ti_sdhc.c revision 1.6 1 /* $NetBSD: ti_sdhc.c,v 1.6 2021/01/15 23:19:33 jmcneill Exp $ */
2 /*-
3 * Copyright (c) 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas of 3am Software Foundry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: ti_sdhc.c,v 1.6 2021/01/15 23:19:33 jmcneill Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/device.h>
37 #include <sys/errno.h>
38 #include <sys/kernel.h>
39 #include <sys/proc.h>
40 #include <sys/queue.h>
41 #include <sys/mutex.h>
42 #include <sys/condvar.h>
43 #include <sys/bus.h>
44
45 #include <arm/ti/ti_prcm.h>
46 #include <arm/ti/ti_edma.h>
47 #include <arm/ti/ti_sdhcreg.h>
48
49 #include <dev/sdmmc/sdhcreg.h>
50 #include <dev/sdmmc/sdhcvar.h>
51 #include <dev/sdmmc/sdmmcvar.h>
52
53 #include <dev/fdt/fdtvar.h>
54
55 #define EDMA_MAX_PARAMS 32
56
57 #ifdef TISDHC_DEBUG
58 int tisdhcdebug = 1;
59 #define DPRINTF(n,s) do { if ((n) <= tisdhcdebug) device_printf s; } while (0)
60 #else
61 #define DPRINTF(n,s) do {} while (0)
62 #endif
63
64
65 #define CLKD(kz) (sc->sc.sc_clkbase / (kz))
66
67 #define SDHC_READ(sc, reg) \
68 bus_space_read_4((sc)->sc_bst, (sc)->sc_sdhc_bsh, (reg))
69 #define SDHC_WRITE(sc, reg, val) \
70 bus_space_write_4((sc)->sc_bst, (sc)->sc_sdhc_bsh, (reg), (val))
71
72 struct ti_sdhc_config {
73 bus_size_t regoff;
74 uint32_t flags;
75 };
76
77 static const struct ti_sdhc_config omap2_hsmmc_config = {
78 };
79
80 static const struct ti_sdhc_config omap3_pre_es3_hsmmc_config = {
81 .flags = SDHC_FLAG_SINGLE_ONLY
82 };
83
84 static const struct ti_sdhc_config omap4_hsmmc_config = {
85 .regoff = 0x100
86 };
87
88 static const struct of_compat_data compat_data[] = {
89 { "ti,omap2-hsmmc", (uintptr_t)&omap2_hsmmc_config },
90 { "ti,omap3-hsmmc", (uintptr_t)&omap2_hsmmc_config },
91 { "ti,omap3-pre-es3-hsmmc", (uintptr_t)&omap3_pre_es3_hsmmc_config },
92 { "ti,omap4-hsmmc", (uintptr_t)&omap4_hsmmc_config },
93 { NULL }
94 };
95
96 enum {
97 EDMA_CHAN_TX,
98 EDMA_CHAN_RX,
99 EDMA_NCHAN
100 };
101
102 struct ti_sdhc_softc {
103 struct sdhc_softc sc;
104 int sc_phandle;
105 bus_addr_t sc_addr;
106 bus_space_tag_t sc_bst;
107 bus_space_handle_t sc_bsh;
108 bus_space_handle_t sc_hl_bsh;
109 bus_space_handle_t sc_sdhc_bsh;
110 struct sdhc_host *sc_hosts[1];
111 void *sc_ih; /* interrupt vectoring */
112
113 int sc_edma_chan[EDMA_NCHAN];
114 struct edma_channel *sc_edma_tx;
115 struct edma_channel *sc_edma_rx;
116 uint16_t sc_edma_param_tx[EDMA_MAX_PARAMS];
117 uint16_t sc_edma_param_rx[EDMA_MAX_PARAMS];
118 kcondvar_t sc_edma_cv;
119 bus_addr_t sc_edma_fifo;
120 bool sc_edma_pending;
121 bus_dmamap_t sc_edma_dmamap;
122 bus_dma_segment_t sc_edma_segs[1];
123 void *sc_edma_bbuf;
124 };
125
126 static int ti_sdhc_match(device_t, cfdata_t, void *);
127 static void ti_sdhc_attach(device_t, device_t, void *);
128
129 static void ti_sdhc_init(struct ti_sdhc_softc *, const struct ti_sdhc_config *);
130
131 static int ti_sdhc_bus_width(struct sdhc_softc *, int);
132 static int ti_sdhc_rod(struct sdhc_softc *, int);
133 static int ti_sdhc_write_protect(struct sdhc_softc *);
134 static int ti_sdhc_card_detect(struct sdhc_softc *);
135
136 static int ti_sdhc_edma_init(struct ti_sdhc_softc *, u_int, u_int);
137 static int ti_sdhc_edma_xfer_data(struct sdhc_softc *, struct sdmmc_command *);
138 static void ti_sdhc_edma_done(void *);
139 static int ti_sdhc_edma_transfer(struct sdhc_softc *, struct sdmmc_command *);
140
141 CFATTACH_DECL_NEW(ti_sdhc, sizeof(struct ti_sdhc_softc),
142 ti_sdhc_match, ti_sdhc_attach, NULL, NULL);
143
144 static int
145 ti_sdhc_match(device_t parent, cfdata_t cf, void *aux)
146 {
147 struct fdt_attach_args * const faa = aux;
148
149 return of_match_compat_data(faa->faa_phandle, compat_data);
150 }
151
152 static void
153 ti_sdhc_attach(device_t parent, device_t self, void *aux)
154 {
155 struct ti_sdhc_softc * const sc = device_private(self);
156 struct fdt_attach_args * const faa = aux;
157 const int phandle = faa->faa_phandle;
158 const struct ti_sdhc_config *conf;
159 bus_addr_t addr;
160 bus_size_t size;
161 u_int bus_width;
162
163 conf = (const void *)of_search_compatible(phandle, compat_data)->data;
164
165 if (ti_prcm_enable_hwmod(phandle, 0) != 0) {
166 aprint_error(": couldn't enable module\n");
167 return;
168 }
169
170 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0 || size <= conf->regoff) {
171 aprint_error(": couldn't get registers\n");
172 return;
173 }
174 addr += conf->regoff;
175 size -= conf->regoff;
176
177 sc->sc.sc_dmat = faa->faa_dmat;
178 sc->sc.sc_dev = self;
179 sc->sc_phandle = phandle;
180 sc->sc_addr = addr;
181 sc->sc_bst = faa->faa_bst;
182
183 /* XXX use fdtbus_dma API */
184 int len;
185 const u_int *dmas = fdtbus_get_prop(phandle, "dmas", &len);
186 switch (len) {
187 case 24:
188 sc->sc_edma_chan[EDMA_CHAN_TX] = be32toh(dmas[1]);
189 sc->sc_edma_chan[EDMA_CHAN_RX] = be32toh(dmas[4]);
190 break;
191 case 32:
192 sc->sc_edma_chan[EDMA_CHAN_TX] = be32toh(dmas[1]);
193 sc->sc_edma_chan[EDMA_CHAN_RX] = be32toh(dmas[5]);
194 break;
195 default:
196 sc->sc_edma_chan[EDMA_CHAN_TX] = -1;
197 sc->sc_edma_chan[EDMA_CHAN_RX] = -1;
198 break;
199 }
200
201 if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
202 aprint_error(": couldn't map registers\n");
203 return;
204 }
205
206 if (of_getprop_uint32(phandle, "bus-width", &bus_width) != 0)
207 bus_width = 4;
208
209 sc->sc.sc_flags |= conf->flags;
210 sc->sc.sc_flags |= SDHC_FLAG_32BIT_ACCESS;
211 sc->sc.sc_flags |= SDHC_FLAG_NO_LED_ON;
212 sc->sc.sc_flags |= SDHC_FLAG_RSP136_CRC;
213 if (bus_width == 8)
214 sc->sc.sc_flags |= SDHC_FLAG_8BIT_MODE;
215 if (of_hasprop(phandle, "ti,needs-special-reset"))
216 sc->sc.sc_flags |= SDHC_FLAG_WAIT_RESET;
217 if (!of_hasprop(phandle, "ti,needs-special-hs-handling"))
218 sc->sc.sc_flags |= SDHC_FLAG_NO_HS_BIT;
219 if (of_hasprop(phandle, "ti,dual-volt"))
220 sc->sc.sc_caps = SDHC_VOLTAGE_SUPP_3_0V;
221
222 sc->sc.sc_host = sc->sc_hosts;
223 sc->sc.sc_clkbase = 96000; /* 96MHZ */
224 sc->sc.sc_clkmsk = 0x0000ffc0;
225 sc->sc.sc_vendor_rod = ti_sdhc_rod;
226 sc->sc.sc_vendor_write_protect = ti_sdhc_write_protect;
227 sc->sc.sc_vendor_card_detect = ti_sdhc_card_detect;
228 sc->sc.sc_vendor_bus_width = ti_sdhc_bus_width;
229
230 if (bus_space_subregion(sc->sc_bst, sc->sc_bsh, 0x100, 0x100,
231 &sc->sc_sdhc_bsh) != 0) {
232 aprint_error(": couldn't map subregion\n");
233 return;
234 }
235
236 aprint_naive("\n");
237 aprint_normal(": MMCHS\n");
238
239 ti_sdhc_init(sc, conf);
240 }
241
242 static void
243 ti_sdhc_init(struct ti_sdhc_softc *sc, const struct ti_sdhc_config *conf)
244 {
245 device_t dev = sc->sc.sc_dev;
246 uint32_t clkd, stat;
247 int error, timo, clksft, n;
248 char intrstr[128];
249
250 const int tx_chan = sc->sc_edma_chan[EDMA_CHAN_TX];
251 const int rx_chan = sc->sc_edma_chan[EDMA_CHAN_RX];
252
253 if (tx_chan != -1 && rx_chan != -1) {
254 aprint_normal_dev(dev,
255 "EDMA tx channel %d, rx channel %d\n",
256 tx_chan, rx_chan);
257
258 if (ti_sdhc_edma_init(sc, tx_chan, rx_chan) != 0) {
259 aprint_error_dev(dev, "EDMA disabled\n");
260 goto no_dma;
261 }
262
263 cv_init(&sc->sc_edma_cv, "sdhcedma");
264 sc->sc_edma_fifo = sc->sc_addr + 0x100 + SDHC_DATA;
265 sc->sc.sc_flags |= SDHC_FLAG_USE_DMA;
266 sc->sc.sc_flags |= SDHC_FLAG_EXTERNAL_DMA;
267 sc->sc.sc_flags |= SDHC_FLAG_EXTDMA_DMAEN;
268 sc->sc.sc_vendor_transfer_data_dma = ti_sdhc_edma_xfer_data;
269 }
270 no_dma:
271
272 /* XXXXXX: Turn-on regulator via I2C. */
273 /* XXXXXX: And enable ICLOCK/FCLOCK. */
274
275 SDHC_WRITE(sc, SDHC_CAPABILITIES,
276 SDHC_READ(sc, SDHC_CAPABILITIES) | SDHC_VOLTAGE_SUPP_1_8V);
277 if (sc->sc.sc_caps & SDHC_VOLTAGE_SUPP_3_0V)
278 SDHC_WRITE(sc, SDHC_CAPABILITIES,
279 SDHC_READ(sc, SDHC_CAPABILITIES) | SDHC_VOLTAGE_SUPP_3_0V);
280
281 /* MMCHS Soft reset */
282 bus_space_write_4(sc->sc_bst, sc->sc_bsh, MMCHS_SYSCONFIG,
283 SYSCONFIG_SOFTRESET);
284 timo = 3000000; /* XXXX 3 sec. */
285 while (timo--) {
286 if (bus_space_read_4(sc->sc_bst, sc->sc_bsh, MMCHS_SYSSTATUS) &
287 SYSSTATUS_RESETDONE)
288 break;
289 delay(1);
290 }
291 if (timo == 0)
292 aprint_error_dev(dev, "Soft reset timeout\n");
293 bus_space_write_4(sc->sc_bst, sc->sc_bsh, MMCHS_SYSCONFIG,
294 SYSCONFIG_ENAWAKEUP |
295 #if notyet
296 SYSCONFIG_AUTOIDLE |
297 SYSCONFIG_SIDLEMODE_AUTO |
298 #else
299 SYSCONFIG_SIDLEMODE_IGNORE |
300 #endif
301 SYSCONFIG_CLOCKACTIVITY_FCLK |
302 SYSCONFIG_CLOCKACTIVITY_ICLK);
303
304 if (!fdtbus_intr_str(sc->sc_phandle, 0, intrstr, sizeof(intrstr))) {
305 aprint_error_dev(dev, "couldn't decode interrupt\n");
306 return;
307 }
308 sc->sc_ih = fdtbus_intr_establish_xname(sc->sc_phandle, 0, IPL_VM,
309 0, sdhc_intr, &sc->sc, device_xname(dev));
310 if (sc->sc_ih == NULL) {
311 aprint_error_dev(dev, "couldn't establish interrupt\n");
312 return;
313 }
314 aprint_normal_dev(dev, "interrupting on %s\n", intrstr);
315
316 error = sdhc_host_found(&sc->sc, sc->sc_bst, sc->sc_sdhc_bsh, 0x100);
317 if (error != 0) {
318 aprint_error_dev(dev, "couldn't initialize host, error=%d\n",
319 error);
320 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
321 return;
322 }
323
324 clksft = ffs(sc->sc.sc_clkmsk) - 1;
325
326 /* Set SDVS 1.8v and DTW 1bit mode */
327 SDHC_WRITE(sc, SDHC_HOST_CTL,
328 SDHC_VOLTAGE_1_8V << (SDHC_VOLTAGE_SHIFT + 8));
329 SDHC_WRITE(sc, SDHC_CLOCK_CTL,
330 SDHC_READ(sc, SDHC_CLOCK_CTL) | SDHC_INTCLK_ENABLE |
331 SDHC_SDCLK_ENABLE);
332 SDHC_WRITE(sc, SDHC_HOST_CTL,
333 SDHC_READ(sc, SDHC_HOST_CTL) | SDHC_BUS_POWER << 8);
334 SDHC_WRITE(sc, SDHC_CLOCK_CTL,
335 SDHC_READ(sc, SDHC_CLOCK_CTL) | CLKD(150) << clksft);
336
337 /*
338 * 22.6.1.3.1.5 MMCHS Controller INIT Procedure Start
339 * from 'OMAP35x Applications Processor Technical Reference Manual'.
340 *
341 * During the INIT procedure, the MMCHS controller generates 80 clock
342 * periods. In order to keep the 1ms gap, the MMCHS controller should
343 * be configured to generate a clock whose frequency is smaller or
344 * equal to 80 KHz.
345 */
346
347 SDHC_WRITE(sc, SDHC_CLOCK_CTL,
348 SDHC_READ(sc, SDHC_CLOCK_CTL) & ~SDHC_SDCLK_ENABLE);
349 SDHC_WRITE(sc, SDHC_CLOCK_CTL,
350 SDHC_READ(sc, SDHC_CLOCK_CTL) & ~sc->sc.sc_clkmsk);
351 clkd = CLKD(80);
352 n = 1;
353 while (clkd & ~(sc->sc.sc_clkmsk >> clksft)) {
354 clkd >>= 1;
355 n <<= 1;
356 }
357 SDHC_WRITE(sc, SDHC_CLOCK_CTL,
358 SDHC_READ(sc, SDHC_CLOCK_CTL) | (clkd << clksft));
359 SDHC_WRITE(sc, SDHC_CLOCK_CTL,
360 SDHC_READ(sc, SDHC_CLOCK_CTL) | SDHC_SDCLK_ENABLE);
361
362 bus_space_write_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON,
363 bus_space_read_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON) | CON_INIT);
364 SDHC_WRITE(sc, SDHC_TRANSFER_MODE, 0x00000000);
365 delay(1000);
366 stat = SDHC_READ(sc, SDHC_NINTR_STATUS);
367 SDHC_WRITE(sc, SDHC_NINTR_STATUS, stat | SDHC_COMMAND_COMPLETE);
368 bus_space_write_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON,
369 bus_space_read_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON) & ~CON_INIT);
370 SDHC_WRITE(sc, SDHC_NINTR_STATUS, 0xffffffff);
371
372 SDHC_WRITE(sc, SDHC_CLOCK_CTL,
373 SDHC_READ(sc, SDHC_CLOCK_CTL) & ~SDHC_SDCLK_ENABLE);
374 SDHC_WRITE(sc, SDHC_CLOCK_CTL,
375 SDHC_READ(sc, SDHC_CLOCK_CTL) & ~sc->sc.sc_clkmsk);
376 SDHC_WRITE(sc, SDHC_CLOCK_CTL,
377 SDHC_READ(sc, SDHC_CLOCK_CTL) | CLKD(150) << clksft);
378 timo = 3000000; /* XXXX 3 sec. */
379 while (--timo) {
380 if (SDHC_READ(sc, SDHC_CLOCK_CTL) & SDHC_INTCLK_STABLE)
381 break;
382 delay(1);
383 }
384 if (timo == 0)
385 aprint_error_dev(dev, "ICS timeout\n");
386 SDHC_WRITE(sc, SDHC_CLOCK_CTL,
387 SDHC_READ(sc, SDHC_CLOCK_CTL) | SDHC_SDCLK_ENABLE);
388
389 if (sc->sc.sc_flags & SDHC_FLAG_USE_ADMA2)
390 bus_space_write_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON,
391 bus_space_read_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON) |
392 CON_MNS);
393 }
394
395 static int
396 ti_sdhc_rod(struct sdhc_softc *sc, int on)
397 {
398 struct ti_sdhc_softc *hmsc = (struct ti_sdhc_softc *)sc;
399 uint32_t con;
400
401 con = bus_space_read_4(hmsc->sc_bst, hmsc->sc_bsh, MMCHS_CON);
402 if (on)
403 con |= CON_OD;
404 else
405 con &= ~CON_OD;
406 bus_space_write_4(hmsc->sc_bst, hmsc->sc_bsh, MMCHS_CON, con);
407
408 return 0;
409 }
410
411 static int
412 ti_sdhc_write_protect(struct sdhc_softc *sc)
413 {
414
415 /* Maybe board dependent, using GPIO. Get GPIO-pin from prop? */
416 return 0; /* XXXXXXX */
417 }
418
419 static int
420 ti_sdhc_card_detect(struct sdhc_softc *sc)
421 {
422
423 /* Maybe board dependent, using GPIO. Get GPIO-pin from prop? */
424 return 1; /* XXXXXXXX */
425 }
426
427 static int
428 ti_sdhc_bus_width(struct sdhc_softc *sc, int width)
429 {
430 struct ti_sdhc_softc *hmsc = (struct ti_sdhc_softc *)sc;
431 uint32_t con, hctl;
432
433 con = bus_space_read_4(hmsc->sc_bst, hmsc->sc_bsh, MMCHS_CON);
434 hctl = SDHC_READ(hmsc, SDHC_HOST_CTL);
435 if (width == 8) {
436 con |= CON_DW8;
437 } else if (width == 4) {
438 con &= ~CON_DW8;
439 hctl |= SDHC_4BIT_MODE;
440 } else {
441 con &= ~CON_DW8;
442 hctl &= ~SDHC_4BIT_MODE;
443 }
444 bus_space_write_4(hmsc->sc_bst, hmsc->sc_bsh, MMCHS_CON, con);
445 SDHC_WRITE(hmsc, SDHC_HOST_CTL, hctl);
446
447 return 0;
448 }
449
450 static int
451 ti_sdhc_edma_init(struct ti_sdhc_softc *sc, u_int tx_chan, u_int rx_chan)
452 {
453 int i, error, rseg;
454
455 /* Request tx and rx DMA channels */
456 sc->sc_edma_tx = edma_channel_alloc(EDMA_TYPE_DMA, tx_chan,
457 ti_sdhc_edma_done, sc);
458 KASSERT(sc->sc_edma_tx != NULL);
459 sc->sc_edma_rx = edma_channel_alloc(EDMA_TYPE_DMA, rx_chan,
460 ti_sdhc_edma_done, sc);
461 KASSERT(sc->sc_edma_rx != NULL);
462
463 /* Allocate some PaRAM pages */
464 for (i = 0; i < __arraycount(sc->sc_edma_param_tx); i++) {
465 sc->sc_edma_param_tx[i] = edma_param_alloc(sc->sc_edma_tx);
466 KASSERT(sc->sc_edma_param_tx[i] != 0xffff);
467 }
468 for (i = 0; i < __arraycount(sc->sc_edma_param_rx); i++) {
469 sc->sc_edma_param_rx[i] = edma_param_alloc(sc->sc_edma_rx);
470 KASSERT(sc->sc_edma_param_rx[i] != 0xffff);
471 }
472
473 /* Setup bounce buffer */
474 error = bus_dmamem_alloc(sc->sc.sc_dmat, MAXPHYS, 32, MAXPHYS,
475 sc->sc_edma_segs, 1, &rseg, BUS_DMA_WAITOK);
476 if (error) {
477 aprint_error_dev(sc->sc.sc_dev,
478 "couldn't allocate dmamem: %d\n", error);
479 return error;
480 }
481 KASSERT(rseg == 1);
482 error = bus_dmamem_map(sc->sc.sc_dmat, sc->sc_edma_segs, rseg, MAXPHYS,
483 &sc->sc_edma_bbuf, BUS_DMA_WAITOK);
484 if (error) {
485 aprint_error_dev(sc->sc.sc_dev, "couldn't map dmamem: %d\n",
486 error);
487 return error;
488 }
489 error = bus_dmamap_create(sc->sc.sc_dmat, MAXPHYS, 1, MAXPHYS, 0,
490 BUS_DMA_WAITOK, &sc->sc_edma_dmamap);
491 if (error) {
492 aprint_error_dev(sc->sc.sc_dev, "couldn't create dmamap: %d\n",
493 error);
494 return error;
495 }
496 error = bus_dmamap_load(sc->sc.sc_dmat, sc->sc_edma_dmamap,
497 sc->sc_edma_bbuf, MAXPHYS, NULL, BUS_DMA_WAITOK);
498 if (error) {
499 device_printf(sc->sc.sc_dev, "couldn't load dmamap: %d\n",
500 error);
501 return error;
502 }
503
504 return error;
505 }
506
507 static int
508 ti_sdhc_edma_xfer_data(struct sdhc_softc *sdhc_sc, struct sdmmc_command *cmd)
509 {
510 struct ti_sdhc_softc *sc = device_private(sdhc_sc->sc_dev);
511 const bus_dmamap_t map = cmd->c_dmamap;
512 bool bounce;
513 int error;
514
515 #if notyet
516 bounce = false;
517 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
518 if ((cmd->c_dmamap->dm_segs[seg].ds_addr & 0x1f) != 0 ||
519 (cmd->c_dmamap->dm_segs[seg].ds_len & 3) != 0) {
520 bounce = true;
521 break;
522 }
523 }
524 #else
525 bounce = true;
526 #endif
527
528 if (bounce) {
529 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
530 bus_dmamap_sync(sc->sc.sc_dmat, sc->sc_edma_dmamap, 0,
531 MAXPHYS, BUS_DMASYNC_PREREAD);
532 } else {
533 memcpy(sc->sc_edma_bbuf, cmd->c_data, cmd->c_datalen);
534 bus_dmamap_sync(sc->sc.sc_dmat, sc->sc_edma_dmamap, 0,
535 MAXPHYS, BUS_DMASYNC_PREWRITE);
536 }
537
538 cmd->c_dmamap = sc->sc_edma_dmamap;
539 }
540
541 error = ti_sdhc_edma_transfer(sdhc_sc, cmd);
542
543 if (bounce) {
544 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
545 bus_dmamap_sync(sc->sc.sc_dmat, sc->sc_edma_dmamap, 0,
546 MAXPHYS, BUS_DMASYNC_POSTREAD);
547 } else {
548 bus_dmamap_sync(sc->sc.sc_dmat, sc->sc_edma_dmamap, 0,
549 MAXPHYS, BUS_DMASYNC_POSTWRITE);
550 }
551 if (ISSET(cmd->c_flags, SCF_CMD_READ) && error == 0) {
552 memcpy(cmd->c_data, sc->sc_edma_bbuf, cmd->c_datalen);
553 }
554
555 cmd->c_dmamap = map;
556 }
557
558 return error;
559 }
560
561 static int
562 ti_sdhc_edma_transfer(struct sdhc_softc *sdhc_sc, struct sdmmc_command *cmd)
563 {
564 struct ti_sdhc_softc *sc = device_private(sdhc_sc->sc_dev);
565 kmutex_t *plock = sdhc_host_lock(sc->sc_hosts[0]);
566 struct edma_channel *edma;
567 uint16_t *edma_param;
568 struct edma_param ep;
569 size_t seg;
570 int error, resid = cmd->c_datalen;
571 int blksize = MIN(cmd->c_datalen, cmd->c_blklen);
572
573 KASSERT(mutex_owned(plock));
574
575 edma = ISSET(cmd->c_flags, SCF_CMD_READ) ?
576 sc->sc_edma_rx : sc->sc_edma_tx;
577 edma_param = ISSET(cmd->c_flags, SCF_CMD_READ) ?
578 sc->sc_edma_param_rx : sc->sc_edma_param_tx;
579
580 DPRINTF(1, (sc->sc.sc_dev, "edma xfer: nsegs=%d ch# %d\n",
581 cmd->c_dmamap->dm_nsegs, edma_channel_index(edma)));
582
583 if (cmd->c_dmamap->dm_nsegs > EDMA_MAX_PARAMS) {
584 return ENOMEM;
585 }
586
587 for (seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
588 KASSERT(resid > 0);
589 const int xferlen = uimin(resid,
590 cmd->c_dmamap->dm_segs[seg].ds_len);
591 KASSERT(xferlen == cmd->c_dmamap->dm_segs[seg].ds_len ||
592 seg == cmd->c_dmamap->dm_nsegs - 1);
593 resid -= xferlen;
594 KASSERT((xferlen & 0x3) == 0);
595 ep.ep_opt = __SHIFTIN(2, EDMA_PARAM_OPT_FWID) /* 32-bit */;
596 ep.ep_opt |= __SHIFTIN(edma_channel_index(edma),
597 EDMA_PARAM_OPT_TCC);
598 if (seg == cmd->c_dmamap->dm_nsegs - 1) {
599 ep.ep_opt |= EDMA_PARAM_OPT_TCINTEN;
600 ep.ep_link = 0xffff;
601 } else {
602 ep.ep_link = EDMA_PARAM_BASE(edma_param[seg+1]);
603 }
604 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
605 ep.ep_opt |= EDMA_PARAM_OPT_SAM;
606 ep.ep_src = sc->sc_edma_fifo;
607 ep.ep_dst = cmd->c_dmamap->dm_segs[seg].ds_addr;
608 } else {
609 ep.ep_opt |= EDMA_PARAM_OPT_DAM;
610 ep.ep_src = cmd->c_dmamap->dm_segs[seg].ds_addr;
611 ep.ep_dst = sc->sc_edma_fifo;
612 }
613
614 KASSERT(xferlen <= 65536 * 4);
615
616 /*
617 * In constant addressing mode, the address must be aligned
618 * to 256-bits.
619 */
620 KASSERT((cmd->c_dmamap->dm_segs[seg].ds_addr & 0x1f) == 0);
621
622 /*
623 * For unknown reason, the A-DMA transfers never completes for
624 * transfers larger than 64 butes. So use a AB transfer,
625 * with a 64 bytes A len
626 */
627 ep.ep_bcntrld = 0; /* not used for AB-synchronous mode */
628 ep.ep_opt |= EDMA_PARAM_OPT_SYNCDIM;
629 ep.ep_acnt = uimin(xferlen, 64);
630 ep.ep_bcnt = uimin(xferlen, blksize) / ep.ep_acnt;
631 ep.ep_ccnt = xferlen / (ep.ep_acnt * ep.ep_bcnt);
632 ep.ep_srcbidx = ep.ep_dstbidx = 0;
633 ep.ep_srccidx = ep.ep_dstcidx = 0;
634 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
635 ep.ep_dstbidx = ep.ep_acnt;
636 ep.ep_dstcidx = ep.ep_acnt * ep.ep_bcnt;
637 } else {
638 ep.ep_srcbidx = ep.ep_acnt;
639 ep.ep_srccidx = ep.ep_acnt * ep.ep_bcnt;
640 }
641
642 edma_set_param(edma, edma_param[seg], &ep);
643 #ifdef TISDHC_DEBUG
644 if (tisdhcdebug >= 1) {
645 printf("target OPT: %08x\n", ep.ep_opt);
646 edma_dump_param(edma, edma_param[seg]);
647 }
648 #endif
649 }
650
651 error = 0;
652 sc->sc_edma_pending = true;
653 edma_transfer_enable(edma, edma_param[0]);
654 while (sc->sc_edma_pending) {
655 error = cv_timedwait(&sc->sc_edma_cv, plock, hz*10);
656 if (error == EWOULDBLOCK) {
657 device_printf(sc->sc.sc_dev, "transfer timeout!\n");
658 edma_dump(edma);
659 edma_dump_param(edma, edma_param[0]);
660 edma_halt(edma);
661 sc->sc_edma_pending = false;
662 error = ETIMEDOUT;
663 break;
664 }
665 }
666 edma_halt(edma);
667
668 return error;
669 }
670
671 static void
672 ti_sdhc_edma_done(void *priv)
673 {
674 struct ti_sdhc_softc *sc = priv;
675 kmutex_t *plock = sdhc_host_lock(sc->sc_hosts[0]);
676
677 mutex_enter(plock);
678 KASSERT(sc->sc_edma_pending == true);
679 sc->sc_edma_pending = false;
680 cv_broadcast(&sc->sc_edma_cv);
681 mutex_exit(plock);
682 }
683