Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.12
      1  1.12      matt /*      $NetBSD: vfp_init.c,v 1.12 2012/12/11 01:52:30 matt Exp $ */
      2   1.1  rearnsha 
      3   1.1  rearnsha /*
      4   1.1  rearnsha  * Copyright (c) 2008 ARM Ltd
      5   1.1  rearnsha  * All rights reserved.
      6   1.1  rearnsha  *
      7   1.1  rearnsha  * Redistribution and use in source and binary forms, with or without
      8   1.1  rearnsha  * modification, are permitted provided that the following conditions
      9   1.1  rearnsha  * are met:
     10   1.1  rearnsha  * 1. Redistributions of source code must retain the above copyright
     11   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer.
     12   1.1  rearnsha  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  rearnsha  *    documentation and/or other materials provided with the distribution.
     15   1.1  rearnsha  * 3. The name of the company may not be used to endorse or promote
     16   1.1  rearnsha  *    products derived from this software without specific prior written
     17   1.1  rearnsha  *    permission.
     18   1.1  rearnsha  *
     19   1.1  rearnsha  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20   1.1  rearnsha  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21   1.1  rearnsha  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22   1.1  rearnsha  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23   1.1  rearnsha  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1  rearnsha  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25   1.1  rearnsha  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1  rearnsha  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27   1.1  rearnsha  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28   1.1  rearnsha  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29   1.1  rearnsha  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30   1.1  rearnsha  */
     31   1.1  rearnsha 
     32   1.1  rearnsha #include <sys/param.h>
     33   1.1  rearnsha #include <sys/types.h>
     34   1.1  rearnsha #include <sys/systm.h>
     35   1.1  rearnsha #include <sys/device.h>
     36   1.1  rearnsha #include <sys/proc.h>
     37   1.4      matt #include <sys/cpu.h>
     38   1.1  rearnsha 
     39   1.5      matt #include <arm/pcb.h>
     40   1.1  rearnsha #include <arm/undefined.h>
     41   1.1  rearnsha #include <arm/vfpreg.h>
     42   1.8      matt #include <arm/mcontext.h>
     43   1.1  rearnsha 
     44  1.12      matt #include <uvm/uvm_extern.h>		/* for pmap.h */
     45  1.12      matt 
     46   1.1  rearnsha /*
     47   1.1  rearnsha  * Use generic co-processor instructions to avoid assembly problems.
     48   1.1  rearnsha  */
     49   1.1  rearnsha 
     50   1.1  rearnsha /* FMRX <X>, fpsid */
     51   1.4      matt static inline uint32_t
     52   1.4      matt read_fpsid(void)
     53   1.4      matt {
     54   1.4      matt 	uint32_t rv;
     55   1.4      matt 	__asm __volatile("mrc p10, 7, %0, c0, c0, 0" : "=r" (rv));
     56   1.4      matt 	return rv;
     57   1.4      matt }
     58   1.4      matt 
     59   1.4      matt /* FMRX <X>, fpexc */
     60   1.4      matt static inline uint32_t
     61   1.4      matt read_fpscr(void)
     62   1.4      matt {
     63   1.4      matt 	uint32_t rv;
     64   1.4      matt 	__asm __volatile("mrc p10, 7, %0, c1, c0, 0" : "=r" (rv));
     65   1.4      matt 	return rv;
     66   1.4      matt }
     67   1.4      matt 
     68   1.1  rearnsha /* FMRX <X>, fpexc */
     69   1.4      matt static inline uint32_t
     70   1.4      matt read_fpexc(void)
     71   1.4      matt {
     72   1.4      matt 	uint32_t rv;
     73   1.4      matt 	__asm __volatile("mrc p10, 7, %0, c8, c0, 0" : "=r" (rv));
     74   1.4      matt 	return rv;
     75   1.4      matt }
     76   1.4      matt 
     77   1.1  rearnsha /* FMRX <X>, fpinst */
     78   1.4      matt static inline uint32_t
     79   1.4      matt read_fpinst(void)
     80   1.4      matt {
     81   1.4      matt 	uint32_t rv;
     82   1.4      matt 	__asm __volatile("mrc p10, 7, %0, c9, c0, 0" : "=r" (rv));
     83   1.4      matt 	return rv;
     84   1.4      matt }
     85   1.4      matt 
     86   1.1  rearnsha /* FMRX <X>, fpinst2 */
     87   1.4      matt static inline uint32_t
     88   1.4      matt read_fpinst2(void)
     89   1.4      matt {
     90   1.4      matt 	uint32_t rv;
     91   1.4      matt 	__asm __volatile("mrc p10, 7, %0, c10, c0, 0" : "=r" (rv));
     92   1.4      matt 	return rv;
     93   1.4      matt }
     94   1.4      matt 
     95   1.1  rearnsha /* FMXR <X>, fpscr */
     96   1.1  rearnsha #define write_fpscr(X)	__asm __volatile("mcr p10, 7, %0, c1, c0, 0" : \
     97   1.1  rearnsha 			    : "r" (X))
     98   1.1  rearnsha /* FMXR <X>, fpexc */
     99   1.1  rearnsha #define write_fpexc(X)	__asm __volatile("mcr p10, 7, %0, c8, c0, 0" : \
    100   1.1  rearnsha 			    : "r" (X))
    101   1.1  rearnsha /* FMXR <X>, fpinst */
    102   1.1  rearnsha #define write_fpinst(X)	__asm __volatile("mcr p10, 7, %0, c9, c0, 0" : \
    103   1.1  rearnsha 			    : "r" (X))
    104   1.1  rearnsha /* FMXR <X>, fpinst2 */
    105   1.1  rearnsha #define write_fpinst2(X) __asm __volatile("mcr p10, 7, %0, c10, c0, 0" : \
    106   1.1  rearnsha 			    : "r" (X))
    107  1.11      matt 
    108  1.11      matt #ifdef FPU_VFP
    109  1.11      matt 
    110   1.1  rearnsha /* FLDMD <X>, {d0-d15} */
    111  1.11      matt static inline void
    112  1.10      matt load_vfpregs_lo(uint64_t *p)
    113  1.10      matt {
    114  1.10      matt 	/* vldmia rN, {d0-d15} */
    115  1.10      matt 	__asm __volatile("ldc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
    116  1.10      matt }
    117  1.10      matt 
    118  1.10      matt /* FSTMD <X>, {d0-d15} */
    119  1.11      matt static inline void
    120  1.10      matt save_vfpregs_lo(uint64_t *p)
    121  1.10      matt {
    122  1.10      matt 	__asm __volatile("stc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
    123  1.10      matt }
    124  1.10      matt 
    125  1.10      matt #ifdef CPU_CORTEX
    126  1.10      matt /* FLDMD <X>, {d16-d31} */
    127  1.11      matt static inline void
    128  1.10      matt load_vfpregs_hi(uint64_t *p)
    129  1.10      matt {
    130  1.10      matt 	__asm __volatile("ldcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
    131  1.10      matt }
    132  1.10      matt 
    133  1.10      matt /* FLDMD <X>, {d16-d31} */
    134  1.11      matt static inline void
    135  1.10      matt save_vfpregs_hi(uint64_t *p)
    136  1.10      matt {
    137  1.10      matt 	__asm __volatile("stcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
    138  1.10      matt }
    139  1.10      matt #endif
    140   1.1  rearnsha 
    141   1.1  rearnsha /* The real handler for VFP bounces.  */
    142   1.1  rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
    143   1.4      matt static int vfp_handler(u_int, u_int, trapframe_t *, int);
    144   1.1  rearnsha 
    145   1.4      matt static void vfp_state_load(lwp_t *, bool);
    146   1.4      matt static void vfp_state_save(lwp_t *);
    147   1.4      matt static void vfp_state_release(lwp_t *);
    148   1.4      matt 
    149   1.4      matt const pcu_ops_t arm_vfp_ops = {
    150   1.4      matt 	.pcu_id = PCU_FPU,
    151   1.4      matt 	.pcu_state_load = vfp_state_load,
    152   1.4      matt 	.pcu_state_save = vfp_state_save,
    153   1.4      matt 	.pcu_state_release = vfp_state_release,
    154   1.4      matt };
    155   1.1  rearnsha 
    156   1.1  rearnsha struct evcnt vfpevent_use;
    157   1.1  rearnsha struct evcnt vfpevent_reuse;
    158   1.1  rearnsha 
    159   1.1  rearnsha /*
    160   1.1  rearnsha  * Used to test for a VFP. The following function is installed as a coproc10
    161   1.1  rearnsha  * handler on the undefined instruction vector and then we issue a VFP
    162   1.1  rearnsha  * instruction. If undefined_test is non zero then the VFP did not handle
    163   1.1  rearnsha  * the instruction so must be absent, or disabled.
    164   1.1  rearnsha  */
    165   1.1  rearnsha 
    166   1.1  rearnsha static int undefined_test;
    167   1.1  rearnsha 
    168   1.1  rearnsha static int
    169   1.4      matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    170   1.1  rearnsha {
    171   1.1  rearnsha 
    172   1.1  rearnsha 	frame->tf_pc += INSN_SIZE;
    173   1.1  rearnsha 	++undefined_test;
    174   1.4      matt 	return 0;
    175   1.4      matt }
    176   1.4      matt 
    177   1.4      matt #endif /* FPU_VFP */
    178   1.4      matt 
    179   1.4      matt struct evcnt vfp_fpscr_ev =
    180   1.4      matt     EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
    181   1.4      matt EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
    182   1.4      matt 
    183   1.4      matt static int
    184   1.4      matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    185   1.4      matt {
    186   1.4      matt 	struct lwp * const l = curlwp;
    187   1.4      matt 	const u_int regno = (insn >> 12) & 0xf;
    188   1.4      matt 	/*
    189   1.4      matt 	 * Only match move to/from the FPSCR register and we
    190   1.4      matt 	 * can't be using the SP,LR,PC as a source.
    191   1.4      matt 	 */
    192   1.4      matt 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    193   1.4      matt 		return 1;
    194   1.4      matt 
    195   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    196   1.4      matt 
    197   1.4      matt #ifdef FPU_VFP
    198   1.4      matt 	/*
    199   1.4      matt 	 * If FPU is valid somewhere, let's just reenable VFP and
    200   1.4      matt 	 * retry the instruction (only safe thing to do since the
    201   1.4      matt 	 * pcb has a stale copy).
    202   1.4      matt 	 */
    203   1.4      matt 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    204   1.4      matt 		return 1;
    205   1.4      matt #endif
    206   1.4      matt 
    207   1.4      matt 	if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
    208   1.4      matt 		l->l_md.md_flags |= MDLWP_VFPUSED;
    209   1.4      matt 		pcb->pcb_vfp.vfp_fpscr =
    210   1.4      matt 		    (VFP_FPSCR_DN | VFP_FPSCR_FZ);	/* Runfast */
    211   1.4      matt 	}
    212   1.4      matt 
    213   1.4      matt 	/*
    214   1.4      matt 	 * We know know the pcb has the saved copy.
    215   1.4      matt 	 */
    216   1.4      matt 	register_t * const regp = &frame->tf_r0 + regno;
    217   1.4      matt 	if (insn & 0x00100000) {
    218   1.4      matt 		*regp = pcb->pcb_vfp.vfp_fpscr;
    219   1.4      matt 	} else {
    220   1.4      matt 		pcb->pcb_vfp.vfp_fpscr = *regp;
    221   1.4      matt 	}
    222   1.4      matt 
    223   1.4      matt 	vfp_fpscr_ev.ev_count++;
    224   1.4      matt 
    225   1.4      matt 	frame->tf_pc += INSN_SIZE;
    226   1.4      matt 	return 0;
    227   1.1  rearnsha }
    228   1.1  rearnsha 
    229   1.4      matt #ifndef FPU_VFP
    230   1.4      matt /*
    231   1.4      matt  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    232   1.4      matt  * instructions.
    233   1.4      matt  */
    234   1.4      matt void
    235   1.4      matt vfp_attach(void)
    236   1.4      matt {
    237   1.4      matt 	install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    238   1.4      matt }
    239   1.4      matt 
    240   1.4      matt #else
    241  1.12      matt static bool
    242  1.12      matt vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
    243  1.12      matt {
    244  1.12      matt 	for (;; code += sizeof(uint32_t)) {
    245  1.12      matt 		uint32_t insn = *(uint32_t *)code;
    246  1.12      matt 		if ((insn & 0xffd08000) == 0xe8908000)	/* ldm ... { pc } */
    247  1.12      matt 			return false;
    248  1.12      matt 		if ((insn & 0xfffffff0) == 0xe12fff10)	/* bx rN */
    249  1.12      matt 			return false;
    250  1.12      matt 		if ((insn & 0xf1a0f000) == 0xe1a0f000)	/* mov pc, ... */
    251  1.12      matt 			return false;
    252  1.12      matt 		if ((insn >> 25) != 0x75)		/* not b/bl insn */
    253  1.12      matt 			continue;
    254  1.12      matt 		intptr_t imm26 = ((int32_t)insn << 8) >> 6;
    255  1.12      matt 		if (code + imm26 + 8 == func) {
    256  1.12      matt 			int32_t imm24 = (newfunc - (code + 8)) >> 2;
    257  1.12      matt 			uint32_t new_insn = (insn & 0xff000000)
    258  1.12      matt 			   | (imm24 & 0xffffff);
    259  1.12      matt 			KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
    260  1.12      matt 			    ((imm24 >> 24) + 1));
    261  1.12      matt 			*(uint32_t *)code = new_insn;
    262  1.12      matt 			cpu_idcache_wbinv_range(code, sizeof(uint32_t));
    263  1.12      matt 			return true;
    264  1.12      matt 		}
    265  1.12      matt 	}
    266  1.12      matt }
    267  1.12      matt 
    268   1.1  rearnsha void
    269   1.2    cegger vfp_attach(void)
    270   1.1  rearnsha {
    271   1.4      matt 	struct cpu_info * const ci = curcpu();
    272   1.4      matt 	const char *model = NULL;
    273   1.7      matt 	bool vfp_p = false;
    274   1.1  rearnsha 
    275   1.7      matt 	if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
    276   1.7      matt 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
    277   1.7      matt 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    278   1.7      matt 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    279   1.1  rearnsha 
    280   1.7      matt 		/*
    281   1.7      matt 		 * We first need to enable access to the coprocessors.
    282   1.7      matt 		 */
    283   1.7      matt 		uint32_t cpacr = armreg_cpacr_read();
    284   1.7      matt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    285   1.7      matt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    286  1.10      matt #if 0
    287   1.9      matt 		if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
    288   1.9      matt 			/*
    289  1.10      matt 			 * Disable access to the upper 16 FP registers and NEON.
    290   1.9      matt 			 */
    291   1.9      matt 			cpacr |= CPACR_V7_D32DIS;
    292  1.10      matt 			cpacr |= CPACR_V7_ASEDIS;
    293   1.9      matt 		}
    294  1.10      matt #endif
    295   1.7      matt 		armreg_cpacr_write(cpacr);
    296   1.1  rearnsha 
    297   1.7      matt 		/*
    298   1.7      matt 		 * If we could enable them, then they exist.
    299   1.7      matt 		 */
    300   1.7      matt 		cpacr = armreg_cpacr_read();
    301   1.7      matt 		vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
    302   1.7      matt 		    || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
    303   1.6      matt 	}
    304   1.6      matt 
    305   1.7      matt 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
    306   1.7      matt 
    307   1.7      matt 	undefined_test = 0;
    308   1.7      matt 
    309   1.4      matt 	const uint32_t fpsid = read_fpsid();
    310   1.1  rearnsha 
    311   1.1  rearnsha 	remove_coproc_handler(uh);
    312   1.1  rearnsha 
    313   1.1  rearnsha 	if (undefined_test != 0) {
    314   1.4      matt 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    315   1.4      matt 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    316   1.4      matt 		ci->ci_vfp_id = 0;
    317   1.1  rearnsha 		return;
    318   1.1  rearnsha 	}
    319   1.1  rearnsha 
    320   1.4      matt 	ci->ci_vfp_id = fpsid;
    321   1.4      matt 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
    322   1.4      matt 	case FPU_VFP10_ARM10E:
    323   1.4      matt 		model = "VFP10 R1";
    324   1.4      matt 		break;
    325   1.4      matt 	case FPU_VFP11_ARM11:
    326   1.4      matt 		model = "VFP11";
    327   1.4      matt 		break;
    328   1.7      matt 	case FPU_VFP_CORTEXA5:
    329   1.7      matt 	case FPU_VFP_CORTEXA7:
    330   1.7      matt 	case FPU_VFP_CORTEXA8:
    331   1.7      matt 	case FPU_VFP_CORTEXA9:
    332   1.7      matt 		model = "NEON MPE (VFP 3.0+)";
    333   1.6      matt 		break;
    334   1.4      matt 	default:
    335   1.4      matt 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
    336   1.4      matt 		    fpsid);
    337   1.4      matt 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    338   1.4      matt 		return;
    339   1.4      matt 	}
    340   1.1  rearnsha 
    341   1.1  rearnsha 	if (fpsid != 0) {
    342   1.1  rearnsha 		aprint_normal("vfp%d at %s: %s\n",
    343   1.6      matt 		    device_unit(curcpu()->ci_dev), device_xname(curcpu()->ci_dev),
    344   1.1  rearnsha 		    model);
    345   1.1  rearnsha 	}
    346   1.1  rearnsha 	evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
    347  1.12      matt 	    "VFP", "coproc use");
    348   1.1  rearnsha 	evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
    349  1.12      matt 	    "VFP", "coproc re-use");
    350   1.1  rearnsha 	install_coproc_handler(VFP_COPROC, vfp_handler);
    351   1.1  rearnsha 	install_coproc_handler(VFP_COPROC2, vfp_handler);
    352  1.12      matt 
    353  1.12      matt 	vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
    354  1.12      matt 	   (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
    355  1.12      matt 	vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
    356  1.12      matt 	   (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
    357   1.1  rearnsha }
    358   1.1  rearnsha 
    359   1.1  rearnsha /* The real handler for VFP bounces.  */
    360   1.4      matt static int
    361   1.4      matt vfp_handler(u_int address, u_int insn, trapframe_t *frame,
    362   1.1  rearnsha     int fault_code)
    363   1.1  rearnsha {
    364   1.4      matt 	struct cpu_info * const ci = curcpu();
    365   1.1  rearnsha 
    366   1.1  rearnsha 	/* This shouldn't ever happen.  */
    367   1.1  rearnsha 	if (fault_code != FAULT_USER)
    368   1.1  rearnsha 		panic("VFP fault in non-user mode");
    369   1.1  rearnsha 
    370   1.4      matt 	if (ci->ci_vfp_id == 0)
    371   1.1  rearnsha 		/* No VFP detected, just fault.  */
    372   1.1  rearnsha 		return 1;
    373   1.1  rearnsha 
    374   1.4      matt 	/*
    375   1.4      matt 	 * If we are just changing/fetching FPSCR, don't bother loading it.
    376   1.4      matt 	 */
    377   1.4      matt 	if (!vfp_fpscr_handler(address, insn, frame, fault_code))
    378   1.4      matt 		return 0;
    379   1.1  rearnsha 
    380   1.4      matt 	pcu_load(&arm_vfp_ops);
    381   1.3     rmind 
    382   1.4      matt 	/* Need to restart the faulted instruction.  */
    383   1.4      matt //	frame->tf_pc -= INSN_SIZE;
    384   1.4      matt 	return 0;
    385   1.4      matt }
    386   1.1  rearnsha 
    387   1.4      matt static void
    388   1.4      matt vfp_state_load(lwp_t *l, bool used)
    389   1.4      matt {
    390   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    391   1.4      matt 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    392   1.1  rearnsha 
    393   1.1  rearnsha 	/*
    394   1.1  rearnsha 	 * Instrument VFP usage -- if a process has not previously
    395   1.1  rearnsha 	 * used the VFP, mark it as having used VFP for the first time,
    396   1.1  rearnsha 	 * and count this event.
    397   1.1  rearnsha 	 *
    398   1.1  rearnsha 	 * If a process has used the VFP, count a "used VFP, and took
    399   1.1  rearnsha 	 * a trap to use it again" event.
    400   1.1  rearnsha 	 */
    401   1.4      matt 	if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
    402   1.1  rearnsha 		vfpevent_use.ev_count++;
    403   1.4      matt 		l->l_md.md_flags |= MDLWP_VFPUSED;
    404   1.3     rmind 		pcb->pcb_vfp.vfp_fpscr =
    405   1.1  rearnsha 		    (VFP_FPSCR_DN | VFP_FPSCR_FZ);	/* Runfast */
    406   1.4      matt 	} else {
    407   1.1  rearnsha 		vfpevent_reuse.ev_count++;
    408   1.4      matt 	}
    409   1.1  rearnsha 
    410   1.4      matt 	if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
    411   1.4      matt 		/*
    412   1.4      matt 		 * If we think the VFP is enabled, it must have be disabled by
    413   1.4      matt 		 * vfp_state_release for another LWP so we can just restore
    414   1.4      matt 		 * FPEXC and return since our VFP state is still loaded.
    415   1.4      matt 		 */
    416   1.4      matt 		write_fpexc(fregs->vfp_fpexc);
    417   1.4      matt 		return;
    418   1.4      matt 	}
    419   1.1  rearnsha 
    420   1.1  rearnsha 	/* Enable the VFP (so that we can write the registers).  */
    421   1.4      matt 	uint32_t fpexc = read_fpexc();
    422   1.1  rearnsha 	KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
    423   1.1  rearnsha 	write_fpexc(fpexc | VFP_FPEXC_EN);
    424   1.1  rearnsha 
    425  1.10      matt 	load_vfpregs_lo(fregs->vfp_regs);
    426  1.10      matt #ifdef CPU_CORTEX
    427  1.10      matt #ifdef CPU_ARM11
    428  1.10      matt 	switch (curcpu()->ci_vfp_id) {
    429  1.10      matt 	case FPU_VFP_CORTEXA5:
    430  1.10      matt 	case FPU_VFP_CORTEXA7:
    431  1.10      matt 	case FPU_VFP_CORTEXA8:
    432  1.10      matt 	case FPU_VFP_CORTEXA9:
    433  1.10      matt #endif
    434  1.10      matt 		load_vfpregs_hi(fregs->vfp_regs);
    435  1.10      matt #ifdef CPU_ARM11
    436  1.10      matt 		break;
    437  1.10      matt 	}
    438  1.10      matt #endif
    439  1.10      matt #endif
    440   1.1  rearnsha 	write_fpscr(fregs->vfp_fpscr);
    441   1.4      matt 
    442   1.1  rearnsha 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    443   1.4      matt 		struct cpu_info * const ci = curcpu();
    444   1.1  rearnsha 		/* Need to restore the exception handling state.  */
    445   1.4      matt 		switch (ci->ci_vfp_id) {
    446   1.1  rearnsha 		case FPU_VFP10_ARM10E:
    447   1.1  rearnsha 		case FPU_VFP11_ARM11:
    448   1.8      matt 		case FPU_VFP_CORTEXA5:
    449   1.8      matt 		case FPU_VFP_CORTEXA7:
    450   1.8      matt 		case FPU_VFP_CORTEXA8:
    451   1.8      matt 		case FPU_VFP_CORTEXA9:
    452   1.1  rearnsha 			write_fpinst2(fregs->vfp_fpinst2);
    453   1.1  rearnsha 			write_fpinst(fregs->vfp_fpinst);
    454   1.1  rearnsha 			break;
    455   1.1  rearnsha 		default:
    456   1.4      matt 			panic("%s: Unsupported VFP %#x",
    457   1.4      matt 			    __func__, ci->ci_vfp_id);
    458   1.1  rearnsha 		}
    459   1.1  rearnsha 	}
    460   1.4      matt 
    461   1.4      matt 	/* Finally, restore the FPEXC but don't enable the VFP. */
    462   1.4      matt 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
    463   1.4      matt 	write_fpexc(fregs->vfp_fpexc);
    464   1.1  rearnsha }
    465   1.1  rearnsha 
    466   1.1  rearnsha void
    467   1.4      matt vfp_state_save(lwp_t *l)
    468   1.1  rearnsha {
    469   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    470   1.4      matt 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    471   1.1  rearnsha 
    472   1.4      matt 	/*
    473   1.4      matt 	 * If it's already disabled, then the state has been saved
    474   1.4      matt 	 * (or discarded).
    475   1.4      matt 	 */
    476   1.4      matt 	if ((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0)
    477   1.1  rearnsha 		return;
    478   1.1  rearnsha 
    479   1.4      matt 	/*
    480   1.4      matt 	 * Enable the VFP (so we can read the registers).
    481   1.4      matt 	 * Make sure the exception bit is cleared so that we can
    482   1.4      matt 	 * safely dump the registers.
    483   1.4      matt 	 */
    484   1.4      matt 	uint32_t fpexc = read_fpexc();
    485   1.4      matt 	write_fpexc((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    486   1.1  rearnsha 
    487   1.4      matt 	fregs->vfp_fpexc = fpexc;
    488   1.4      matt 	if (fpexc & VFP_FPEXC_EX) {
    489   1.4      matt 		struct cpu_info * const ci = curcpu();
    490   1.4      matt 		/* Need to save the exception handling state */
    491   1.4      matt 		switch (ci->ci_vfp_id) {
    492   1.4      matt 		case FPU_VFP10_ARM10E:
    493   1.4      matt 		case FPU_VFP11_ARM11:
    494   1.8      matt 		case FPU_VFP_CORTEXA5:
    495   1.8      matt 		case FPU_VFP_CORTEXA7:
    496   1.8      matt 		case FPU_VFP_CORTEXA8:
    497   1.8      matt 		case FPU_VFP_CORTEXA9:
    498   1.4      matt 			fregs->vfp_fpinst = read_fpinst();
    499   1.4      matt 			fregs->vfp_fpinst2 = read_fpinst2();
    500   1.4      matt 			break;
    501   1.4      matt 		default:
    502   1.4      matt 			panic("%s: Unsupported VFP %#x",
    503   1.4      matt 			    __func__, ci->ci_vfp_id);
    504   1.1  rearnsha 		}
    505   1.1  rearnsha 	}
    506   1.4      matt 	fregs->vfp_fpscr = read_fpscr();
    507  1.10      matt 	save_vfpregs_lo(fregs->vfp_regs);
    508  1.10      matt #ifdef CPU_CORTEX
    509  1.10      matt #ifdef CPU_ARM11
    510  1.10      matt 	switch (curcpu()->ci_vfp_id) {
    511  1.10      matt 	case FPU_VFP_CORTEXA5:
    512  1.10      matt 	case FPU_VFP_CORTEXA7:
    513  1.10      matt 	case FPU_VFP_CORTEXA8:
    514  1.10      matt 	case FPU_VFP_CORTEXA9:
    515  1.10      matt #endif
    516  1.10      matt 		save_vfpregs_hi(fregs->vfp_regs);
    517  1.10      matt #ifdef CPU_ARM11
    518  1.10      matt 		break;
    519  1.10      matt 	}
    520  1.10      matt #endif
    521  1.10      matt #endif
    522   1.4      matt 
    523   1.1  rearnsha 	/* Disable the VFP.  */
    524   1.4      matt 	write_fpexc(fpexc);
    525   1.1  rearnsha }
    526   1.1  rearnsha 
    527   1.1  rearnsha void
    528   1.4      matt vfp_state_release(lwp_t *l)
    529   1.1  rearnsha {
    530   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    531   1.1  rearnsha 
    532   1.4      matt 	/*
    533   1.4      matt 	 * Now mark the VFP as disabled (and our state has been already
    534   1.4      matt 	 * saved or is being discarded).
    535   1.4      matt 	 */
    536   1.4      matt 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    537   1.1  rearnsha 
    538   1.1  rearnsha 	/*
    539   1.4      matt 	 * Turn off the FPU so the next time a VFP instruction is issued
    540   1.4      matt 	 * an exception happens.  We don't know if this LWP's state was
    541   1.4      matt 	 * loaded but if we turned off the FPU for some other LWP, when
    542   1.4      matt 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    543   1.4      matt 	 * is still set so it just restroe fpexc and return since its
    544   1.4      matt 	 * contents are still sitting in the VFP.
    545   1.1  rearnsha 	 */
    546   1.4      matt 	write_fpexc(read_fpexc() & ~VFP_FPEXC_EN);
    547   1.1  rearnsha }
    548   1.1  rearnsha 
    549   1.1  rearnsha void
    550   1.2    cegger vfp_savecontext(void)
    551   1.1  rearnsha {
    552   1.4      matt 	pcu_save(&arm_vfp_ops);
    553   1.1  rearnsha }
    554   1.1  rearnsha 
    555   1.1  rearnsha void
    556   1.4      matt vfp_discardcontext(void)
    557   1.1  rearnsha {
    558   1.4      matt 	pcu_discard(&arm_vfp_ops);
    559   1.4      matt }
    560   1.1  rearnsha 
    561   1.8      matt void
    562   1.8      matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    563   1.8      matt {
    564   1.8      matt 	if (l->l_md.md_flags & MDLWP_VFPUSED) {
    565   1.8      matt 		const struct pcb * const pcb = lwp_getpcb(l);
    566   1.8      matt 		pcu_save(&arm_vfp_ops);
    567   1.8      matt 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    568   1.8      matt 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    569   1.8      matt 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    570  1.10      matt 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    571   1.8      matt 	}
    572   1.8      matt }
    573   1.8      matt 
    574   1.8      matt void
    575   1.8      matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    576   1.8      matt {
    577   1.8      matt 	pcu_discard(&arm_vfp_ops);
    578   1.8      matt 	struct pcb * const pcb = lwp_getpcb(l);
    579   1.8      matt 	l->l_md.md_flags |= MDLWP_VFPUSED;
    580   1.8      matt 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    581   1.8      matt 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    582   1.8      matt 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    583   1.8      matt }
    584   1.8      matt 
    585   1.4      matt #endif /* FPU_VFP */
    586