bus_dma_tag_t buf_tag;
155 struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
156 u_int cur, next, queued;
157 };
158
159 struct sunxi_emac_rxring {
160 bus_dma_tag_t desc_tag;
161 bus_dmamap_t desc_map;
162 bus_dma_segment_t desc_dmaseg;
163 struct sunxi_emac_desc *desc_ring;
164 bus_addr_t desc_ring_paddr;
165 bus_dma_tag_t buf_tag;
166 struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
167 u_int cur;
168 };
169
170 struct sunxi_emac_softc {
171 device_t dev;
172 int phandle;
173 enum sunxi_emac_type type;
174 bus_space_tag_t bst;
175 bus_dma_tag_t dmat;
176
177 bus_space_handle_t bsh;
178 struct clk *clk_ahb;
179 struct clk *clk_ephy;
180 struct fdtbus_reset *rst_ahb;
181 struct fdtbus_reset *rst_ephy;
182 struct fdtbus_regulator *reg_phy;
183 struct fdtbus_gpio_pin *pin_reset;
184
185 struct syscon *syscon;
186
187 int phy_id;
188
189 kmutex_t mtx;
190 struct ethercom ec;
191 struct mii_data mii;
192 callout_t stat_ch;
193 void *ih;
194 u_int mdc_div_ratio_m;
195
196 struct sunxi_emac_txring tx;
197 struct sunxi_emac_rxring rx;
198 };
199
200 #define RD4(sc, reg) \
201 bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
202 #define WR4(sc, reg, val) \
203 bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
204
205 static int
206 sunxi_emac_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
207 {
208 struct sunxi_emac_softc *sc = device_private(dev);
209 int retry;
210
211 WR4(sc, EMAC_MII_CMD,
212 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
213 (phy << PHY_ADDR_SHIFT) |
214 (reg << PHY_REG_ADDR_SHIFT) |
215 MII_BUSY);
216 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
217 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
218 *val = RD4(sc, EMAC_MII_DATA) & 0xffff;
219 break;
220 }
221 delay(10);
222 }
223
224 if (retry == 0) {
225 device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
226 phy, reg);
227 return ETIMEDOUT;
228 }
229
230 return 0;
231 }
232
233 static int
234 sunxi_emac_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
235 {
236 struct sunxi_emac_softc *sc = device_private(dev);
237 int retry;
238
239 WR4(sc, EMAC_MII_DATA, val);
240 WR4(sc, EMAC_MII_CMD,
241 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
242 (phy << PHY_ADDR_SHIFT) |
243 (reg << PHY_REG_ADDR_SHIFT) |
244 MII_WR | MII_BUSY);
245 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
246 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
247 break;
248 delay(10);
249 }
250
251 if (retry == 0) {
252 device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
253 phy, reg);
254 return ETIMEDOUT;
255 }
256
257 return 0;
258 }
259
260 static void
261 sunxi_emac_update_link(struct sunxi_emac_softc *sc)
262 {
263 struct mii_data *mii = &sc->mii;
264 uint32_t val;
265
266 val = RD4(sc, EMAC_BASIC_CTL_0);
267 val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
268
269 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
270 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
271 val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
272 else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
273 val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
274 else
275 val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
276
277 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
278 val |= BASIC_CTL_DUPLEX;
279
280 WR4(sc, EMAC_BASIC_CTL_0, val);
281
282 val = RD4(sc, EMAC_RX_CTL_0);
283 val &= ~RX_FLOW_CTL_EN;
284 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
285 val |= RX_FLOW_CTL_EN;
286 WR4(sc, EMAC_RX_CTL_0, val);
287
288 val = RD4(sc, EMAC_TX_FLOW_CTL);
289 val &= ~(PAUSE_TIME | TX_FLOW_CTL_EN);
290 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
291 val |= TX_FLOW_CTL_EN;
292 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
293 val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
294 WR4(sc, EMAC_TX_FLOW_CTL, val);
295 }
296
297 static void
298 sunxi_emac_mii_statchg(struct ifnet *ifp)
299 {
300 struct sunxi_emac_softc * const sc = ifp->if_softc;
301
302 sunxi_emac_update_link(sc);
303 }
304
305 static void
306 sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
307 bus_dmamap_t map, int start, int end, int total, int flags)
308 {
309 if (end > start) {
310 bus_dmamap_sync(dmat, map, DESC_OFF(start),
311 DESC_OFF(end) - DESC_OFF(start), flags);
312 } else {
313 bus_dmamap_sync(dmat, map, DESC_OFF(start),
314 DESC_OFF(total) - DESC_OFF(start), flags);
315 if (DESC_OFF(end) - DESC_OFF(0) > 0)
316 bus_dmamap_sync(dmat, map, DESC_OFF(0),
317 DESC_OFF(end) - DESC_OFF(0), flags);
318 }
319 }
320
321 static void
322 sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
323 bus_addr_t paddr, u_int len)
324 {
325 uint32_t status, size;
326
327 if (paddr == 0 || len == 0) {
328 status = 0;
329 size = 0;
330 --sc->tx.queued;
331 } else {
332 status = TX_DESC_CTL;
333 size = flags | len;
334 ++sc->tx.queued;
335 }
336
337 sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
338 sc->tx.desc_ring[index].size = htole32(size);
339 sc->tx.desc_ring[index].status = htole32(status);
340 }
341
342 static int
343 sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
344 {
345 bus_dma_segment_t *segs;
346 int error, nsegs, cur, i, flags;
347 u_int csum_flags;
348
349 error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
350 sc->tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
351 if (error == EFBIG) {
352 device_printf(sc->dev,
353 "TX packet needs too many DMA segments, dropping...\n");
354 m_freem(m);
355 return 0;
356 }
357 if (error != 0)
358 return 0;
359
360 segs = sc->tx.buf_map[index].map->dm_segs;
361 nsegs = sc->tx.buf_map[index].map->dm_nsegs;
362
363 flags = TX_FIR_DESC;
364 if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
365 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
366 csum_flags = TX_CHECKSUM_CTL_FULL;
367 else
368 csum_flags = TX_CHECKSUM_CTL_IP;
369 flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
370 }
371
372 for (cur = index, i = 0; i < nsegs; i++) {
373 sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
374 if (i == nsegs - 1)
375 flags |= TX_LAST_DESC | TX_INT_CTL;
376
377 sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
378 segs[i].ds_len);
379 flags &= ~TX_FIR_DESC;
380 cur = TX_NEXT(cur);
381 }
382
383 bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
384 0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
385
386 return nsegs;
387 }
388
389 static void
390 sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
391 bus_addr_t paddr)
392 {
393 uint32_t status, size;
394
395 status = RX_DESC_CTL;
396 size = MCLBYTES - 1;
397
398 sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
399 sc->rx.desc_ring[index].size = htole32(size);
400 sc->rx.desc_ring[index].next =
401 htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
402 sc->rx.desc_ring[index].status = htole32(status);
403 }
404
405 static int
406 sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
407 {
408 int error;
409
410 m_adj(m, ETHER_ALIGN);
411
412 error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
413 sc->rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT);
414 if (error != 0)
415 return error;
416
417 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
418 0, sc->rx.buf_map[index].map->dm_mapsize,
419 BUS_DMASYNC_PREREAD);
420
421 sc->rx.buf_map[index].mbuf = m;
422 sunxi_emac_setup_rxdesc(sc, index,
423 sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
424
425 return 0;
426 }
427
428 static struct mbuf *
429 sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
430 {
431 struct mbuf *m;
432
433 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
434 if (m != NULL)
435 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
436
437 return m;
438 }
439
440 static void
441 sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
442 {
443 struct ifnet *ifp = &sc->ec.ec_if;
444 struct mbuf *m;
445 uint32_t val;
446 int cnt, nsegs, start;
447
448 EMAC_ASSERT_LOCKED(sc);
449
450 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
451 return;
452
453 for (cnt = 0, start = sc->tx.cur; ; cnt++) {
454 if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
455 ifp->if_flags |= IFF_OACTIVE;
456 break;
457 }
458
459 IFQ_POLL(&ifp->if_snd, m);
460 if (m == NULL)
461 break;
462
463 nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
464 if (nsegs == 0) {
465 ifp->if_flags |= IFF_OACTIVE;
466 break;
467 }
468 IFQ_DEQUEUE(&ifp->if_snd, m);
469 bpf_mtap(ifp, m, BPF_D_OUT);
470
471 sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
472 }
473
474 if (cnt != 0) {
475 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
476 start, sc->tx.cur, TX_DESC_COUNT,
477 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
478
479 /* Start and run TX DMA */
480 val = RD4(sc, EMAC_TX_CTL_1);
481 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
482 }
483 }
484
485 static void
486 sunxi_emac_start(struct ifnet *ifp)
487 {
488 struct sunxi_emac_softc *sc = ifp->if_softc;
489
490 EMAC_LOCK(sc);
491 sunxi_emac_start_locked(sc);
492 EMAC_UNLOCK(sc);
493 }
494
495 static void
496 sunxi_emac_tick(void *softc)
497 {
498 struct sunxi_emac_softc *sc = softc;
499 struct mii_data *mii = &sc->mii;
500 #ifndef EMAC_MPSAFE
501 int s = splnet();
502 #endif
503
504 EMAC_LOCK(sc);
505 mii_tick(mii);
506 callout_schedule(&sc->stat_ch, hz);
507 EMAC_UNLOCK(sc);
508
509 #ifndef EMAC_MPSAFE
510 splx(s);
511 #endif
512 }
513
514 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
515 static uint32_t
516 bitrev32(uint32_t x)
517 {
518 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
519 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
520 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
521 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
522
523 return (x >> 16) | (x << 16);
524 }
525
526 static void
527 sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
528 {
529 struct ethercom *ec = &sc->ec;
530 struct ifnet *ifp = &ec->ec_if;
531 uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
532 struct ether_multi *enm;
533 struct ether_multistep step;
534 const uint8_t *eaddr;
535
536 EMAC_ASSERT_LOCKED(sc);
537
538 val = 0;
539 hash[0] = hash[1] = 0;
540
541 if ((ifp->if_flags & IFF_PROMISC) != 0)
542 val |= DIS_ADDR_FILTER;
543 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
544 val |= RX_ALL_MULTICAST;
545 hash[0] = hash[1] = ~0;
546 } else {
547 val |= HASH_MULTICAST;
548 ETHER_LOCK(ec);
549 ETHER_FIRST_MULTI(step, ec, enm);
550 while (enm != NULL) {
551 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
552 crc &= 0x7f;
553 crc = bitrev32(~crc) >> 26;
554 hashreg = (crc >> 5);
555 hashbit = (crc & 0x1f);
556 hash[hashreg] |= (1 << hashbit);
557 ETHER_NEXT_MULTI(step, enm);
558 }
559 ETHER_UNLOCK(ec);
560 }
561
562 /* Write our unicast address */
563 eaddr = CLLADDR(ifp->if_sadl);
564 machi = (eaddr[5] << 8) | eaddr[4];
565 maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
566 (eaddr[0] << 0);
567 WR4(sc, EMAC_ADDR_HIGH(0), machi);
568 WR4(sc, EMAC_ADDR_LOW(0), maclo);
569
570 /* Multicast hash filters */
571 WR4(sc, EMAC_RX_HASH_0, hash[1]);
572 WR4(sc, EMAC_RX_HASH_1, hash[0]);
573
574 /* RX frame filter config */
575 WR4(sc, EMAC_RX_FRM_FLT, val);
576 }
577
578 static void
579 sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
580 {
581 /* Enable interrupts */
582 WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
583 }
584
585 static void
586 sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
587 {
588 /* Disable interrupts */
589 WR4(sc, EMAC_INT_EN, 0);
590 }
591
592 #ifdef SUNXI_EMAC_DEBUG
593 static void
594 sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
595 {
596 static const struct {
597 const char *name;
598 u_int reg;
599 } regs[] = {
600 { "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
601 { "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
602 { "INT_STA", EMAC_INT_STA },
603 { "INT_EN", EMAC_INT_EN },
604 { "TX_CTL_0", EMAC_TX_CTL_0 },
605 { "TX_CTL_1", EMAC_TX_CTL_1 },
606 { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
607 { "TX_DMA_LIST", EMAC_TX_DMA_LIST },
608 { "RX_CTL_0", EMAC_RX_CTL_0 },
609 { "RX_CTL_1", EMAC_RX_CTL_1 },
610 { "RX_DMA_LIST", EMAC_RX_DMA_LIST },
611 { "RX_FRM_FLT", EMAC_RX_FRM_FLT },
612 { "RX_HASH_0", EMAC_RX_HASH_0 },
613 { "RX_HASH_1", EMAC_RX_HASH_1 },
614 { "MII_CMD", EMAC_MII_CMD },
615 { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
616 { "ADDR_LOW0", EMAC_ADDR_LOW(0) },
617 { "TX_DMA_STA", EMAC_TX_DMA_STA },
618 { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
619 { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
620 { "RX_DMA_STA", EMAC_RX_DMA_STA },
621 { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
622 { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
623 { "RGMII_STA", EMAC_RGMII_STA },
624 };
625 u_int n;
626
627 for (n = 0; n < __arraycount(regs); n++)
628 device_printf(sc->dev, " %-20s %08x\n", regs[n].name,
629 RD4(sc, regs[n].reg));
630 }
631 #endif
632
633 static int
634 sunxi_emac_reset(struct sunxi_emac_softc *sc)
635 {
636 int retry;
637
638 /* Soft reset all registers and logic */
639 WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
640
641 /* Wait for soft reset bit to self-clear */
642 for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
643 if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
644 break;
645 delay(10);
646 }
647 if (retry == 0) {
648 aprint_debug_dev(sc->dev, "soft reset timed out\n");
649 #ifdef SUNXI_EMAC_DEBUG
650 sunxi_emac_dump_regs(sc);
651 #endif
652 return ETIMEDOUT;
653 }
654
655 return 0;
656 }
657
658 static int
659 sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
660 {
661 struct ifnet *ifp = &sc->ec.ec_if;
662 struct mii_data *mii = &sc->mii;
663 uint32_t val;
664
665 EMAC_ASSERT_LOCKED(sc);
666
667 if ((ifp->if_flags & IFF_RUNNING) != 0)
668 return 0;
669
670 /* Soft reset EMAC core */
671 sunxi_emac_reset(sc);
672
673 /* Write transmit and receive descriptor base address registers */
674 WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
675 WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
676
677 sunxi_emac_setup_rxfilter(sc);
678
679 /* Configure DMA burst length and priorities */
680 val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
681 if (sunxi_emac_rx_tx_pri)
682 val |= BASIC_CTL_RX_TX_PRI;
683 WR4(sc, EMAC_BASIC_CTL_1, val);
684
685 /* Enable interrupts */
686 sunxi_emac_enable_intr(sc);
687
688 /* Enable transmit DMA */
689 val = RD4(sc, EMAC_TX_CTL_1);
690 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
691
692 /* Enable receive DMA */
693 val = RD4(sc, EMAC_RX_CTL_1);
694 WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
695
696 /* Enable transmitter */
697 val = RD4(sc, EMAC_TX_CTL_0);
698 WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
699
700 /* Enable receiver */
701 val = RD4(sc, EMAC_RX_CTL_0);
702 WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
703
704 ifp->if_flags |= IFF_RUNNING;
705 ifp->if_flags &= ~IFF_OACTIVE;
706
707 mii_mediachg(mii);
708 callout_schedule(&sc->stat_ch, hz);
709
710 return 0;
711 }
712
713 static int
714 sunxi_emac_init(struct ifnet *ifp)
715 {
716 struct sunxi_emac_softc *sc = ifp->if_softc;
717 int error;
718
719 EMAC_LOCK(sc);
720 error = sunxi_emac_init_locked(sc);
721 EMAC_UNLOCK(sc);
722
723 return error;
724 }
725
726 static void
727 sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
728 {
729 struct ifnet *ifp = &sc->ec.ec_if;
730 uint32_t val;
731
732 EMAC_ASSERT_LOCKED(sc);
733
734 callout_stop(&sc->stat_ch);
735
736 mii_down(&sc->mii);
737
738 /* Stop transmit DMA and flush data in the TX FIFO */
739 val = RD4(sc, EMAC_TX_CTL_1);
740 val &= ~TX_DMA_EN;
741 val |= FLUSH_TX_FIFO;
742 WR4(sc, EMAC_TX_CTL_1, val);
743
744 /* Disable transmitter */
745 val = RD4(sc, EMAC_TX_CTL_0);
746 WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
747
748 /* Disable receiver */
749 val = RD4(sc, EMAC_RX_CTL_0);
750 WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
751
752 /* Disable interrupts */
753 sunxi_emac_disable_intr(sc);
754
755 /* Disable transmit DMA */
756 val = RD4(sc, EMAC_TX_CTL_1);
757 WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
758
759 /* Disable receive DMA */
760 val = RD4(sc, EMAC_RX_CTL_1);
761 WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
762
763 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
764 }
765
766 static void
767 sunxi_emac_stop(struct ifnet *ifp, int disable)
768 {
769 struct sunxi_emac_softc * const sc = ifp->if_softc;
770
771 EMAC_LOCK(sc);
772 sunxi_emac_stop_locked(sc, disable);
773 EMAC_UNLOCK(sc);
774 }
775
776 static int
777 sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
778 {
779 struct ifnet *ifp = &sc->ec.ec_if;
780 int error, index, len, npkt;
781 struct mbuf *m, *m0;
782 uint32_t status;
783
784 npkt = 0;
785
786 for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
787 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
788 index, index + 1, RX_DESC_COUNT,
789 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
790
791 status = le32toh(sc->rx.desc_ring[index].status);
792 if ((status & RX_DESC_CTL) != 0)
793 break;
794
795 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
796 0, sc->rx.buf_map[index].map->dm_mapsize,
797 BUS_DMASYNC_POSTREAD);
798 bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
799
800 len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
801 if (len != 0) {
802 m = sc->rx.buf_map[index].mbuf;
803 m_set_rcvif(m, ifp);
804 m->m_flags |= M_HASFCS;
805 m->m_pkthdr.len = len;
806 m->m_len = len;
807 m->m_nextpkt = NULL;
808
809 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
810 (status & RX_FRM_TYPE) != 0) {
811 m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
812 M_CSUM_TCPv4 | M_CSUM_UDPv4;
813 if ((status & RX_HEADER_ERR) != 0)
814 m->m_pkthdr.csum_flags |=
815 M_CSUM_IPv4_BAD;
816 if ((status & RX_PAYLOAD_ERR) != 0)
817 m->m_pkthdr.csum_flags |=
818 M_CSUM_TCP_UDP_BAD;
819 }
820
821 ++npkt;
822
823 if_percpuq_enqueue(ifp->if_percpuq, m);
824 }
825
826 if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
827 error = sunxi_emac_setup_rxbuf(sc, index, m0);
828 if (error != 0) {
829 /* XXX hole in RX ring */
830 }
831 } else
832 if_statinc(ifp, if_ierrors);
833
834 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
835 index, index + 1,
836 RX_DESC_COUNT, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
837 }
838
839 sc->rx.cur = index;
840
841 return npkt;
842 }
843
844 static void
845 sunxi_emac_txintr(struct sunxi_emac_softc *sc)
846 {
847 struct ifnet *ifp = &sc->ec.ec_if;
848 struct sunxi_emac_bufmap *bmap;
849 struct sunxi_emac_desc *desc;
850 uint32_t status;
851 int i;
852
853 EMAC_ASSERT_LOCKED(sc);
854
855 for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
856 KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
857 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
858 i, i + 1, TX_DESC_COUNT,
859 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
860 desc = &sc->tx.desc_ring[i];
861 status = le32toh(desc->status);
862 if ((status & TX_DESC_CTL) != 0)
863 break;
864 bmap = &sc->tx.buf_map[i];
865 if (bmap->mbuf != NULL) {
866 bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
867 0, bmap->map->dm_mapsize,
868 BUS_DMASYNC_POSTWRITE);
869 bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
870 m_freem(bmap->mbuf);
871 bmap->mbuf = NULL;
872 }
873
874 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
875 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
876 i, i + 1, TX_DESC_COUNT,
877 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
878
879 ifp->if_flags &= ~IFF_OACTIVE;
880 if_statinc(ifp, if_opackets);
881 }
882
883 sc->tx.next = i;
884 }
885
886 static int
887 sunxi_emac_intr(void *arg)
888 {
889 struct sunxi_emac_softc *sc = arg;
890 struct ifnet *ifp = &sc->ec.ec_if;
891 uint32_t val;
892
893 EMAC_LOCK(sc);
894
895 val = RD4(sc, EMAC_INT_STA);
896 WR4(sc, EMAC_INT_STA, val);
897
898 if (val & RX_INT)
899 sunxi_emac_rxintr(sc);
900
901 if (val & (TX_INT | TX_BUF_UA_INT)) {
902 sunxi_emac_txintr(sc);
903 if_schedule_deferred_start(ifp);
904 }
905
906 EMAC_UNLOCK(sc);
907
908 return 1;
909 }
910
911 static int
912 sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
913 {
914 struct sunxi_emac_softc *sc = ifp->if_softc;
915 int error, s;
916
917 #ifndef EMAC_MPSAFE
918 s = splnet();
919 #endif
920
921 switch (cmd) {
922 default:
923 #ifdef EMAC_MPSAFE
924 s = splnet();
925 #endif
926 error = ether_ioctl(ifp, cmd, data);
927 #ifdef EMAC_MPSAFE
928 splx(s);
929 #endif
930 if (error != ENETRESET)
931 break;
932
933 error = 0;
934
935 if (cmd == SIOCSIFCAP)
936 error = (*ifp->if_init)(ifp);
937 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
938 ;
939 else if ((ifp->if_flags & IFF_RUNNING) != 0) {
940 EMAC_LOCK(sc);
941 sunxi_emac_setup_rxfilter(sc);
942 EMAC_UNLOCK(sc);
943 }
944 break;
945 }
946
947 #ifndef EMAC_MPSAFE
948 splx(s);
949 #endif
950
951 return error;
952 }
953
954 static bool
955 sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
956 {
957 const char * mdio_internal_compat[] = {
958 "allwinner,sun8i-h3-mdio-internal",
959 NULL
960 };
961 int phy;
962
963 /* Non-standard property, for compatible with old dts files */
964 if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
965 return true;
966
967 phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
968 if (phy == -1)
969 return false;
970
971 /* For internal PHY, check compatible string of parent node */
972 return of_compatible(OF_parent(phy), mdio_internal_compat) >= 0;
973 }
974
975 static int
976 sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
977 {
978 uint32_t reg, tx_delay, rx_delay;
979 const char *phy_type;
980
981 phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
982 if (phy_type == NULL)
983 return 0;
984
985 aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
986
987 syscon_lock(sc->syscon);
988 reg = syscon_read_4(sc->syscon, EMAC_CLK_REG);
989
990 reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
991 if (strcmp(phy_type, "rgmii") == 0)
992 reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
993 else if (strcmp(phy_type, "rmii") == 0)
994 reg |= EMAC_CLK_RMII_EN;
995 else
996 reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
997
998 if (of_getprop_uint32(sc->phandle, "allwinner,tx-delay-ps",
999 &tx_delay) == 0) {
1000 reg &= ~EMAC_CLK_ETXDC;
1001 reg |= ((tx_delay / 100) << EMAC_CLK_ETXDC_SHIFT);
1002 } else if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
1003 reg &= ~EMAC_CLK_ETXDC;
1004 reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1005 }
1006 if (of_getprop_uint32(sc->phandle, "allwinner,rx-delay-ps",
1007 &rx_delay) == 0) {
1008 reg &= ~EMAC_CLK_ERXDC;
1009 reg |= ((rx_delay / 100) << EMAC_CLK_ERXDC_SHIFT);
1010 } else if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
1011 reg &= ~EMAC_CLK_ERXDC;
1012 reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1013 }
1014
1015 if (sc->type == EMAC_H3 || sc->type == EMAC_H6) {
1016 if (sunxi_emac_has_internal_phy(sc)) {
1017 reg |= EMAC_CLK_EPHY_SELECT;
1018 reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1019 if (of_hasprop(sc->phandle,
1020 "allwinner,leds-active-low"))
1021 reg |= EMAC_CLK_EPHY_LED_POL;
1022 else
1023 reg &= ~EMAC_CLK_EPHY_LED_POL;
1024
1025 /* Set internal PHY addr to 1 */
1026 reg &= ~EMAC_CLK_EPHY_ADDR;
1027 reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1028 } else {
1029 reg &= ~EMAC_CLK_EPHY_SELECT;
1030 }
1031 }
1032
1033 aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
1034
1035 syscon_write_4(sc->syscon, EMAC_CLK_REG, reg);
1036 syscon_unlock(sc->syscon);
1037
1038 return 0;
1039 }
1040
1041 static int
1042 sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
1043 {
1044 u_int freq;
1045 int error, div;
1046
1047 /* Configure PHY for MII or RGMII mode */
1048 if (sunxi_emac_setup_phy(sc) != 0)
1049 return ENXIO;
1050
1051 /* Enable clocks */
1052 error = clk_enable(sc->clk_ahb);
1053 if (error != 0) {
1054 aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
1055 return error;
1056 }
1057
1058 if (sc->clk_ephy != NULL) {
1059 error = clk_enable(sc->clk_ephy);
1060 if (error != 0) {
1061 aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
1062 return error;
1063 }
1064 }
1065
1066 /* De-assert reset */
1067 error = fdtbus_reset_deassert(sc->rst_ahb);
1068 if (error != 0) {
1069 aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
1070 return error;
1071 }
1072 if (sc->rst_ephy != NULL) {
1073 error = fdtbus_reset_deassert(sc->rst_ephy);
1074 if (error != 0) {
1075 aprint_error_dev(sc->dev,
1076 "cannot de-assert ephy reset\n");
1077 return error;
1078 }
1079 }
1080
1081 /* Enable PHY regulator if applicable */
1082 if (sc->reg_phy != NULL) {
1083 error = fdtbus_regulator_enable(sc->reg_phy);
1084 if (error != 0) {
1085 aprint_error_dev(sc->dev,
1086 "cannot enable PHY regulator\n");
1087 return error;
1088 }
1089 }
1090
1091 /* Determine MDC clock divide ratio based on AHB clock */
1092 freq = clk_get_rate(sc->clk_ahb);
1093 if (freq == 0) {
1094 aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1095 return ENXIO;
1096 }
1097 div = freq / MDIO_FREQ;
1098 if (div <= 16)
1099 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1100 else if (div <= 32)
1101 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1102 else if (div <= 64)
1103 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1104 else if (div <= 128)
1105 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1106 else {
1107 aprint_error_dev(sc->dev,
1108 "cannot determine MDC clock divide ratio\n");
1109 return ENXIO;
1110 }
1111
1112 aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1113 freq, sc->mdc_div_ratio_m);
1114
1115 return 0;
1116 }
1117
1118 static void
1119 sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1120 {
1121 uint32_t maclo, machi;
1122 #if notyet
1123 u_char rootkey[16];
1124 #endif
1125
1126 machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1127 maclo = RD4(sc, EMAC_ADDR_LOW(0));
1128
1129 if (maclo == 0xffffffff && machi == 0xffff) {
1130 #if notyet
1131 /* MAC address in hardware is invalid, create one */
1132 if (aw_sid_get_rootkey(rootkey) == 0 &&
1133 (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1134 rootkey[15]) != 0) {
1135 /* MAC address is derived from the root key in SID */
1136 maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1137 (rootkey[3] << 8) | 0x02;
1138 machi = (rootkey[15] << 8) | rootkey[14];
1139 } else {
1140 #endif
1141 /* Create one */
1142 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1143 machi = cprng_strong32() & 0xffff;
1144 #if notyet
1145 }
1146 #endif
1147 }
1148
1149 eaddr[0] = maclo & 0xff;
1150 eaddr[1] = (maclo >> 8) & 0xff;
1151 eaddr[2] = (maclo >> 16) & 0xff;
1152 eaddr[3] = (maclo >> 24) & 0xff;
1153 eaddr[4] = machi & 0xff;
1154 eaddr[5] = (machi >> 8) & 0xff;
1155 }
1156
1157 static int
1158 sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1159 {
1160 uint32_t delay_prop[3];
1161 int pin_value;
1162
1163 if (sc->pin_reset == NULL)
1164 return 0;
1165
1166 if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1167 sizeof(delay_prop)) <= 0)
1168 return ENXIO;
1169
1170 pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1171
1172 fdtbus_gpio_write(sc->pin_reset, pin_value);
1173 delay(htole32(delay_prop[0]));
1174 fdtbus_gpio_write(sc->pin_reset, !pin_value);
1175 delay(htole32(delay_prop[1]));
1176 fdtbus_gpio_write(sc->pin_reset, pin_value);
1177 delay(htole32(delay_prop[2]));
1178
1179 return 0;
1180 }
1181
1182 static int
1183 sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1184 {
1185 struct mbuf *m;
1186 int error, nsegs, i;
1187
1188 /* Setup TX ring */
1189 sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1190 error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1191 BUS_DMA_WAITOK, &sc->tx.desc_map);
1192 if (error)
1193 return error;
1194 error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1195 &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1196 if (error)
1197 return error;
1198 error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1199 TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1200 BUS_DMA_WAITOK);
1201 if (error)
1202 return error;
1203 error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1204 TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1205 if (error)
1206 return error;
1207 sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1208
1209 memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1210 bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1211 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1212
1213 for (i = 0; i < TX_DESC_COUNT; i++)
1214 sc->tx.desc_ring[i].next =
1215 htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1216
1217 sc->tx.queued = TX_DESC_COUNT;
1218 for (i = 0; i < TX_DESC_COUNT; i++) {
1219 error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1220 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1221 &sc->tx.buf_map[i].map);
1222 if (error != 0) {
1223 device_printf(sc->dev, "cannot create TX buffer map\n");
1224 return error;
1225 }
1226 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1227 }
1228
1229 /* Setup RX ring */
1230 sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1231 error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1232 BUS_DMA_WAITOK, &sc->rx.desc_map);
1233 if (error)
1234 return error;
1235 error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1236 &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1237 if (error)
1238 return error;
1239 error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1240 RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1241 BUS_DMA_WAITOK);
1242 if (error)
1243 return error;
1244 error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1245 RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1246 if (error)
1247 return error;
1248 sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1249
1250 memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1251
1252 for (i = 0; i < RX_DESC_COUNT; i++) {
1253 error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1254 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1255 &sc->rx.buf_map[i].map);
1256 if (error != 0) {
1257 device_printf(sc->dev, "cannot create RX buffer map\n");
1258 return error;
1259 }
1260 if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1261 device_printf(sc->dev, "cannot allocate RX mbuf\n");
1262 return ENOMEM;
1263 }
1264 error = sunxi_emac_setup_rxbuf(sc, i, m);
1265 if (error != 0) {
1266 device_printf(sc->dev, "cannot create RX buffer\n");
1267 return error;
1268 }
1269 }
1270 bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1271 0, sc->rx.desc_map->dm_mapsize,
1272 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1273
1274 return 0;
1275 }
1276
1277 static int
1278 sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1279 {
1280 const int phandle = sc->phandle;
1281 bus_addr_t addr, size;
1282
1283 /* Map EMAC registers */
1284 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
1285 aprint_error_dev(sc->dev, "unable to get registers\n");
1286 return ENXIO;
1287 }
1288 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh) != 0) {
1289 aprint_error_dev(sc->dev, "unable to map registers\n");
1290 return ENXIO;
1291 }
1292
1293 /* Get SYSCON registers */
1294 sc->syscon = fdtbus_syscon_acquire(phandle, "syscon");
1295 if (sc->syscon == NULL) {
1296 aprint_error_dev(sc->dev, "unable to acquire syscon\n");
1297 return ENXIO;
1298 }
1299
1300 /* The "ahb"/"stmmaceth" clock and reset is required */
1301 if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1302 (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL) {
1303 aprint_error_dev(sc->dev, "unable to get clock\n");
1304 return ENXIO;
1305 }
1306 if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1307 (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL) {
1308 aprint_error_dev(sc->dev, "unable to get reset\n");
1309 return ENXIO;
1310 }
1311
1312 /* Internal PHY clock and reset are optional properties. */
1313 sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1314 if (sc->clk_ephy == NULL) {
1315 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1316 if (phy_phandle != -1)
1317 sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
1318 }
1319 sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
1320 if (sc->rst_ephy == NULL) {
1321 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1322 if (phy_phandle != -1)
1323 sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
1324 }
1325
1326 /* Regulator is optional */
1327 sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1328
1329 /* Reset GPIO is optional */
1330 sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1331 "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1332
1333 return 0;
1334 }
1335
1336 static int
1337 sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1338 {
1339 bus_addr_t addr;
1340 int phy_phandle;
1341
1342 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
1343 if (phy_phandle == -1)
1344 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1345 if (phy_phandle == -1)
1346 return MII_PHY_ANY;
1347
1348 if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1349 return MII_PHY_ANY;
1350
1351 return (int)addr;
1352 }
1353
1354 static int
1355 sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1356 {
1357 struct fdt_attach_args * const faa = aux;
1358
1359 return of_match_compat_data(faa->faa_phandle, compat_data);
1360 }
1361
1362 static void
1363 sunxi_emac_attach(device_t parent, device_t self, void *aux)
1364 {
1365 struct fdt_attach_args * const faa = aux;
1366 struct sunxi_emac_softc * const sc = device_private(self);
1367 const int phandle = faa->faa_phandle;
1368 struct mii_data *mii = &sc->mii;
1369 struct ifnet *ifp = &sc->ec.ec_if;
1370 uint8_t eaddr[ETHER_ADDR_LEN];
1371 char intrstr[128];
1372
1373 sc->dev = self;
1374 sc->phandle = phandle;
1375 sc->bst = faa->faa_bst;
1376 sc->dmat = faa->faa_dmat;
1377 sc->type = of_search_compatible(phandle, compat_data)->value;
1378 sc->phy_id = sunxi_emac_get_phyid(sc);
1379
1380 aprint_naive("\n");
1381 aprint_normal(": EMAC\n");
1382
1383 if (sunxi_emac_get_resources(sc) != 0) {
1384 aprint_error_dev(self,
1385 "cannot allocate resources for device\n");
1386 return;
1387 }
1388 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1389 aprint_error_dev(self, "cannot decode interrupt\n");
1390 return;
1391 }
1392
1393 mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1394 callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1395 callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1396
1397 /* Setup clocks and regulators */
1398 if (sunxi_emac_setup_resources(sc) != 0)
1399 return;
1400
1401 /* Read MAC address before resetting the chip */
1402 sunxi_emac_get_eaddr(sc, eaddr);
1403 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1404
1405 /* Reset PHY if necessary */
1406 if (sunxi_emac_phy_reset(sc) != 0) {
1407 aprint_error_dev(self, "failed to reset PHY\n");
1408 return;
1409 }
1410
1411 /* Setup DMA descriptors */
1412 if (sunxi_emac_setup_dma(sc) != 0) {
1413 aprint_error_dev(self, "failed to setup DMA descriptors\n");
1414 return;
1415 }
1416
1417 /* Install interrupt handler */
1418 sc->ih = fdtbus_intr_establish_xname(phandle, 0, IPL_NET,
1419 FDT_INTR_FLAGS, sunxi_emac_intr, sc, device_xname(self));
1420 if (sc->ih == NULL) {
1421 aprint_error_dev(self, "failed to establish interrupt on %s\n",
1422 intrstr);
1423 return;
1424 }
1425 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1426
1427 /* Setup ethernet interface */
1428 ifp->if_softc = sc;
1429 snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1430 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1431 #ifdef EMAC_MPSAFE
1432 ifp->if_extflags = IFEF_MPSAFE;
1433 #endif
1434 ifp->if_start = sunxi_emac_start;
1435 ifp->if_ioctl = sunxi_emac_ioctl;
1436 ifp->if_init = sunxi_emac_init;
1437 ifp->if_stop = sunxi_emac_stop;
1438 ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1439 IFCAP_CSUM_IPv4_Tx |
1440 IFCAP_CSUM_TCPv4_Rx |
1441 IFCAP_CSUM_TCPv4_Tx |
1442 IFCAP_CSUM_UDPv4_Rx |
1443 IFCAP_CSUM_UDPv4_Tx;
1444 ifp->if_capenable = ifp->if_capabilities;
1445 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1446 IFQ_SET_READY(&ifp->if_snd);
1447
1448 /* 802.1Q VLAN-sized frames are supported */
1449 sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1450
1451 /* Attach MII driver */
1452 sc->ec.ec_mii = mii;
1453 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1454 mii->mii_ifp = ifp;
1455 mii->mii_readreg = sunxi_emac_mii_readreg;
1456 mii->mii_writereg = sunxi_emac_mii_writereg;
1457 mii->mii_statchg = sunxi_emac_mii_statchg;
1458 mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1459 MIIF_DOPAUSE);
1460
1461 if (LIST_EMPTY(&mii->mii_phys)) {
1462 aprint_error_dev(self, "no PHY found!\n");
1463 return;
1464 }
1465 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1466
1467 /* Attach interface */
1468 if_attach(ifp);
1469 if_deferred_start_init(ifp, NULL);
1470
1471 /* Attach ethernet interface */
1472 ether_ifattach(ifp, eaddr);
1473 }
1474
1475 CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1476 sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1477