vfp_init.c revision 1.18 1 1.18 matt /* $NetBSD: vfp_init.c,v 1.18 2013/01/31 22:35:25 matt Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.5 matt #include <arm/pcb.h>
40 1.1 rearnsha #include <arm/undefined.h>
41 1.1 rearnsha #include <arm/vfpreg.h>
42 1.8 matt #include <arm/mcontext.h>
43 1.1 rearnsha
44 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
45 1.12 matt
46 1.18 matt extern int cpu_media_and_vfp_features[];
47 1.18 matt extern int cpu_neon_present;
48 1.18 matt
49 1.1 rearnsha /*
50 1.1 rearnsha * Use generic co-processor instructions to avoid assembly problems.
51 1.1 rearnsha */
52 1.1 rearnsha
53 1.1 rearnsha /* FMRX <X>, fpsid */
54 1.4 matt static inline uint32_t
55 1.4 matt read_fpsid(void)
56 1.4 matt {
57 1.4 matt uint32_t rv;
58 1.4 matt __asm __volatile("mrc p10, 7, %0, c0, c0, 0" : "=r" (rv));
59 1.4 matt return rv;
60 1.4 matt }
61 1.4 matt
62 1.4 matt /* FMRX <X>, fpexc */
63 1.4 matt static inline uint32_t
64 1.4 matt read_fpscr(void)
65 1.4 matt {
66 1.4 matt uint32_t rv;
67 1.4 matt __asm __volatile("mrc p10, 7, %0, c1, c0, 0" : "=r" (rv));
68 1.4 matt return rv;
69 1.4 matt }
70 1.4 matt
71 1.1 rearnsha /* FMRX <X>, fpexc */
72 1.4 matt static inline uint32_t
73 1.4 matt read_fpexc(void)
74 1.4 matt {
75 1.4 matt uint32_t rv;
76 1.4 matt __asm __volatile("mrc p10, 7, %0, c8, c0, 0" : "=r" (rv));
77 1.4 matt return rv;
78 1.4 matt }
79 1.4 matt
80 1.1 rearnsha /* FMRX <X>, fpinst */
81 1.4 matt static inline uint32_t
82 1.4 matt read_fpinst(void)
83 1.4 matt {
84 1.4 matt uint32_t rv;
85 1.4 matt __asm __volatile("mrc p10, 7, %0, c9, c0, 0" : "=r" (rv));
86 1.4 matt return rv;
87 1.4 matt }
88 1.4 matt
89 1.1 rearnsha /* FMRX <X>, fpinst2 */
90 1.4 matt static inline uint32_t
91 1.4 matt read_fpinst2(void)
92 1.4 matt {
93 1.4 matt uint32_t rv;
94 1.4 matt __asm __volatile("mrc p10, 7, %0, c10, c0, 0" : "=r" (rv));
95 1.4 matt return rv;
96 1.4 matt }
97 1.4 matt
98 1.1 rearnsha /* FMXR <X>, fpscr */
99 1.1 rearnsha #define write_fpscr(X) __asm __volatile("mcr p10, 7, %0, c1, c0, 0" : \
100 1.1 rearnsha : "r" (X))
101 1.1 rearnsha /* FMXR <X>, fpexc */
102 1.1 rearnsha #define write_fpexc(X) __asm __volatile("mcr p10, 7, %0, c8, c0, 0" : \
103 1.1 rearnsha : "r" (X))
104 1.1 rearnsha /* FMXR <X>, fpinst */
105 1.1 rearnsha #define write_fpinst(X) __asm __volatile("mcr p10, 7, %0, c9, c0, 0" : \
106 1.1 rearnsha : "r" (X))
107 1.1 rearnsha /* FMXR <X>, fpinst2 */
108 1.1 rearnsha #define write_fpinst2(X) __asm __volatile("mcr p10, 7, %0, c10, c0, 0" : \
109 1.1 rearnsha : "r" (X))
110 1.11 matt
111 1.11 matt #ifdef FPU_VFP
112 1.11 matt
113 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
114 1.11 matt static inline void
115 1.13 matt load_vfpregs_lo(const uint64_t *p)
116 1.10 matt {
117 1.10 matt /* vldmia rN, {d0-d15} */
118 1.10 matt __asm __volatile("ldc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
119 1.10 matt }
120 1.10 matt
121 1.10 matt /* FSTMD <X>, {d0-d15} */
122 1.11 matt static inline void
123 1.10 matt save_vfpregs_lo(uint64_t *p)
124 1.10 matt {
125 1.10 matt __asm __volatile("stc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
126 1.10 matt }
127 1.10 matt
128 1.10 matt #ifdef CPU_CORTEX
129 1.10 matt /* FLDMD <X>, {d16-d31} */
130 1.11 matt static inline void
131 1.13 matt load_vfpregs_hi(const uint64_t *p)
132 1.10 matt {
133 1.10 matt __asm __volatile("ldcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
134 1.10 matt }
135 1.10 matt
136 1.10 matt /* FLDMD <X>, {d16-d31} */
137 1.11 matt static inline void
138 1.10 matt save_vfpregs_hi(uint64_t *p)
139 1.10 matt {
140 1.10 matt __asm __volatile("stcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
141 1.10 matt }
142 1.10 matt #endif
143 1.1 rearnsha
144 1.13 matt static inline void
145 1.13 matt load_vfpregs(const struct vfpreg *fregs)
146 1.13 matt {
147 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
148 1.13 matt #ifdef CPU_CORTEX
149 1.13 matt #ifdef CPU_ARM11
150 1.13 matt switch (curcpu()->ci_vfp_id) {
151 1.13 matt case FPU_VFP_CORTEXA5:
152 1.13 matt case FPU_VFP_CORTEXA7:
153 1.13 matt case FPU_VFP_CORTEXA8:
154 1.13 matt case FPU_VFP_CORTEXA9:
155 1.13 matt #endif
156 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
157 1.13 matt #ifdef CPU_ARM11
158 1.13 matt break;
159 1.13 matt }
160 1.13 matt #endif
161 1.13 matt #endif
162 1.13 matt }
163 1.13 matt
164 1.13 matt static inline void
165 1.13 matt save_vfpregs(struct vfpreg *fregs)
166 1.13 matt {
167 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
168 1.13 matt #ifdef CPU_CORTEX
169 1.13 matt #ifdef CPU_ARM11
170 1.13 matt switch (curcpu()->ci_vfp_id) {
171 1.13 matt case FPU_VFP_CORTEXA5:
172 1.13 matt case FPU_VFP_CORTEXA7:
173 1.13 matt case FPU_VFP_CORTEXA8:
174 1.13 matt case FPU_VFP_CORTEXA9:
175 1.13 matt #endif
176 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
177 1.13 matt #ifdef CPU_ARM11
178 1.13 matt break;
179 1.13 matt }
180 1.13 matt #endif
181 1.13 matt #endif
182 1.13 matt }
183 1.13 matt
184 1.1 rearnsha /* The real handler for VFP bounces. */
185 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
186 1.13 matt #ifdef CPU_CORTEX
187 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
188 1.13 matt #endif
189 1.1 rearnsha
190 1.13 matt static void vfp_state_load(lwp_t *, u_int);
191 1.13 matt static void vfp_state_save(lwp_t *, u_int);
192 1.13 matt static void vfp_state_release(lwp_t *, u_int);
193 1.4 matt
194 1.4 matt const pcu_ops_t arm_vfp_ops = {
195 1.4 matt .pcu_id = PCU_FPU,
196 1.13 matt .pcu_state_save = vfp_state_save,
197 1.4 matt .pcu_state_load = vfp_state_load,
198 1.4 matt .pcu_state_release = vfp_state_release,
199 1.4 matt };
200 1.1 rearnsha
201 1.1 rearnsha struct evcnt vfpevent_use;
202 1.1 rearnsha struct evcnt vfpevent_reuse;
203 1.1 rearnsha
204 1.1 rearnsha /*
205 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
206 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
207 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
208 1.1 rearnsha * the instruction so must be absent, or disabled.
209 1.1 rearnsha */
210 1.1 rearnsha
211 1.1 rearnsha static int undefined_test;
212 1.1 rearnsha
213 1.1 rearnsha static int
214 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
215 1.1 rearnsha {
216 1.1 rearnsha
217 1.1 rearnsha frame->tf_pc += INSN_SIZE;
218 1.1 rearnsha ++undefined_test;
219 1.4 matt return 0;
220 1.4 matt }
221 1.4 matt
222 1.4 matt #endif /* FPU_VFP */
223 1.4 matt
224 1.4 matt struct evcnt vfp_fpscr_ev =
225 1.4 matt EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
226 1.4 matt EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
227 1.4 matt
228 1.4 matt static int
229 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
230 1.4 matt {
231 1.4 matt struct lwp * const l = curlwp;
232 1.4 matt const u_int regno = (insn >> 12) & 0xf;
233 1.4 matt /*
234 1.4 matt * Only match move to/from the FPSCR register and we
235 1.4 matt * can't be using the SP,LR,PC as a source.
236 1.4 matt */
237 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
238 1.4 matt return 1;
239 1.4 matt
240 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
241 1.4 matt
242 1.4 matt #ifdef FPU_VFP
243 1.4 matt /*
244 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
245 1.4 matt * retry the instruction (only safe thing to do since the
246 1.4 matt * pcb has a stale copy).
247 1.4 matt */
248 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
249 1.4 matt return 1;
250 1.4 matt #endif
251 1.4 matt
252 1.4 matt if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
253 1.4 matt l->l_md.md_flags |= MDLWP_VFPUSED;
254 1.4 matt pcb->pcb_vfp.vfp_fpscr =
255 1.4 matt (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
256 1.4 matt }
257 1.4 matt
258 1.4 matt /*
259 1.4 matt * We know know the pcb has the saved copy.
260 1.4 matt */
261 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
262 1.4 matt if (insn & 0x00100000) {
263 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
264 1.4 matt } else {
265 1.4 matt pcb->pcb_vfp.vfp_fpscr = *regp;
266 1.4 matt }
267 1.4 matt
268 1.4 matt vfp_fpscr_ev.ev_count++;
269 1.4 matt
270 1.4 matt frame->tf_pc += INSN_SIZE;
271 1.4 matt return 0;
272 1.1 rearnsha }
273 1.1 rearnsha
274 1.4 matt #ifndef FPU_VFP
275 1.4 matt /*
276 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
277 1.4 matt * instructions.
278 1.4 matt */
279 1.4 matt void
280 1.4 matt vfp_attach(void)
281 1.4 matt {
282 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
283 1.4 matt }
284 1.4 matt
285 1.4 matt #else
286 1.16 matt #if 0
287 1.12 matt static bool
288 1.12 matt vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
289 1.12 matt {
290 1.12 matt for (;; code += sizeof(uint32_t)) {
291 1.12 matt uint32_t insn = *(uint32_t *)code;
292 1.12 matt if ((insn & 0xffd08000) == 0xe8908000) /* ldm ... { pc } */
293 1.12 matt return false;
294 1.12 matt if ((insn & 0xfffffff0) == 0xe12fff10) /* bx rN */
295 1.12 matt return false;
296 1.12 matt if ((insn & 0xf1a0f000) == 0xe1a0f000) /* mov pc, ... */
297 1.12 matt return false;
298 1.12 matt if ((insn >> 25) != 0x75) /* not b/bl insn */
299 1.12 matt continue;
300 1.12 matt intptr_t imm26 = ((int32_t)insn << 8) >> 6;
301 1.12 matt if (code + imm26 + 8 == func) {
302 1.12 matt int32_t imm24 = (newfunc - (code + 8)) >> 2;
303 1.12 matt uint32_t new_insn = (insn & 0xff000000)
304 1.12 matt | (imm24 & 0xffffff);
305 1.12 matt KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
306 1.12 matt ((imm24 >> 24) + 1));
307 1.12 matt *(uint32_t *)code = new_insn;
308 1.12 matt cpu_idcache_wbinv_range(code, sizeof(uint32_t));
309 1.12 matt return true;
310 1.12 matt }
311 1.12 matt }
312 1.12 matt }
313 1.16 matt #endif
314 1.12 matt
315 1.1 rearnsha void
316 1.2 cegger vfp_attach(void)
317 1.1 rearnsha {
318 1.4 matt struct cpu_info * const ci = curcpu();
319 1.4 matt const char *model = NULL;
320 1.7 matt bool vfp_p = false;
321 1.1 rearnsha
322 1.7 matt if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
323 1.7 matt || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
324 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
325 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
326 1.1 rearnsha
327 1.7 matt /*
328 1.7 matt * We first need to enable access to the coprocessors.
329 1.7 matt */
330 1.7 matt uint32_t cpacr = armreg_cpacr_read();
331 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
332 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
333 1.10 matt #if 0
334 1.9 matt if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
335 1.9 matt /*
336 1.10 matt * Disable access to the upper 16 FP registers and NEON.
337 1.9 matt */
338 1.9 matt cpacr |= CPACR_V7_D32DIS;
339 1.10 matt cpacr |= CPACR_V7_ASEDIS;
340 1.9 matt }
341 1.10 matt #endif
342 1.7 matt armreg_cpacr_write(cpacr);
343 1.1 rearnsha
344 1.7 matt /*
345 1.7 matt * If we could enable them, then they exist.
346 1.7 matt */
347 1.7 matt cpacr = armreg_cpacr_read();
348 1.7 matt vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
349 1.7 matt || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
350 1.6 matt }
351 1.6 matt
352 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
353 1.7 matt
354 1.7 matt undefined_test = 0;
355 1.7 matt
356 1.4 matt const uint32_t fpsid = read_fpsid();
357 1.1 rearnsha
358 1.1 rearnsha remove_coproc_handler(uh);
359 1.1 rearnsha
360 1.1 rearnsha if (undefined_test != 0) {
361 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
362 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
363 1.4 matt ci->ci_vfp_id = 0;
364 1.1 rearnsha return;
365 1.1 rearnsha }
366 1.1 rearnsha
367 1.4 matt ci->ci_vfp_id = fpsid;
368 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
369 1.4 matt case FPU_VFP10_ARM10E:
370 1.4 matt model = "VFP10 R1";
371 1.4 matt break;
372 1.4 matt case FPU_VFP11_ARM11:
373 1.4 matt model = "VFP11";
374 1.4 matt break;
375 1.7 matt case FPU_VFP_CORTEXA5:
376 1.7 matt case FPU_VFP_CORTEXA7:
377 1.7 matt case FPU_VFP_CORTEXA8:
378 1.7 matt case FPU_VFP_CORTEXA9:
379 1.7 matt model = "NEON MPE (VFP 3.0+)";
380 1.18 matt cpu_neon_present = 1;
381 1.6 matt break;
382 1.4 matt default:
383 1.4 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
384 1.4 matt fpsid);
385 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
386 1.4 matt return;
387 1.4 matt }
388 1.1 rearnsha
389 1.17 matt cpu_fpu_present = 1;
390 1.18 matt __asm("fmrx %0, mvfr0" : "=r"(cpu_media_and_vfp_features[0]));
391 1.18 matt __asm("fmrx %0, mvfr1" : "=r"(cpu_media_and_vfp_features[1]));
392 1.1 rearnsha if (fpsid != 0) {
393 1.1 rearnsha aprint_normal("vfp%d at %s: %s\n",
394 1.6 matt device_unit(curcpu()->ci_dev), device_xname(curcpu()->ci_dev),
395 1.1 rearnsha model);
396 1.1 rearnsha }
397 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
398 1.12 matt "VFP", "coproc use");
399 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
400 1.12 matt "VFP", "coproc re-use");
401 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
402 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
403 1.13 matt #ifdef CPU_CORTEX
404 1.13 matt install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
405 1.13 matt #endif
406 1.12 matt
407 1.16 matt #if 0
408 1.12 matt vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
409 1.12 matt (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
410 1.12 matt vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
411 1.12 matt (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
412 1.16 matt #endif
413 1.1 rearnsha }
414 1.1 rearnsha
415 1.1 rearnsha /* The real handler for VFP bounces. */
416 1.4 matt static int
417 1.4 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame,
418 1.1 rearnsha int fault_code)
419 1.1 rearnsha {
420 1.4 matt struct cpu_info * const ci = curcpu();
421 1.1 rearnsha
422 1.1 rearnsha /* This shouldn't ever happen. */
423 1.1 rearnsha if (fault_code != FAULT_USER)
424 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
425 1.1 rearnsha
426 1.4 matt if (ci->ci_vfp_id == 0)
427 1.1 rearnsha /* No VFP detected, just fault. */
428 1.1 rearnsha return 1;
429 1.1 rearnsha
430 1.4 matt /*
431 1.4 matt * If we are just changing/fetching FPSCR, don't bother loading it.
432 1.4 matt */
433 1.4 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
434 1.4 matt return 0;
435 1.1 rearnsha
436 1.4 matt pcu_load(&arm_vfp_ops);
437 1.3 rmind
438 1.4 matt /* Need to restart the faulted instruction. */
439 1.4 matt // frame->tf_pc -= INSN_SIZE;
440 1.4 matt return 0;
441 1.4 matt }
442 1.1 rearnsha
443 1.13 matt #ifdef CPU_CORTEX
444 1.13 matt /* The real handler for NEON bounces. */
445 1.13 matt static int
446 1.13 matt neon_handler(u_int address, u_int insn, trapframe_t *frame,
447 1.13 matt int fault_code)
448 1.13 matt {
449 1.13 matt struct cpu_info * const ci = curcpu();
450 1.13 matt
451 1.13 matt if (ci->ci_vfp_id == 0)
452 1.13 matt /* No VFP detected, just fault. */
453 1.13 matt return 1;
454 1.13 matt
455 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
456 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
457 1.13 matt /* Not NEON instruction, just fault. */
458 1.13 matt return 1;
459 1.13 matt
460 1.13 matt /* This shouldn't ever happen. */
461 1.13 matt if (fault_code != FAULT_USER)
462 1.13 matt panic("NEON fault in non-user mode");
463 1.13 matt
464 1.13 matt pcu_load(&arm_vfp_ops);
465 1.13 matt
466 1.13 matt /* Need to restart the faulted instruction. */
467 1.13 matt // frame->tf_pc -= INSN_SIZE;
468 1.13 matt return 0;
469 1.13 matt }
470 1.13 matt #endif
471 1.13 matt
472 1.4 matt static void
473 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
474 1.4 matt {
475 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
476 1.13 matt
477 1.13 matt KASSERT(flags & PCU_ENABLE);
478 1.13 matt
479 1.13 matt if (flags & PCU_KERNEL) {
480 1.13 matt if ((flags & PCU_LOADED) == 0) {
481 1.13 matt pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
482 1.13 matt }
483 1.15 matt pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
484 1.13 matt write_fpexc(pcb->pcb_vfp.vfp_fpexc);
485 1.13 matt /*
486 1.13 matt * Load the kernel registers (just the first 16) if they've
487 1.13 matt * been used..
488 1.13 matt */
489 1.13 matt if (flags & PCU_LOADED) {
490 1.13 matt load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
491 1.13 matt }
492 1.13 matt return;
493 1.13 matt }
494 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
495 1.1 rearnsha
496 1.1 rearnsha /*
497 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
498 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
499 1.1 rearnsha * and count this event.
500 1.1 rearnsha *
501 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
502 1.1 rearnsha * a trap to use it again" event.
503 1.1 rearnsha */
504 1.4 matt if (__predict_false((l->l_md.md_flags & MDLWP_VFPUSED) == 0)) {
505 1.1 rearnsha vfpevent_use.ev_count++;
506 1.4 matt l->l_md.md_flags |= MDLWP_VFPUSED;
507 1.3 rmind pcb->pcb_vfp.vfp_fpscr =
508 1.1 rearnsha (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
509 1.4 matt } else {
510 1.1 rearnsha vfpevent_reuse.ev_count++;
511 1.4 matt }
512 1.1 rearnsha
513 1.4 matt if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
514 1.4 matt /*
515 1.4 matt * If we think the VFP is enabled, it must have be disabled by
516 1.4 matt * vfp_state_release for another LWP so we can just restore
517 1.4 matt * FPEXC and return since our VFP state is still loaded.
518 1.4 matt */
519 1.4 matt write_fpexc(fregs->vfp_fpexc);
520 1.4 matt return;
521 1.4 matt }
522 1.1 rearnsha
523 1.13 matt /* Load and Enable the VFP (so that we can write the registers). */
524 1.13 matt if (flags & PCU_RELOAD) {
525 1.13 matt uint32_t fpexc = read_fpexc();
526 1.13 matt KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
527 1.13 matt write_fpexc(fpexc | VFP_FPEXC_EN);
528 1.13 matt
529 1.13 matt load_vfpregs(fregs);
530 1.13 matt write_fpscr(fregs->vfp_fpscr);
531 1.13 matt
532 1.13 matt if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
533 1.13 matt struct cpu_info * const ci = curcpu();
534 1.13 matt /* Need to restore the exception handling state. */
535 1.13 matt switch (ci->ci_vfp_id) {
536 1.13 matt case FPU_VFP10_ARM10E:
537 1.13 matt case FPU_VFP11_ARM11:
538 1.13 matt case FPU_VFP_CORTEXA5:
539 1.13 matt case FPU_VFP_CORTEXA7:
540 1.13 matt case FPU_VFP_CORTEXA8:
541 1.13 matt case FPU_VFP_CORTEXA9:
542 1.13 matt write_fpinst2(fregs->vfp_fpinst2);
543 1.13 matt write_fpinst(fregs->vfp_fpinst);
544 1.13 matt break;
545 1.13 matt default:
546 1.13 matt panic("%s: Unsupported VFP %#x",
547 1.13 matt __func__, ci->ci_vfp_id);
548 1.13 matt }
549 1.1 rearnsha }
550 1.1 rearnsha }
551 1.4 matt
552 1.4 matt /* Finally, restore the FPEXC but don't enable the VFP. */
553 1.4 matt fregs->vfp_fpexc |= VFP_FPEXC_EN;
554 1.4 matt write_fpexc(fregs->vfp_fpexc);
555 1.1 rearnsha }
556 1.1 rearnsha
557 1.1 rearnsha void
558 1.13 matt vfp_state_save(lwp_t *l, u_int flags)
559 1.1 rearnsha {
560 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
561 1.13 matt uint32_t fpexc = read_fpexc();
562 1.13 matt write_fpexc((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
563 1.1 rearnsha
564 1.13 matt if (flags & PCU_KERNEL) {
565 1.13 matt /*
566 1.13 matt * Save the kernel set of VFP registers.
567 1.13 matt * (just the first 16).
568 1.13 matt */
569 1.13 matt save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
570 1.1 rearnsha return;
571 1.13 matt }
572 1.13 matt
573 1.13 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
574 1.1 rearnsha
575 1.4 matt /*
576 1.4 matt * Enable the VFP (so we can read the registers).
577 1.4 matt * Make sure the exception bit is cleared so that we can
578 1.4 matt * safely dump the registers.
579 1.4 matt */
580 1.4 matt fregs->vfp_fpexc = fpexc;
581 1.4 matt if (fpexc & VFP_FPEXC_EX) {
582 1.4 matt struct cpu_info * const ci = curcpu();
583 1.4 matt /* Need to save the exception handling state */
584 1.4 matt switch (ci->ci_vfp_id) {
585 1.4 matt case FPU_VFP10_ARM10E:
586 1.4 matt case FPU_VFP11_ARM11:
587 1.8 matt case FPU_VFP_CORTEXA5:
588 1.8 matt case FPU_VFP_CORTEXA7:
589 1.8 matt case FPU_VFP_CORTEXA8:
590 1.8 matt case FPU_VFP_CORTEXA9:
591 1.4 matt fregs->vfp_fpinst = read_fpinst();
592 1.4 matt fregs->vfp_fpinst2 = read_fpinst2();
593 1.4 matt break;
594 1.4 matt default:
595 1.4 matt panic("%s: Unsupported VFP %#x",
596 1.4 matt __func__, ci->ci_vfp_id);
597 1.1 rearnsha }
598 1.1 rearnsha }
599 1.4 matt fregs->vfp_fpscr = read_fpscr();
600 1.13 matt save_vfpregs(fregs);
601 1.4 matt
602 1.1 rearnsha /* Disable the VFP. */
603 1.4 matt write_fpexc(fpexc);
604 1.1 rearnsha }
605 1.1 rearnsha
606 1.1 rearnsha void
607 1.13 matt vfp_state_release(lwp_t *l, u_int flags)
608 1.1 rearnsha {
609 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
610 1.1 rearnsha
611 1.13 matt if (flags & PCU_KERNEL) {
612 1.13 matt /*
613 1.13 matt * Restore the FPEXC since we borrowed that field.
614 1.13 matt */
615 1.13 matt pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
616 1.13 matt } else {
617 1.13 matt /*
618 1.13 matt * Now mark the VFP as disabled (and our state
619 1.13 matt * has been already saved or is being discarded).
620 1.13 matt */
621 1.13 matt pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
622 1.13 matt }
623 1.1 rearnsha
624 1.1 rearnsha /*
625 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
626 1.4 matt * an exception happens. We don't know if this LWP's state was
627 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
628 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
629 1.13 matt * is still set so it just restore fpexc and return since its
630 1.4 matt * contents are still sitting in the VFP.
631 1.1 rearnsha */
632 1.4 matt write_fpexc(read_fpexc() & ~VFP_FPEXC_EN);
633 1.1 rearnsha }
634 1.1 rearnsha
635 1.1 rearnsha void
636 1.2 cegger vfp_savecontext(void)
637 1.1 rearnsha {
638 1.4 matt pcu_save(&arm_vfp_ops);
639 1.1 rearnsha }
640 1.1 rearnsha
641 1.1 rearnsha void
642 1.4 matt vfp_discardcontext(void)
643 1.1 rearnsha {
644 1.4 matt pcu_discard(&arm_vfp_ops);
645 1.4 matt }
646 1.1 rearnsha
647 1.8 matt void
648 1.13 matt vfp_kernel_acquire(void)
649 1.13 matt {
650 1.13 matt if (__predict_false(cpu_intr_p())) {
651 1.13 matt write_fpexc(VFP_FPEXC_EN);
652 1.13 matt if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
653 1.13 matt lwp_t * const l = curlwp;
654 1.13 matt struct pcb * const pcb = lwp_getpcb(l);
655 1.13 matt KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
656 1.13 matt l->l_md.md_flags |= MDLWP_VFPINTR;
657 1.13 matt save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
658 1.13 matt }
659 1.13 matt } else {
660 1.13 matt pcu_kernel_acquire(&arm_vfp_ops);
661 1.13 matt }
662 1.13 matt }
663 1.13 matt
664 1.13 matt void
665 1.13 matt vfp_kernel_release(void)
666 1.13 matt {
667 1.13 matt if (__predict_false(cpu_intr_p())) {
668 1.13 matt uint32_t fpexc = 0;
669 1.13 matt if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
670 1.13 matt lwp_t * const l = curlwp;
671 1.13 matt struct pcb * const pcb = lwp_getpcb(l);
672 1.13 matt KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
673 1.13 matt load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
674 1.13 matt l->l_md.md_flags &= ~MDLWP_VFPINTR;
675 1.13 matt fpexc = pcb->pcb_vfp.vfp_fpexc;
676 1.13 matt }
677 1.13 matt write_fpexc(fpexc);
678 1.13 matt } else {
679 1.13 matt pcu_kernel_release(&arm_vfp_ops);
680 1.13 matt }
681 1.13 matt }
682 1.13 matt
683 1.13 matt void
684 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
685 1.8 matt {
686 1.8 matt if (l->l_md.md_flags & MDLWP_VFPUSED) {
687 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
688 1.8 matt pcu_save(&arm_vfp_ops);
689 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
690 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
691 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
692 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
693 1.8 matt }
694 1.8 matt }
695 1.8 matt
696 1.8 matt void
697 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
698 1.8 matt {
699 1.8 matt pcu_discard(&arm_vfp_ops);
700 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
701 1.8 matt l->l_md.md_flags |= MDLWP_VFPUSED;
702 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
703 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
704 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
705 1.8 matt }
706 1.8 matt
707 1.4 matt #endif /* FPU_VFP */
708