vfp_init.c revision 1.14 1 1.14 matt /* $NetBSD: vfp_init.c,v 1.14 2012/12/31 00:01:48 matt Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.5 matt #include <arm/pcb.h>
40 1.1 rearnsha #include <arm/undefined.h>
41 1.1 rearnsha #include <arm/vfpreg.h>
42 1.8 matt #include <arm/mcontext.h>
43 1.1 rearnsha
44 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
45 1.12 matt
46 1.1 rearnsha /*
47 1.1 rearnsha * Use generic co-processor instructions to avoid assembly problems.
48 1.1 rearnsha */
49 1.1 rearnsha
50 1.1 rearnsha /* FMRX <X>, fpsid */
51 1.4 matt static inline uint32_t
52 1.4 matt read_fpsid(void)
53 1.4 matt {
54 1.4 matt uint32_t rv;
55 1.4 matt __asm __volatile("mrc p10, 7, %0, c0, c0, 0" : "=r" (rv));
56 1.4 matt return rv;
57 1.4 matt }
58 1.4 matt
59 1.4 matt /* FMRX <X>, fpexc */
60 1.4 matt static inline uint32_t
61 1.4 matt read_fpscr(void)
62 1.4 matt {
63 1.4 matt uint32_t rv;
64 1.4 matt __asm __volatile("mrc p10, 7, %0, c1, c0, 0" : "=r" (rv));
65 1.4 matt return rv;
66 1.4 matt }
67 1.4 matt
68 1.1 rearnsha /* FMRX <X>, fpexc */
69 1.4 matt static inline uint32_t
70 1.4 matt read_fpexc(void)
71 1.4 matt {
72 1.4 matt uint32_t rv;
73 1.4 matt __asm __volatile("mrc p10, 7, %0, c8, c0, 0" : "=r" (rv));
74 1.4 matt return rv;
75 1.4 matt }
76 1.4 matt
77 1.1 rearnsha /* FMRX <X>, fpinst */
78 1.4 matt static inline uint32_t
79 1.4 matt read_fpinst(void)
80 1.4 matt {
81 1.4 matt uint32_t rv;
82 1.4 matt __asm __volatile("mrc p10, 7, %0, c9, c0, 0" : "=r" (rv));
83 1.4 matt return rv;
84 1.4 matt }
85 1.4 matt
86 1.1 rearnsha /* FMRX <X>, fpinst2 */
87 1.4 matt static inline uint32_t
88 1.4 matt read_fpinst2(void)
89 1.4 matt {
90 1.4 matt uint32_t rv;
91 1.4 matt __asm __volatile("mrc p10, 7, %0, c10, c0, 0" : "=r" (rv));
92 1.4 matt return rv;
93 1.4 matt }
94 1.4 matt
95 1.1 rearnsha /* FMXR <X>, fpscr */
96 1.1 rearnsha #define write_fpscr(X) __asm __volatile("mcr p10, 7, %0, c1, c0, 0" : \
97 1.1 rearnsha : "r" (X))
98 1.1 rearnsha /* FMXR <X>, fpexc */
99 1.1 rearnsha #define write_fpexc(X) __asm __volatile("mcr p10, 7, %0, c8, c0, 0" : \
100 1.1 rearnsha : "r" (X))
101 1.1 rearnsha /* FMXR <X>, fpinst */
102 1.1 rearnsha #define write_fpinst(X) __asm __volatile("mcr p10, 7, %0, c9, c0, 0" : \
103 1.1 rearnsha : "r" (X))
104 1.1 rearnsha /* FMXR <X>, fpinst2 */
105 1.1 rearnsha #define write_fpinst2(X) __asm __volatile("mcr p10, 7, %0, c10, c0, 0" : \
106 1.1 rearnsha : "r" (X))
107 1.11 matt
108 1.11 matt #ifdef FPU_VFP
109 1.11 matt
110 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
111 1.11 matt static inline void
112 1.13 matt load_vfpregs_lo(const uint64_t *p)
113 1.10 matt {
114 1.10 matt /* vldmia rN, {d0-d15} */
115 1.10 matt __asm __volatile("ldc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
116 1.10 matt }
117 1.10 matt
118 1.10 matt /* FSTMD <X>, {d0-d15} */
119 1.11 matt static inline void
120 1.10 matt save_vfpregs_lo(uint64_t *p)
121 1.10 matt {
122 1.10 matt __asm __volatile("stc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
123 1.10 matt }
124 1.10 matt
125 1.10 matt #ifdef CPU_CORTEX
126 1.10 matt /* FLDMD <X>, {d16-d31} */
127 1.11 matt static inline void
128 1.13 matt load_vfpregs_hi(const uint64_t *p)
129 1.10 matt {
130 1.10 matt __asm __volatile("ldcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
131 1.10 matt }
132 1.10 matt
133 1.10 matt /* FLDMD <X>, {d16-d31} */
134 1.11 matt static inline void
135 1.10 matt save_vfpregs_hi(uint64_t *p)
136 1.10 matt {
137 1.10 matt __asm __volatile("stcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
138 1.10 matt }
139 1.10 matt #endif
140 1.1 rearnsha
141 1.13 matt static inline void
142 1.13 matt load_vfpregs(const struct vfpreg *fregs)
143 1.13 matt {
144 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
145 1.13 matt #ifdef CPU_CORTEX
146 1.13 matt #ifdef CPU_ARM11
147 1.13 matt switch (curcpu()->ci_vfp_id) {
148 1.13 matt case FPU_VFP_CORTEXA5:
149 1.13 matt case FPU_VFP_CORTEXA7:
150 1.13 matt case FPU_VFP_CORTEXA8:
151 1.13 matt case FPU_VFP_CORTEXA9:
152 1.13 matt #endif
153 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
154 1.13 matt #ifdef CPU_ARM11
155 1.13 matt break;
156 1.13 matt }
157 1.13 matt #endif
158 1.13 matt #endif
159 1.13 matt }
160 1.13 matt
161 1.13 matt static inline void
162 1.13 matt save_vfpregs(struct vfpreg *fregs)
163 1.13 matt {
164 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
165 1.13 matt #ifdef CPU_CORTEX
166 1.13 matt #ifdef CPU_ARM11
167 1.13 matt switch (curcpu()->ci_vfp_id) {
168 1.13 matt case FPU_VFP_CORTEXA5:
169 1.13 matt case FPU_VFP_CORTEXA7:
170 1.13 matt case FPU_VFP_CORTEXA8:
171 1.13 matt case FPU_VFP_CORTEXA9:
172 1.13 matt #endif
173 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
174 1.13 matt #ifdef CPU_ARM11
175 1.13 matt break;
176 1.13 matt }
177 1.13 matt #endif
178 1.13 matt #endif
179 1.13 matt }
180 1.13 matt
181 1.1 rearnsha /* The real handler for VFP bounces. */
182 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
183 1.13 matt #ifdef CPU_CORTEX
184 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
185 1.13 matt #endif
186 1.1 rearnsha
187 1.13 matt static void vfp_state_load(lwp_t *, u_int);
188 1.13 matt static void vfp_state_save(lwp_t *, u_int);
189 1.13 matt static void vfp_state_release(lwp_t *, u_int);
190 1.4 matt
191 1.4 matt const pcu_ops_t arm_vfp_ops = {
192 1.4 matt .pcu_id = PCU_FPU,
193 1.13 matt .pcu_state_save = vfp_state_save,
194 1.4 matt .pcu_state_load = vfp_state_load,
195 1.4 matt .pcu_state_release = vfp_state_release,
196 1.4 matt };
197 1.1 rearnsha
198 1.1 rearnsha struct evcnt vfpevent_use;
199 1.1 rearnsha struct evcnt vfpevent_reuse;
200 1.1 rearnsha
201 1.1 rearnsha /*
202 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
203 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
204 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
205 1.1 rearnsha * the instruction so must be absent, or disabled.
206 1.1 rearnsha */
207 1.1 rearnsha
208 1.1 rearnsha static int undefined_test;
209 1.1 rearnsha
210 1.1 rearnsha static int
211 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
212 1.1 rearnsha {
213 1.1 rearnsha
214 1.1 rearnsha frame->tf_pc += INSN_SIZE;
215 1.1 rearnsha ++undefined_test;
216 1.4 matt return 0;
217 1.4 matt }
218 1.4 matt
219 1.4 matt #endif /* FPU_VFP */
220 1.4 matt
221 1.4 matt struct evcnt vfp_fpscr_ev =
222 1.4 matt EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
223 1.4 matt EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
224 1.4 matt
225 1.4 matt static int
226 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
227 1.4 matt {
228 1.4 matt struct lwp * const l = curlwp;
229 1.4 matt const u_int regno = (insn >> 12) & 0xf;
230 1.4 matt /*
231 1.4 matt * Only match move to/from the FPSCR register and we
232 1.4 matt * can't be using the SP,LR,PC as a source.
233 1.4 matt */
234 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
235 1.4 matt return 1;
236 1.4 matt
237 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
238 1.4 matt
239 1.4 matt #ifdef FPU_VFP
240 1.4 matt /*
241 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
242 1.4 matt * retry the instruction (only safe thing to do since the
243 1.4 matt * pcb has a stale copy).
244 1.4 matt */
245 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
246 1.4 matt return 1;
247 1.4 matt #endif
248 1.4 matt
249 1.4 matt if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
250 1.4 matt l->l_md.md_flags |= MDLWP_VFPUSED;
251 1.4 matt pcb->pcb_vfp.vfp_fpscr =
252 1.4 matt (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
253 1.4 matt }
254 1.4 matt
255 1.4 matt /*
256 1.4 matt * We know know the pcb has the saved copy.
257 1.4 matt */
258 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
259 1.4 matt if (insn & 0x00100000) {
260 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
261 1.4 matt } else {
262 1.4 matt pcb->pcb_vfp.vfp_fpscr = *regp;
263 1.4 matt }
264 1.4 matt
265 1.4 matt vfp_fpscr_ev.ev_count++;
266 1.4 matt
267 1.4 matt frame->tf_pc += INSN_SIZE;
268 1.4 matt return 0;
269 1.1 rearnsha }
270 1.1 rearnsha
271 1.4 matt #ifndef FPU_VFP
272 1.4 matt /*
273 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
274 1.4 matt * instructions.
275 1.4 matt */
276 1.4 matt void
277 1.4 matt vfp_attach(void)
278 1.4 matt {
279 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
280 1.4 matt }
281 1.4 matt
282 1.4 matt #else
283 1.12 matt static bool
284 1.12 matt vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
285 1.12 matt {
286 1.12 matt for (;; code += sizeof(uint32_t)) {
287 1.12 matt uint32_t insn = *(uint32_t *)code;
288 1.12 matt if ((insn & 0xffd08000) == 0xe8908000) /* ldm ... { pc } */
289 1.12 matt return false;
290 1.12 matt if ((insn & 0xfffffff0) == 0xe12fff10) /* bx rN */
291 1.12 matt return false;
292 1.12 matt if ((insn & 0xf1a0f000) == 0xe1a0f000) /* mov pc, ... */
293 1.12 matt return false;
294 1.12 matt if ((insn >> 25) != 0x75) /* not b/bl insn */
295 1.12 matt continue;
296 1.12 matt intptr_t imm26 = ((int32_t)insn << 8) >> 6;
297 1.12 matt if (code + imm26 + 8 == func) {
298 1.12 matt int32_t imm24 = (newfunc - (code + 8)) >> 2;
299 1.12 matt uint32_t new_insn = (insn & 0xff000000)
300 1.12 matt | (imm24 & 0xffffff);
301 1.12 matt KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
302 1.12 matt ((imm24 >> 24) + 1));
303 1.12 matt *(uint32_t *)code = new_insn;
304 1.12 matt cpu_idcache_wbinv_range(code, sizeof(uint32_t));
305 1.12 matt return true;
306 1.12 matt }
307 1.12 matt }
308 1.12 matt }
309 1.12 matt
310 1.1 rearnsha void
311 1.2 cegger vfp_attach(void)
312 1.1 rearnsha {
313 1.4 matt struct cpu_info * const ci = curcpu();
314 1.4 matt const char *model = NULL;
315 1.7 matt bool vfp_p = false;
316 1.1 rearnsha
317 1.7 matt if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
318 1.7 matt || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
319 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
320 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
321 1.1 rearnsha
322 1.7 matt /*
323 1.7 matt * We first need to enable access to the coprocessors.
324 1.7 matt */
325 1.7 matt uint32_t cpacr = armreg_cpacr_read();
326 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
327 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
328 1.10 matt #if 0
329 1.9 matt if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
330 1.9 matt /*
331 1.10 matt * Disable access to the upper 16 FP registers and NEON.
332 1.9 matt */
333 1.9 matt cpacr |= CPACR_V7_D32DIS;
334 1.10 matt cpacr |= CPACR_V7_ASEDIS;
335 1.9 matt }
336 1.10 matt #endif
337 1.7 matt armreg_cpacr_write(cpacr);
338 1.1 rearnsha
339 1.7 matt /*
340 1.7 matt * If we could enable them, then they exist.
341 1.7 matt */
342 1.7 matt cpacr = armreg_cpacr_read();
343 1.7 matt vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
344 1.7 matt || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
345 1.6 matt }
346 1.6 matt
347 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
348 1.7 matt
349 1.7 matt undefined_test = 0;
350 1.7 matt
351 1.4 matt const uint32_t fpsid = read_fpsid();
352 1.1 rearnsha
353 1.1 rearnsha remove_coproc_handler(uh);
354 1.1 rearnsha
355 1.1 rearnsha if (undefined_test != 0) {
356 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
357 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
358 1.4 matt ci->ci_vfp_id = 0;
359 1.1 rearnsha return;
360 1.1 rearnsha }
361 1.1 rearnsha
362 1.4 matt ci->ci_vfp_id = fpsid;
363 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
364 1.4 matt case FPU_VFP10_ARM10E:
365 1.4 matt model = "VFP10 R1";
366 1.4 matt break;
367 1.4 matt case FPU_VFP11_ARM11:
368 1.4 matt model = "VFP11";
369 1.4 matt break;
370 1.7 matt case FPU_VFP_CORTEXA5:
371 1.7 matt case FPU_VFP_CORTEXA7:
372 1.7 matt case FPU_VFP_CORTEXA8:
373 1.7 matt case FPU_VFP_CORTEXA9:
374 1.7 matt model = "NEON MPE (VFP 3.0+)";
375 1.6 matt break;
376 1.4 matt default:
377 1.4 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
378 1.4 matt fpsid);
379 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
380 1.4 matt return;
381 1.4 matt }
382 1.1 rearnsha
383 1.1 rearnsha if (fpsid != 0) {
384 1.1 rearnsha aprint_normal("vfp%d at %s: %s\n",
385 1.6 matt device_unit(curcpu()->ci_dev), device_xname(curcpu()->ci_dev),
386 1.1 rearnsha model);
387 1.1 rearnsha }
388 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
389 1.12 matt "VFP", "coproc use");
390 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
391 1.12 matt "VFP", "coproc re-use");
392 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
393 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
394 1.13 matt #ifdef CPU_CORTEX
395 1.13 matt install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
396 1.13 matt #endif
397 1.12 matt
398 1.12 matt vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
399 1.12 matt (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
400 1.12 matt vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
401 1.12 matt (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
402 1.1 rearnsha }
403 1.1 rearnsha
404 1.1 rearnsha /* The real handler for VFP bounces. */
405 1.4 matt static int
406 1.4 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame,
407 1.1 rearnsha int fault_code)
408 1.1 rearnsha {
409 1.4 matt struct cpu_info * const ci = curcpu();
410 1.1 rearnsha
411 1.1 rearnsha /* This shouldn't ever happen. */
412 1.1 rearnsha if (fault_code != FAULT_USER)
413 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
414 1.1 rearnsha
415 1.4 matt if (ci->ci_vfp_id == 0)
416 1.1 rearnsha /* No VFP detected, just fault. */
417 1.1 rearnsha return 1;
418 1.1 rearnsha
419 1.4 matt /*
420 1.4 matt * If we are just changing/fetching FPSCR, don't bother loading it.
421 1.4 matt */
422 1.4 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
423 1.4 matt return 0;
424 1.1 rearnsha
425 1.4 matt pcu_load(&arm_vfp_ops);
426 1.3 rmind
427 1.4 matt /* Need to restart the faulted instruction. */
428 1.4 matt // frame->tf_pc -= INSN_SIZE;
429 1.4 matt return 0;
430 1.4 matt }
431 1.1 rearnsha
432 1.13 matt #ifdef CPU_CORTEX
433 1.13 matt /* The real handler for NEON bounces. */
434 1.13 matt static int
435 1.13 matt neon_handler(u_int address, u_int insn, trapframe_t *frame,
436 1.13 matt int fault_code)
437 1.13 matt {
438 1.13 matt struct cpu_info * const ci = curcpu();
439 1.13 matt
440 1.13 matt if (ci->ci_vfp_id == 0)
441 1.13 matt /* No VFP detected, just fault. */
442 1.13 matt return 1;
443 1.13 matt
444 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
445 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
446 1.13 matt /* Not NEON instruction, just fault. */
447 1.13 matt return 1;
448 1.13 matt
449 1.13 matt /* This shouldn't ever happen. */
450 1.13 matt if (fault_code != FAULT_USER)
451 1.13 matt panic("NEON fault in non-user mode");
452 1.13 matt
453 1.13 matt pcu_load(&arm_vfp_ops);
454 1.13 matt
455 1.13 matt /* Need to restart the faulted instruction. */
456 1.13 matt // frame->tf_pc -= INSN_SIZE;
457 1.13 matt return 0;
458 1.13 matt }
459 1.13 matt #endif
460 1.13 matt
461 1.4 matt static void
462 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
463 1.4 matt {
464 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
465 1.13 matt
466 1.13 matt KASSERT(flags & PCU_ENABLE);
467 1.13 matt
468 1.13 matt if (flags & PCU_KERNEL) {
469 1.13 matt if ((flags & PCU_LOADED) == 0) {
470 1.13 matt pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
471 1.13 matt pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
472 1.13 matt }
473 1.13 matt write_fpexc(pcb->pcb_vfp.vfp_fpexc);
474 1.13 matt /*
475 1.13 matt * Load the kernel registers (just the first 16) if they've
476 1.13 matt * been used..
477 1.13 matt */
478 1.13 matt if (flags & PCU_LOADED) {
479 1.13 matt load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
480 1.13 matt }
481 1.13 matt return;
482 1.13 matt }
483 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
484 1.1 rearnsha
485 1.1 rearnsha /*
486 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
487 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
488 1.1 rearnsha * and count this event.
489 1.1 rearnsha *
490 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
491 1.1 rearnsha * a trap to use it again" event.
492 1.1 rearnsha */
493 1.4 matt if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
494 1.1 rearnsha vfpevent_use.ev_count++;
495 1.4 matt l->l_md.md_flags |= MDLWP_VFPUSED;
496 1.3 rmind pcb->pcb_vfp.vfp_fpscr =
497 1.1 rearnsha (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
498 1.4 matt } else {
499 1.1 rearnsha vfpevent_reuse.ev_count++;
500 1.4 matt }
501 1.1 rearnsha
502 1.4 matt if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
503 1.4 matt /*
504 1.4 matt * If we think the VFP is enabled, it must have be disabled by
505 1.4 matt * vfp_state_release for another LWP so we can just restore
506 1.4 matt * FPEXC and return since our VFP state is still loaded.
507 1.4 matt */
508 1.4 matt write_fpexc(fregs->vfp_fpexc);
509 1.4 matt return;
510 1.4 matt }
511 1.1 rearnsha
512 1.13 matt /* Load and Enable the VFP (so that we can write the registers). */
513 1.13 matt if (flags & PCU_RELOAD) {
514 1.13 matt uint32_t fpexc = read_fpexc();
515 1.13 matt KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
516 1.13 matt write_fpexc(fpexc | VFP_FPEXC_EN);
517 1.13 matt
518 1.13 matt load_vfpregs(fregs);
519 1.13 matt write_fpscr(fregs->vfp_fpscr);
520 1.13 matt
521 1.13 matt if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
522 1.13 matt struct cpu_info * const ci = curcpu();
523 1.13 matt /* Need to restore the exception handling state. */
524 1.13 matt switch (ci->ci_vfp_id) {
525 1.13 matt case FPU_VFP10_ARM10E:
526 1.13 matt case FPU_VFP11_ARM11:
527 1.13 matt case FPU_VFP_CORTEXA5:
528 1.13 matt case FPU_VFP_CORTEXA7:
529 1.13 matt case FPU_VFP_CORTEXA8:
530 1.13 matt case FPU_VFP_CORTEXA9:
531 1.13 matt write_fpinst2(fregs->vfp_fpinst2);
532 1.13 matt write_fpinst(fregs->vfp_fpinst);
533 1.13 matt break;
534 1.13 matt default:
535 1.13 matt panic("%s: Unsupported VFP %#x",
536 1.13 matt __func__, ci->ci_vfp_id);
537 1.13 matt }
538 1.1 rearnsha }
539 1.1 rearnsha }
540 1.4 matt
541 1.4 matt /* Finally, restore the FPEXC but don't enable the VFP. */
542 1.4 matt fregs->vfp_fpexc |= VFP_FPEXC_EN;
543 1.4 matt write_fpexc(fregs->vfp_fpexc);
544 1.1 rearnsha }
545 1.1 rearnsha
546 1.1 rearnsha void
547 1.13 matt vfp_state_save(lwp_t *l, u_int flags)
548 1.1 rearnsha {
549 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
550 1.13 matt uint32_t fpexc = read_fpexc();
551 1.13 matt write_fpexc((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
552 1.1 rearnsha
553 1.13 matt if (flags & PCU_KERNEL) {
554 1.13 matt /*
555 1.13 matt * Save the kernel set of VFP registers.
556 1.13 matt * (just the first 16).
557 1.13 matt */
558 1.13 matt save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
559 1.1 rearnsha return;
560 1.13 matt }
561 1.13 matt
562 1.13 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
563 1.1 rearnsha
564 1.4 matt /*
565 1.4 matt * Enable the VFP (so we can read the registers).
566 1.4 matt * Make sure the exception bit is cleared so that we can
567 1.4 matt * safely dump the registers.
568 1.4 matt */
569 1.4 matt fregs->vfp_fpexc = fpexc;
570 1.4 matt if (fpexc & VFP_FPEXC_EX) {
571 1.4 matt struct cpu_info * const ci = curcpu();
572 1.4 matt /* Need to save the exception handling state */
573 1.4 matt switch (ci->ci_vfp_id) {
574 1.4 matt case FPU_VFP10_ARM10E:
575 1.4 matt case FPU_VFP11_ARM11:
576 1.8 matt case FPU_VFP_CORTEXA5:
577 1.8 matt case FPU_VFP_CORTEXA7:
578 1.8 matt case FPU_VFP_CORTEXA8:
579 1.8 matt case FPU_VFP_CORTEXA9:
580 1.4 matt fregs->vfp_fpinst = read_fpinst();
581 1.4 matt fregs->vfp_fpinst2 = read_fpinst2();
582 1.4 matt break;
583 1.4 matt default:
584 1.4 matt panic("%s: Unsupported VFP %#x",
585 1.4 matt __func__, ci->ci_vfp_id);
586 1.1 rearnsha }
587 1.1 rearnsha }
588 1.4 matt fregs->vfp_fpscr = read_fpscr();
589 1.13 matt save_vfpregs(fregs);
590 1.4 matt
591 1.1 rearnsha /* Disable the VFP. */
592 1.4 matt write_fpexc(fpexc);
593 1.1 rearnsha }
594 1.1 rearnsha
595 1.1 rearnsha void
596 1.13 matt vfp_state_release(lwp_t *l, u_int flags)
597 1.1 rearnsha {
598 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
599 1.1 rearnsha
600 1.13 matt if (flags & PCU_KERNEL) {
601 1.13 matt /*
602 1.13 matt * Restore the FPEXC since we borrowed that field.
603 1.13 matt */
604 1.13 matt pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
605 1.13 matt } else {
606 1.13 matt /*
607 1.13 matt * Now mark the VFP as disabled (and our state
608 1.13 matt * has been already saved or is being discarded).
609 1.13 matt */
610 1.13 matt pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
611 1.13 matt }
612 1.1 rearnsha
613 1.1 rearnsha /*
614 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
615 1.4 matt * an exception happens. We don't know if this LWP's state was
616 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
617 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
618 1.13 matt * is still set so it just restore fpexc and return since its
619 1.4 matt * contents are still sitting in the VFP.
620 1.1 rearnsha */
621 1.4 matt write_fpexc(read_fpexc() & ~VFP_FPEXC_EN);
622 1.1 rearnsha }
623 1.1 rearnsha
624 1.1 rearnsha void
625 1.2 cegger vfp_savecontext(void)
626 1.1 rearnsha {
627 1.4 matt pcu_save(&arm_vfp_ops);
628 1.1 rearnsha }
629 1.1 rearnsha
630 1.1 rearnsha void
631 1.4 matt vfp_discardcontext(void)
632 1.1 rearnsha {
633 1.4 matt pcu_discard(&arm_vfp_ops);
634 1.4 matt }
635 1.1 rearnsha
636 1.8 matt void
637 1.13 matt vfp_kernel_acquire(void)
638 1.13 matt {
639 1.13 matt if (__predict_false(cpu_intr_p())) {
640 1.13 matt write_fpexc(VFP_FPEXC_EN);
641 1.13 matt if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
642 1.13 matt lwp_t * const l = curlwp;
643 1.13 matt struct pcb * const pcb = lwp_getpcb(l);
644 1.13 matt KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
645 1.13 matt l->l_md.md_flags |= MDLWP_VFPINTR;
646 1.13 matt save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
647 1.13 matt }
648 1.13 matt } else {
649 1.13 matt pcu_kernel_acquire(&arm_vfp_ops);
650 1.13 matt }
651 1.13 matt }
652 1.13 matt
653 1.13 matt void
654 1.13 matt vfp_kernel_release(void)
655 1.13 matt {
656 1.13 matt if (__predict_false(cpu_intr_p())) {
657 1.13 matt uint32_t fpexc = 0;
658 1.13 matt if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
659 1.13 matt lwp_t * const l = curlwp;
660 1.13 matt struct pcb * const pcb = lwp_getpcb(l);
661 1.13 matt KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
662 1.13 matt load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
663 1.13 matt l->l_md.md_flags &= ~MDLWP_VFPINTR;
664 1.13 matt fpexc = pcb->pcb_vfp.vfp_fpexc;
665 1.13 matt }
666 1.13 matt write_fpexc(fpexc);
667 1.13 matt } else {
668 1.13 matt pcu_kernel_release(&arm_vfp_ops);
669 1.13 matt }
670 1.13 matt }
671 1.13 matt
672 1.13 matt void
673 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
674 1.8 matt {
675 1.8 matt if (l->l_md.md_flags & MDLWP_VFPUSED) {
676 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
677 1.8 matt pcu_save(&arm_vfp_ops);
678 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
679 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
680 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
681 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
682 1.8 matt }
683 1.8 matt }
684 1.8 matt
685 1.8 matt void
686 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
687 1.8 matt {
688 1.8 matt pcu_discard(&arm_vfp_ops);
689 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
690 1.8 matt l->l_md.md_flags |= MDLWP_VFPUSED;
691 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
692 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
693 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
694 1.8 matt }
695 1.8 matt
696 1.4 matt #endif /* FPU_VFP */
697