vfp_init.c revision 1.12 1 1.12 matt /* $NetBSD: vfp_init.c,v 1.12 2012/12/11 01:52:30 matt Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.5 matt #include <arm/pcb.h>
40 1.1 rearnsha #include <arm/undefined.h>
41 1.1 rearnsha #include <arm/vfpreg.h>
42 1.8 matt #include <arm/mcontext.h>
43 1.1 rearnsha
44 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
45 1.12 matt
46 1.1 rearnsha /*
47 1.1 rearnsha * Use generic co-processor instructions to avoid assembly problems.
48 1.1 rearnsha */
49 1.1 rearnsha
50 1.1 rearnsha /* FMRX <X>, fpsid */
51 1.4 matt static inline uint32_t
52 1.4 matt read_fpsid(void)
53 1.4 matt {
54 1.4 matt uint32_t rv;
55 1.4 matt __asm __volatile("mrc p10, 7, %0, c0, c0, 0" : "=r" (rv));
56 1.4 matt return rv;
57 1.4 matt }
58 1.4 matt
59 1.4 matt /* FMRX <X>, fpexc */
60 1.4 matt static inline uint32_t
61 1.4 matt read_fpscr(void)
62 1.4 matt {
63 1.4 matt uint32_t rv;
64 1.4 matt __asm __volatile("mrc p10, 7, %0, c1, c0, 0" : "=r" (rv));
65 1.4 matt return rv;
66 1.4 matt }
67 1.4 matt
68 1.1 rearnsha /* FMRX <X>, fpexc */
69 1.4 matt static inline uint32_t
70 1.4 matt read_fpexc(void)
71 1.4 matt {
72 1.4 matt uint32_t rv;
73 1.4 matt __asm __volatile("mrc p10, 7, %0, c8, c0, 0" : "=r" (rv));
74 1.4 matt return rv;
75 1.4 matt }
76 1.4 matt
77 1.1 rearnsha /* FMRX <X>, fpinst */
78 1.4 matt static inline uint32_t
79 1.4 matt read_fpinst(void)
80 1.4 matt {
81 1.4 matt uint32_t rv;
82 1.4 matt __asm __volatile("mrc p10, 7, %0, c9, c0, 0" : "=r" (rv));
83 1.4 matt return rv;
84 1.4 matt }
85 1.4 matt
86 1.1 rearnsha /* FMRX <X>, fpinst2 */
87 1.4 matt static inline uint32_t
88 1.4 matt read_fpinst2(void)
89 1.4 matt {
90 1.4 matt uint32_t rv;
91 1.4 matt __asm __volatile("mrc p10, 7, %0, c10, c0, 0" : "=r" (rv));
92 1.4 matt return rv;
93 1.4 matt }
94 1.4 matt
95 1.1 rearnsha /* FMXR <X>, fpscr */
96 1.1 rearnsha #define write_fpscr(X) __asm __volatile("mcr p10, 7, %0, c1, c0, 0" : \
97 1.1 rearnsha : "r" (X))
98 1.1 rearnsha /* FMXR <X>, fpexc */
99 1.1 rearnsha #define write_fpexc(X) __asm __volatile("mcr p10, 7, %0, c8, c0, 0" : \
100 1.1 rearnsha : "r" (X))
101 1.1 rearnsha /* FMXR <X>, fpinst */
102 1.1 rearnsha #define write_fpinst(X) __asm __volatile("mcr p10, 7, %0, c9, c0, 0" : \
103 1.1 rearnsha : "r" (X))
104 1.1 rearnsha /* FMXR <X>, fpinst2 */
105 1.1 rearnsha #define write_fpinst2(X) __asm __volatile("mcr p10, 7, %0, c10, c0, 0" : \
106 1.1 rearnsha : "r" (X))
107 1.11 matt
108 1.11 matt #ifdef FPU_VFP
109 1.11 matt
110 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
111 1.11 matt static inline void
112 1.10 matt load_vfpregs_lo(uint64_t *p)
113 1.10 matt {
114 1.10 matt /* vldmia rN, {d0-d15} */
115 1.10 matt __asm __volatile("ldc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
116 1.10 matt }
117 1.10 matt
118 1.10 matt /* FSTMD <X>, {d0-d15} */
119 1.11 matt static inline void
120 1.10 matt save_vfpregs_lo(uint64_t *p)
121 1.10 matt {
122 1.10 matt __asm __volatile("stc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
123 1.10 matt }
124 1.10 matt
125 1.10 matt #ifdef CPU_CORTEX
126 1.10 matt /* FLDMD <X>, {d16-d31} */
127 1.11 matt static inline void
128 1.10 matt load_vfpregs_hi(uint64_t *p)
129 1.10 matt {
130 1.10 matt __asm __volatile("ldcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
131 1.10 matt }
132 1.10 matt
133 1.10 matt /* FLDMD <X>, {d16-d31} */
134 1.11 matt static inline void
135 1.10 matt save_vfpregs_hi(uint64_t *p)
136 1.10 matt {
137 1.10 matt __asm __volatile("stcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
138 1.10 matt }
139 1.10 matt #endif
140 1.1 rearnsha
141 1.1 rearnsha /* The real handler for VFP bounces. */
142 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
143 1.4 matt static int vfp_handler(u_int, u_int, trapframe_t *, int);
144 1.1 rearnsha
145 1.4 matt static void vfp_state_load(lwp_t *, bool);
146 1.4 matt static void vfp_state_save(lwp_t *);
147 1.4 matt static void vfp_state_release(lwp_t *);
148 1.4 matt
149 1.4 matt const pcu_ops_t arm_vfp_ops = {
150 1.4 matt .pcu_id = PCU_FPU,
151 1.4 matt .pcu_state_load = vfp_state_load,
152 1.4 matt .pcu_state_save = vfp_state_save,
153 1.4 matt .pcu_state_release = vfp_state_release,
154 1.4 matt };
155 1.1 rearnsha
156 1.1 rearnsha struct evcnt vfpevent_use;
157 1.1 rearnsha struct evcnt vfpevent_reuse;
158 1.1 rearnsha
159 1.1 rearnsha /*
160 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
161 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
162 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
163 1.1 rearnsha * the instruction so must be absent, or disabled.
164 1.1 rearnsha */
165 1.1 rearnsha
166 1.1 rearnsha static int undefined_test;
167 1.1 rearnsha
168 1.1 rearnsha static int
169 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
170 1.1 rearnsha {
171 1.1 rearnsha
172 1.1 rearnsha frame->tf_pc += INSN_SIZE;
173 1.1 rearnsha ++undefined_test;
174 1.4 matt return 0;
175 1.4 matt }
176 1.4 matt
177 1.4 matt #endif /* FPU_VFP */
178 1.4 matt
179 1.4 matt struct evcnt vfp_fpscr_ev =
180 1.4 matt EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
181 1.4 matt EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
182 1.4 matt
183 1.4 matt static int
184 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
185 1.4 matt {
186 1.4 matt struct lwp * const l = curlwp;
187 1.4 matt const u_int regno = (insn >> 12) & 0xf;
188 1.4 matt /*
189 1.4 matt * Only match move to/from the FPSCR register and we
190 1.4 matt * can't be using the SP,LR,PC as a source.
191 1.4 matt */
192 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
193 1.4 matt return 1;
194 1.4 matt
195 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
196 1.4 matt
197 1.4 matt #ifdef FPU_VFP
198 1.4 matt /*
199 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
200 1.4 matt * retry the instruction (only safe thing to do since the
201 1.4 matt * pcb has a stale copy).
202 1.4 matt */
203 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
204 1.4 matt return 1;
205 1.4 matt #endif
206 1.4 matt
207 1.4 matt if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
208 1.4 matt l->l_md.md_flags |= MDLWP_VFPUSED;
209 1.4 matt pcb->pcb_vfp.vfp_fpscr =
210 1.4 matt (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
211 1.4 matt }
212 1.4 matt
213 1.4 matt /*
214 1.4 matt * We know know the pcb has the saved copy.
215 1.4 matt */
216 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
217 1.4 matt if (insn & 0x00100000) {
218 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
219 1.4 matt } else {
220 1.4 matt pcb->pcb_vfp.vfp_fpscr = *regp;
221 1.4 matt }
222 1.4 matt
223 1.4 matt vfp_fpscr_ev.ev_count++;
224 1.4 matt
225 1.4 matt frame->tf_pc += INSN_SIZE;
226 1.4 matt return 0;
227 1.1 rearnsha }
228 1.1 rearnsha
229 1.4 matt #ifndef FPU_VFP
230 1.4 matt /*
231 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
232 1.4 matt * instructions.
233 1.4 matt */
234 1.4 matt void
235 1.4 matt vfp_attach(void)
236 1.4 matt {
237 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
238 1.4 matt }
239 1.4 matt
240 1.4 matt #else
241 1.12 matt static bool
242 1.12 matt vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
243 1.12 matt {
244 1.12 matt for (;; code += sizeof(uint32_t)) {
245 1.12 matt uint32_t insn = *(uint32_t *)code;
246 1.12 matt if ((insn & 0xffd08000) == 0xe8908000) /* ldm ... { pc } */
247 1.12 matt return false;
248 1.12 matt if ((insn & 0xfffffff0) == 0xe12fff10) /* bx rN */
249 1.12 matt return false;
250 1.12 matt if ((insn & 0xf1a0f000) == 0xe1a0f000) /* mov pc, ... */
251 1.12 matt return false;
252 1.12 matt if ((insn >> 25) != 0x75) /* not b/bl insn */
253 1.12 matt continue;
254 1.12 matt intptr_t imm26 = ((int32_t)insn << 8) >> 6;
255 1.12 matt if (code + imm26 + 8 == func) {
256 1.12 matt int32_t imm24 = (newfunc - (code + 8)) >> 2;
257 1.12 matt uint32_t new_insn = (insn & 0xff000000)
258 1.12 matt | (imm24 & 0xffffff);
259 1.12 matt KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
260 1.12 matt ((imm24 >> 24) + 1));
261 1.12 matt *(uint32_t *)code = new_insn;
262 1.12 matt cpu_idcache_wbinv_range(code, sizeof(uint32_t));
263 1.12 matt return true;
264 1.12 matt }
265 1.12 matt }
266 1.12 matt }
267 1.12 matt
268 1.1 rearnsha void
269 1.2 cegger vfp_attach(void)
270 1.1 rearnsha {
271 1.4 matt struct cpu_info * const ci = curcpu();
272 1.4 matt const char *model = NULL;
273 1.7 matt bool vfp_p = false;
274 1.1 rearnsha
275 1.7 matt if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
276 1.7 matt || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
277 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
278 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
279 1.1 rearnsha
280 1.7 matt /*
281 1.7 matt * We first need to enable access to the coprocessors.
282 1.7 matt */
283 1.7 matt uint32_t cpacr = armreg_cpacr_read();
284 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
285 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
286 1.10 matt #if 0
287 1.9 matt if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
288 1.9 matt /*
289 1.10 matt * Disable access to the upper 16 FP registers and NEON.
290 1.9 matt */
291 1.9 matt cpacr |= CPACR_V7_D32DIS;
292 1.10 matt cpacr |= CPACR_V7_ASEDIS;
293 1.9 matt }
294 1.10 matt #endif
295 1.7 matt armreg_cpacr_write(cpacr);
296 1.1 rearnsha
297 1.7 matt /*
298 1.7 matt * If we could enable them, then they exist.
299 1.7 matt */
300 1.7 matt cpacr = armreg_cpacr_read();
301 1.7 matt vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
302 1.7 matt || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
303 1.6 matt }
304 1.6 matt
305 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
306 1.7 matt
307 1.7 matt undefined_test = 0;
308 1.7 matt
309 1.4 matt const uint32_t fpsid = read_fpsid();
310 1.1 rearnsha
311 1.1 rearnsha remove_coproc_handler(uh);
312 1.1 rearnsha
313 1.1 rearnsha if (undefined_test != 0) {
314 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
315 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
316 1.4 matt ci->ci_vfp_id = 0;
317 1.1 rearnsha return;
318 1.1 rearnsha }
319 1.1 rearnsha
320 1.4 matt ci->ci_vfp_id = fpsid;
321 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
322 1.4 matt case FPU_VFP10_ARM10E:
323 1.4 matt model = "VFP10 R1";
324 1.4 matt break;
325 1.4 matt case FPU_VFP11_ARM11:
326 1.4 matt model = "VFP11";
327 1.4 matt break;
328 1.7 matt case FPU_VFP_CORTEXA5:
329 1.7 matt case FPU_VFP_CORTEXA7:
330 1.7 matt case FPU_VFP_CORTEXA8:
331 1.7 matt case FPU_VFP_CORTEXA9:
332 1.7 matt model = "NEON MPE (VFP 3.0+)";
333 1.6 matt break;
334 1.4 matt default:
335 1.4 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
336 1.4 matt fpsid);
337 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
338 1.4 matt return;
339 1.4 matt }
340 1.1 rearnsha
341 1.1 rearnsha if (fpsid != 0) {
342 1.1 rearnsha aprint_normal("vfp%d at %s: %s\n",
343 1.6 matt device_unit(curcpu()->ci_dev), device_xname(curcpu()->ci_dev),
344 1.1 rearnsha model);
345 1.1 rearnsha }
346 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
347 1.12 matt "VFP", "coproc use");
348 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
349 1.12 matt "VFP", "coproc re-use");
350 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
351 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
352 1.12 matt
353 1.12 matt vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
354 1.12 matt (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
355 1.12 matt vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
356 1.12 matt (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
357 1.1 rearnsha }
358 1.1 rearnsha
359 1.1 rearnsha /* The real handler for VFP bounces. */
360 1.4 matt static int
361 1.4 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame,
362 1.1 rearnsha int fault_code)
363 1.1 rearnsha {
364 1.4 matt struct cpu_info * const ci = curcpu();
365 1.1 rearnsha
366 1.1 rearnsha /* This shouldn't ever happen. */
367 1.1 rearnsha if (fault_code != FAULT_USER)
368 1.1 rearnsha panic("VFP fault in non-user mode");
369 1.1 rearnsha
370 1.4 matt if (ci->ci_vfp_id == 0)
371 1.1 rearnsha /* No VFP detected, just fault. */
372 1.1 rearnsha return 1;
373 1.1 rearnsha
374 1.4 matt /*
375 1.4 matt * If we are just changing/fetching FPSCR, don't bother loading it.
376 1.4 matt */
377 1.4 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
378 1.4 matt return 0;
379 1.1 rearnsha
380 1.4 matt pcu_load(&arm_vfp_ops);
381 1.3 rmind
382 1.4 matt /* Need to restart the faulted instruction. */
383 1.4 matt // frame->tf_pc -= INSN_SIZE;
384 1.4 matt return 0;
385 1.4 matt }
386 1.1 rearnsha
387 1.4 matt static void
388 1.4 matt vfp_state_load(lwp_t *l, bool used)
389 1.4 matt {
390 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
391 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
392 1.1 rearnsha
393 1.1 rearnsha /*
394 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
395 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
396 1.1 rearnsha * and count this event.
397 1.1 rearnsha *
398 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
399 1.1 rearnsha * a trap to use it again" event.
400 1.1 rearnsha */
401 1.4 matt if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
402 1.1 rearnsha vfpevent_use.ev_count++;
403 1.4 matt l->l_md.md_flags |= MDLWP_VFPUSED;
404 1.3 rmind pcb->pcb_vfp.vfp_fpscr =
405 1.1 rearnsha (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
406 1.4 matt } else {
407 1.1 rearnsha vfpevent_reuse.ev_count++;
408 1.4 matt }
409 1.1 rearnsha
410 1.4 matt if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
411 1.4 matt /*
412 1.4 matt * If we think the VFP is enabled, it must have be disabled by
413 1.4 matt * vfp_state_release for another LWP so we can just restore
414 1.4 matt * FPEXC and return since our VFP state is still loaded.
415 1.4 matt */
416 1.4 matt write_fpexc(fregs->vfp_fpexc);
417 1.4 matt return;
418 1.4 matt }
419 1.1 rearnsha
420 1.1 rearnsha /* Enable the VFP (so that we can write the registers). */
421 1.4 matt uint32_t fpexc = read_fpexc();
422 1.1 rearnsha KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
423 1.1 rearnsha write_fpexc(fpexc | VFP_FPEXC_EN);
424 1.1 rearnsha
425 1.10 matt load_vfpregs_lo(fregs->vfp_regs);
426 1.10 matt #ifdef CPU_CORTEX
427 1.10 matt #ifdef CPU_ARM11
428 1.10 matt switch (curcpu()->ci_vfp_id) {
429 1.10 matt case FPU_VFP_CORTEXA5:
430 1.10 matt case FPU_VFP_CORTEXA7:
431 1.10 matt case FPU_VFP_CORTEXA8:
432 1.10 matt case FPU_VFP_CORTEXA9:
433 1.10 matt #endif
434 1.10 matt load_vfpregs_hi(fregs->vfp_regs);
435 1.10 matt #ifdef CPU_ARM11
436 1.10 matt break;
437 1.10 matt }
438 1.10 matt #endif
439 1.10 matt #endif
440 1.1 rearnsha write_fpscr(fregs->vfp_fpscr);
441 1.4 matt
442 1.1 rearnsha if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
443 1.4 matt struct cpu_info * const ci = curcpu();
444 1.1 rearnsha /* Need to restore the exception handling state. */
445 1.4 matt switch (ci->ci_vfp_id) {
446 1.1 rearnsha case FPU_VFP10_ARM10E:
447 1.1 rearnsha case FPU_VFP11_ARM11:
448 1.8 matt case FPU_VFP_CORTEXA5:
449 1.8 matt case FPU_VFP_CORTEXA7:
450 1.8 matt case FPU_VFP_CORTEXA8:
451 1.8 matt case FPU_VFP_CORTEXA9:
452 1.1 rearnsha write_fpinst2(fregs->vfp_fpinst2);
453 1.1 rearnsha write_fpinst(fregs->vfp_fpinst);
454 1.1 rearnsha break;
455 1.1 rearnsha default:
456 1.4 matt panic("%s: Unsupported VFP %#x",
457 1.4 matt __func__, ci->ci_vfp_id);
458 1.1 rearnsha }
459 1.1 rearnsha }
460 1.4 matt
461 1.4 matt /* Finally, restore the FPEXC but don't enable the VFP. */
462 1.4 matt fregs->vfp_fpexc |= VFP_FPEXC_EN;
463 1.4 matt write_fpexc(fregs->vfp_fpexc);
464 1.1 rearnsha }
465 1.1 rearnsha
466 1.1 rearnsha void
467 1.4 matt vfp_state_save(lwp_t *l)
468 1.1 rearnsha {
469 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
470 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
471 1.1 rearnsha
472 1.4 matt /*
473 1.4 matt * If it's already disabled, then the state has been saved
474 1.4 matt * (or discarded).
475 1.4 matt */
476 1.4 matt if ((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0)
477 1.1 rearnsha return;
478 1.1 rearnsha
479 1.4 matt /*
480 1.4 matt * Enable the VFP (so we can read the registers).
481 1.4 matt * Make sure the exception bit is cleared so that we can
482 1.4 matt * safely dump the registers.
483 1.4 matt */
484 1.4 matt uint32_t fpexc = read_fpexc();
485 1.4 matt write_fpexc((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
486 1.1 rearnsha
487 1.4 matt fregs->vfp_fpexc = fpexc;
488 1.4 matt if (fpexc & VFP_FPEXC_EX) {
489 1.4 matt struct cpu_info * const ci = curcpu();
490 1.4 matt /* Need to save the exception handling state */
491 1.4 matt switch (ci->ci_vfp_id) {
492 1.4 matt case FPU_VFP10_ARM10E:
493 1.4 matt case FPU_VFP11_ARM11:
494 1.8 matt case FPU_VFP_CORTEXA5:
495 1.8 matt case FPU_VFP_CORTEXA7:
496 1.8 matt case FPU_VFP_CORTEXA8:
497 1.8 matt case FPU_VFP_CORTEXA9:
498 1.4 matt fregs->vfp_fpinst = read_fpinst();
499 1.4 matt fregs->vfp_fpinst2 = read_fpinst2();
500 1.4 matt break;
501 1.4 matt default:
502 1.4 matt panic("%s: Unsupported VFP %#x",
503 1.4 matt __func__, ci->ci_vfp_id);
504 1.1 rearnsha }
505 1.1 rearnsha }
506 1.4 matt fregs->vfp_fpscr = read_fpscr();
507 1.10 matt save_vfpregs_lo(fregs->vfp_regs);
508 1.10 matt #ifdef CPU_CORTEX
509 1.10 matt #ifdef CPU_ARM11
510 1.10 matt switch (curcpu()->ci_vfp_id) {
511 1.10 matt case FPU_VFP_CORTEXA5:
512 1.10 matt case FPU_VFP_CORTEXA7:
513 1.10 matt case FPU_VFP_CORTEXA8:
514 1.10 matt case FPU_VFP_CORTEXA9:
515 1.10 matt #endif
516 1.10 matt save_vfpregs_hi(fregs->vfp_regs);
517 1.10 matt #ifdef CPU_ARM11
518 1.10 matt break;
519 1.10 matt }
520 1.10 matt #endif
521 1.10 matt #endif
522 1.4 matt
523 1.1 rearnsha /* Disable the VFP. */
524 1.4 matt write_fpexc(fpexc);
525 1.1 rearnsha }
526 1.1 rearnsha
527 1.1 rearnsha void
528 1.4 matt vfp_state_release(lwp_t *l)
529 1.1 rearnsha {
530 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
531 1.1 rearnsha
532 1.4 matt /*
533 1.4 matt * Now mark the VFP as disabled (and our state has been already
534 1.4 matt * saved or is being discarded).
535 1.4 matt */
536 1.4 matt pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
537 1.1 rearnsha
538 1.1 rearnsha /*
539 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
540 1.4 matt * an exception happens. We don't know if this LWP's state was
541 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
542 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
543 1.4 matt * is still set so it just restroe fpexc and return since its
544 1.4 matt * contents are still sitting in the VFP.
545 1.1 rearnsha */
546 1.4 matt write_fpexc(read_fpexc() & ~VFP_FPEXC_EN);
547 1.1 rearnsha }
548 1.1 rearnsha
549 1.1 rearnsha void
550 1.2 cegger vfp_savecontext(void)
551 1.1 rearnsha {
552 1.4 matt pcu_save(&arm_vfp_ops);
553 1.1 rearnsha }
554 1.1 rearnsha
555 1.1 rearnsha void
556 1.4 matt vfp_discardcontext(void)
557 1.1 rearnsha {
558 1.4 matt pcu_discard(&arm_vfp_ops);
559 1.4 matt }
560 1.1 rearnsha
561 1.8 matt void
562 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
563 1.8 matt {
564 1.8 matt if (l->l_md.md_flags & MDLWP_VFPUSED) {
565 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
566 1.8 matt pcu_save(&arm_vfp_ops);
567 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
568 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
569 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
570 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
571 1.8 matt }
572 1.8 matt }
573 1.8 matt
574 1.8 matt void
575 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
576 1.8 matt {
577 1.8 matt pcu_discard(&arm_vfp_ops);
578 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
579 1.8 matt l->l_md.md_flags |= MDLWP_VFPUSED;
580 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
581 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
582 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
583 1.8 matt }
584 1.8 matt
585 1.4 matt #endif /* FPU_VFP */
586