vfp_init.c revision 1.27 1 1.27 matt /* $NetBSD: vfp_init.c,v 1.27 2013/11/18 18:02:01 matt Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.23 matt #include <arm/locore.h>
40 1.5 matt #include <arm/pcb.h>
41 1.1 rearnsha #include <arm/undefined.h>
42 1.1 rearnsha #include <arm/vfpreg.h>
43 1.8 matt #include <arm/mcontext.h>
44 1.1 rearnsha
45 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
46 1.12 matt
47 1.18 matt extern int cpu_media_and_vfp_features[];
48 1.18 matt extern int cpu_neon_present;
49 1.18 matt
50 1.11 matt #ifdef FPU_VFP
51 1.11 matt
52 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
53 1.11 matt static inline void
54 1.13 matt load_vfpregs_lo(const uint64_t *p)
55 1.10 matt {
56 1.10 matt /* vldmia rN, {d0-d15} */
57 1.10 matt __asm __volatile("ldc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
58 1.10 matt }
59 1.10 matt
60 1.10 matt /* FSTMD <X>, {d0-d15} */
61 1.11 matt static inline void
62 1.10 matt save_vfpregs_lo(uint64_t *p)
63 1.10 matt {
64 1.10 matt __asm __volatile("stc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
65 1.10 matt }
66 1.10 matt
67 1.10 matt #ifdef CPU_CORTEX
68 1.10 matt /* FLDMD <X>, {d16-d31} */
69 1.11 matt static inline void
70 1.13 matt load_vfpregs_hi(const uint64_t *p)
71 1.10 matt {
72 1.10 matt __asm __volatile("ldcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
73 1.10 matt }
74 1.10 matt
75 1.10 matt /* FLDMD <X>, {d16-d31} */
76 1.11 matt static inline void
77 1.10 matt save_vfpregs_hi(uint64_t *p)
78 1.10 matt {
79 1.10 matt __asm __volatile("stcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
80 1.10 matt }
81 1.10 matt #endif
82 1.1 rearnsha
83 1.13 matt static inline void
84 1.13 matt load_vfpregs(const struct vfpreg *fregs)
85 1.13 matt {
86 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
87 1.13 matt #ifdef CPU_CORTEX
88 1.13 matt #ifdef CPU_ARM11
89 1.13 matt switch (curcpu()->ci_vfp_id) {
90 1.13 matt case FPU_VFP_CORTEXA5:
91 1.13 matt case FPU_VFP_CORTEXA7:
92 1.13 matt case FPU_VFP_CORTEXA8:
93 1.13 matt case FPU_VFP_CORTEXA9:
94 1.20 matt case FPU_VFP_CORTEXA15:
95 1.13 matt #endif
96 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
97 1.13 matt #ifdef CPU_ARM11
98 1.13 matt break;
99 1.13 matt }
100 1.13 matt #endif
101 1.13 matt #endif
102 1.13 matt }
103 1.13 matt
104 1.13 matt static inline void
105 1.13 matt save_vfpregs(struct vfpreg *fregs)
106 1.13 matt {
107 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
108 1.13 matt #ifdef CPU_CORTEX
109 1.13 matt #ifdef CPU_ARM11
110 1.13 matt switch (curcpu()->ci_vfp_id) {
111 1.13 matt case FPU_VFP_CORTEXA5:
112 1.13 matt case FPU_VFP_CORTEXA7:
113 1.13 matt case FPU_VFP_CORTEXA8:
114 1.13 matt case FPU_VFP_CORTEXA9:
115 1.20 matt case FPU_VFP_CORTEXA15:
116 1.13 matt #endif
117 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
118 1.13 matt #ifdef CPU_ARM11
119 1.13 matt break;
120 1.13 matt }
121 1.13 matt #endif
122 1.13 matt #endif
123 1.13 matt }
124 1.13 matt
125 1.1 rearnsha /* The real handler for VFP bounces. */
126 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
127 1.13 matt #ifdef CPU_CORTEX
128 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
129 1.13 matt #endif
130 1.1 rearnsha
131 1.13 matt static void vfp_state_load(lwp_t *, u_int);
132 1.13 matt static void vfp_state_save(lwp_t *, u_int);
133 1.13 matt static void vfp_state_release(lwp_t *, u_int);
134 1.4 matt
135 1.4 matt const pcu_ops_t arm_vfp_ops = {
136 1.4 matt .pcu_id = PCU_FPU,
137 1.13 matt .pcu_state_save = vfp_state_save,
138 1.4 matt .pcu_state_load = vfp_state_load,
139 1.4 matt .pcu_state_release = vfp_state_release,
140 1.4 matt };
141 1.1 rearnsha
142 1.1 rearnsha struct evcnt vfpevent_use;
143 1.1 rearnsha struct evcnt vfpevent_reuse;
144 1.21 matt struct evcnt vfpevent_fpe;
145 1.1 rearnsha
146 1.1 rearnsha /*
147 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
148 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
149 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
150 1.1 rearnsha * the instruction so must be absent, or disabled.
151 1.1 rearnsha */
152 1.1 rearnsha
153 1.1 rearnsha static int undefined_test;
154 1.1 rearnsha
155 1.1 rearnsha static int
156 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
157 1.1 rearnsha {
158 1.1 rearnsha
159 1.1 rearnsha frame->tf_pc += INSN_SIZE;
160 1.1 rearnsha ++undefined_test;
161 1.4 matt return 0;
162 1.4 matt }
163 1.4 matt
164 1.4 matt #endif /* FPU_VFP */
165 1.4 matt
166 1.4 matt struct evcnt vfp_fpscr_ev =
167 1.4 matt EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
168 1.4 matt EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
169 1.4 matt
170 1.4 matt static int
171 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
172 1.4 matt {
173 1.4 matt struct lwp * const l = curlwp;
174 1.4 matt const u_int regno = (insn >> 12) & 0xf;
175 1.4 matt /*
176 1.4 matt * Only match move to/from the FPSCR register and we
177 1.4 matt * can't be using the SP,LR,PC as a source.
178 1.4 matt */
179 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
180 1.4 matt return 1;
181 1.4 matt
182 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
183 1.4 matt
184 1.4 matt #ifdef FPU_VFP
185 1.4 matt /*
186 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
187 1.4 matt * retry the instruction (only safe thing to do since the
188 1.4 matt * pcb has a stale copy).
189 1.4 matt */
190 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
191 1.4 matt return 1;
192 1.4 matt
193 1.25 matt if (__predict_false(!vfp_used_p())) {
194 1.4 matt pcb->pcb_vfp.vfp_fpscr =
195 1.4 matt (VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
196 1.4 matt }
197 1.26 matt #endif
198 1.4 matt
199 1.4 matt /*
200 1.4 matt * We know know the pcb has the saved copy.
201 1.4 matt */
202 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
203 1.4 matt if (insn & 0x00100000) {
204 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
205 1.4 matt } else {
206 1.21 matt register_t tmp = *regp;
207 1.21 matt if (!(cpu_media_and_vfp_features[0] & ARM_MVFR0_EXCEPT_MASK))
208 1.21 matt tmp &= ~VFP_FPSCR_ESUM;
209 1.21 matt pcb->pcb_vfp.vfp_fpscr = tmp;
210 1.4 matt }
211 1.4 matt
212 1.4 matt vfp_fpscr_ev.ev_count++;
213 1.4 matt
214 1.4 matt frame->tf_pc += INSN_SIZE;
215 1.4 matt return 0;
216 1.1 rearnsha }
217 1.1 rearnsha
218 1.4 matt #ifndef FPU_VFP
219 1.4 matt /*
220 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
221 1.4 matt * instructions.
222 1.4 matt */
223 1.4 matt void
224 1.4 matt vfp_attach(void)
225 1.4 matt {
226 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
227 1.4 matt }
228 1.4 matt
229 1.4 matt #else
230 1.16 matt #if 0
231 1.12 matt static bool
232 1.12 matt vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
233 1.12 matt {
234 1.12 matt for (;; code += sizeof(uint32_t)) {
235 1.12 matt uint32_t insn = *(uint32_t *)code;
236 1.12 matt if ((insn & 0xffd08000) == 0xe8908000) /* ldm ... { pc } */
237 1.12 matt return false;
238 1.12 matt if ((insn & 0xfffffff0) == 0xe12fff10) /* bx rN */
239 1.12 matt return false;
240 1.12 matt if ((insn & 0xf1a0f000) == 0xe1a0f000) /* mov pc, ... */
241 1.12 matt return false;
242 1.12 matt if ((insn >> 25) != 0x75) /* not b/bl insn */
243 1.12 matt continue;
244 1.12 matt intptr_t imm26 = ((int32_t)insn << 8) >> 6;
245 1.12 matt if (code + imm26 + 8 == func) {
246 1.12 matt int32_t imm24 = (newfunc - (code + 8)) >> 2;
247 1.12 matt uint32_t new_insn = (insn & 0xff000000)
248 1.12 matt | (imm24 & 0xffffff);
249 1.12 matt KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
250 1.12 matt ((imm24 >> 24) + 1));
251 1.12 matt *(uint32_t *)code = new_insn;
252 1.12 matt cpu_idcache_wbinv_range(code, sizeof(uint32_t));
253 1.12 matt return true;
254 1.12 matt }
255 1.12 matt }
256 1.12 matt }
257 1.16 matt #endif
258 1.12 matt
259 1.1 rearnsha void
260 1.2 cegger vfp_attach(void)
261 1.1 rearnsha {
262 1.4 matt struct cpu_info * const ci = curcpu();
263 1.4 matt const char *model = NULL;
264 1.7 matt bool vfp_p = false;
265 1.1 rearnsha
266 1.7 matt if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
267 1.7 matt || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
268 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
269 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
270 1.1 rearnsha
271 1.7 matt /*
272 1.7 matt * We first need to enable access to the coprocessors.
273 1.7 matt */
274 1.7 matt uint32_t cpacr = armreg_cpacr_read();
275 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
276 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
277 1.10 matt #if 0
278 1.9 matt if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
279 1.9 matt /*
280 1.10 matt * Disable access to the upper 16 FP registers and NEON.
281 1.9 matt */
282 1.9 matt cpacr |= CPACR_V7_D32DIS;
283 1.10 matt cpacr |= CPACR_V7_ASEDIS;
284 1.9 matt }
285 1.10 matt #endif
286 1.7 matt armreg_cpacr_write(cpacr);
287 1.1 rearnsha
288 1.7 matt /*
289 1.7 matt * If we could enable them, then they exist.
290 1.7 matt */
291 1.7 matt cpacr = armreg_cpacr_read();
292 1.7 matt vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
293 1.7 matt || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
294 1.6 matt }
295 1.6 matt
296 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
297 1.7 matt
298 1.7 matt undefined_test = 0;
299 1.7 matt
300 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
301 1.1 rearnsha
302 1.1 rearnsha remove_coproc_handler(uh);
303 1.1 rearnsha
304 1.1 rearnsha if (undefined_test != 0) {
305 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
306 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
307 1.4 matt ci->ci_vfp_id = 0;
308 1.1 rearnsha return;
309 1.1 rearnsha }
310 1.1 rearnsha
311 1.4 matt ci->ci_vfp_id = fpsid;
312 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
313 1.4 matt case FPU_VFP10_ARM10E:
314 1.4 matt model = "VFP10 R1";
315 1.4 matt break;
316 1.4 matt case FPU_VFP11_ARM11:
317 1.4 matt model = "VFP11";
318 1.4 matt break;
319 1.7 matt case FPU_VFP_CORTEXA5:
320 1.7 matt case FPU_VFP_CORTEXA7:
321 1.7 matt case FPU_VFP_CORTEXA8:
322 1.7 matt case FPU_VFP_CORTEXA9:
323 1.20 matt case FPU_VFP_CORTEXA15:
324 1.7 matt model = "NEON MPE (VFP 3.0+)";
325 1.18 matt cpu_neon_present = 1;
326 1.6 matt break;
327 1.4 matt default:
328 1.4 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
329 1.4 matt fpsid);
330 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
331 1.4 matt return;
332 1.4 matt }
333 1.1 rearnsha
334 1.17 matt cpu_fpu_present = 1;
335 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
336 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
337 1.1 rearnsha if (fpsid != 0) {
338 1.1 rearnsha aprint_normal("vfp%d at %s: %s\n",
339 1.21 matt device_unit(curcpu()->ci_dev),
340 1.21 matt device_xname(curcpu()->ci_dev),
341 1.1 rearnsha model);
342 1.21 matt aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
343 1.21 matt device_unit(curcpu()->ci_dev),
344 1.21 matt cpu_media_and_vfp_features[0],
345 1.21 matt cpu_media_and_vfp_features[1]);
346 1.1 rearnsha }
347 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
348 1.12 matt "VFP", "coproc use");
349 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
350 1.12 matt "VFP", "coproc re-use");
351 1.21 matt evcnt_attach_dynamic(&vfpevent_fpe, EVCNT_TYPE_TRAP, NULL,
352 1.21 matt "VFP", "coproc fault");
353 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
354 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
355 1.13 matt #ifdef CPU_CORTEX
356 1.13 matt install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
357 1.13 matt #endif
358 1.12 matt
359 1.16 matt #if 0
360 1.12 matt vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
361 1.12 matt (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
362 1.12 matt vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
363 1.12 matt (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
364 1.16 matt #endif
365 1.1 rearnsha }
366 1.1 rearnsha
367 1.1 rearnsha /* The real handler for VFP bounces. */
368 1.4 matt static int
369 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
370 1.1 rearnsha {
371 1.4 matt struct cpu_info * const ci = curcpu();
372 1.1 rearnsha
373 1.1 rearnsha /* This shouldn't ever happen. */
374 1.1 rearnsha if (fault_code != FAULT_USER)
375 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
376 1.1 rearnsha
377 1.27 matt if (ci->ci_vfp_id == 0) {
378 1.1 rearnsha /* No VFP detected, just fault. */
379 1.1 rearnsha return 1;
380 1.27 matt }
381 1.27 matt
382 1.27 matt /*
383 1.27 matt * If we are just changing/fetching FPSCR, don't bother loading it.
384 1.27 matt */
385 1.27 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
386 1.27 matt return 0;
387 1.27 matt
388 1.27 matt /*
389 1.27 matt * Make sure we own the FP.
390 1.27 matt */
391 1.27 matt pcu_load(&arm_vfp_ops);
392 1.1 rearnsha
393 1.21 matt uint32_t fpexc = armreg_fpexc_read();
394 1.21 matt if (fpexc & VFP_FPEXC_EX) {
395 1.21 matt ksiginfo_t ksi;
396 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
397 1.21 matt
398 1.21 matt vfpevent_fpe.ev_count++;
399 1.21 matt
400 1.21 matt pcu_save(&arm_vfp_ops);
401 1.21 matt
402 1.21 matt /*
403 1.21 matt * Need the clear the exception condition so any signal
404 1.21 matt * can run.
405 1.21 matt */
406 1.21 matt armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXE_FSUM));
407 1.21 matt
408 1.21 matt KSI_INIT_TRAP(&ksi);
409 1.21 matt ksi.ksi_signo = SIGFPE;
410 1.21 matt if (fpexc & VFP_FPEXC_IXF)
411 1.21 matt ksi.ksi_code = FPE_FLTRES;
412 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
413 1.21 matt ksi.ksi_code = FPE_FLTUND;
414 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
415 1.21 matt ksi.ksi_code = FPE_FLTOVF;
416 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
417 1.21 matt ksi.ksi_code = FPE_FLTDIV;
418 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
419 1.21 matt ksi.ksi_code = FPE_FLTINV;
420 1.21 matt ksi.ksi_addr = (uint32_t *)address;
421 1.21 matt ksi.ksi_trap = 0;
422 1.21 matt trapsignal(curlwp, &ksi);
423 1.21 matt return 0;
424 1.21 matt }
425 1.21 matt
426 1.4 matt /* Need to restart the faulted instruction. */
427 1.4 matt // frame->tf_pc -= INSN_SIZE;
428 1.4 matt return 0;
429 1.4 matt }
430 1.1 rearnsha
431 1.13 matt #ifdef CPU_CORTEX
432 1.13 matt /* The real handler for NEON bounces. */
433 1.13 matt static int
434 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
435 1.13 matt {
436 1.13 matt struct cpu_info * const ci = curcpu();
437 1.13 matt
438 1.13 matt if (ci->ci_vfp_id == 0)
439 1.13 matt /* No VFP detected, just fault. */
440 1.13 matt return 1;
441 1.13 matt
442 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
443 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
444 1.13 matt /* Not NEON instruction, just fault. */
445 1.13 matt return 1;
446 1.13 matt
447 1.13 matt /* This shouldn't ever happen. */
448 1.13 matt if (fault_code != FAULT_USER)
449 1.13 matt panic("NEON fault in non-user mode");
450 1.13 matt
451 1.13 matt pcu_load(&arm_vfp_ops);
452 1.13 matt
453 1.13 matt /* Need to restart the faulted instruction. */
454 1.13 matt // frame->tf_pc -= INSN_SIZE;
455 1.13 matt return 0;
456 1.13 matt }
457 1.13 matt #endif
458 1.13 matt
459 1.4 matt static void
460 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
461 1.4 matt {
462 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
463 1.13 matt
464 1.13 matt KASSERT(flags & PCU_ENABLE);
465 1.13 matt
466 1.13 matt if (flags & PCU_KERNEL) {
467 1.13 matt if ((flags & PCU_LOADED) == 0) {
468 1.13 matt pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
469 1.13 matt }
470 1.15 matt pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
471 1.21 matt armreg_fpexc_write(pcb->pcb_vfp.vfp_fpexc);
472 1.13 matt /*
473 1.13 matt * Load the kernel registers (just the first 16) if they've
474 1.13 matt * been used..
475 1.13 matt */
476 1.13 matt if (flags & PCU_LOADED) {
477 1.13 matt load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
478 1.13 matt }
479 1.13 matt return;
480 1.13 matt }
481 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
482 1.1 rearnsha
483 1.1 rearnsha /*
484 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
485 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
486 1.1 rearnsha * and count this event.
487 1.1 rearnsha *
488 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
489 1.1 rearnsha * a trap to use it again" event.
490 1.1 rearnsha */
491 1.25 matt if (__predict_false((flags & PCU_LOADED) == 0)) {
492 1.1 rearnsha vfpevent_use.ev_count++;
493 1.22 matt pcb->pcb_vfp.vfp_fpscr = /* Runfast */
494 1.22 matt (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
495 1.4 matt } else {
496 1.1 rearnsha vfpevent_reuse.ev_count++;
497 1.4 matt }
498 1.1 rearnsha
499 1.4 matt if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
500 1.4 matt /*
501 1.4 matt * If we think the VFP is enabled, it must have be disabled by
502 1.4 matt * vfp_state_release for another LWP so we can just restore
503 1.4 matt * FPEXC and return since our VFP state is still loaded.
504 1.4 matt */
505 1.21 matt armreg_fpexc_write(fregs->vfp_fpexc);
506 1.4 matt return;
507 1.4 matt }
508 1.1 rearnsha
509 1.13 matt /* Load and Enable the VFP (so that we can write the registers). */
510 1.13 matt if (flags & PCU_RELOAD) {
511 1.21 matt uint32_t fpexc = armreg_fpexc_read();
512 1.13 matt KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
513 1.21 matt armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
514 1.13 matt
515 1.13 matt load_vfpregs(fregs);
516 1.21 matt armreg_fpscr_write(fregs->vfp_fpscr);
517 1.13 matt
518 1.13 matt if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
519 1.13 matt /* Need to restore the exception handling state. */
520 1.21 matt armreg_fpinst2_write(fregs->vfp_fpinst2);
521 1.21 matt if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
522 1.21 matt armreg_fpinst_write(fregs->vfp_fpinst);
523 1.1 rearnsha }
524 1.1 rearnsha }
525 1.4 matt
526 1.4 matt /* Finally, restore the FPEXC but don't enable the VFP. */
527 1.4 matt fregs->vfp_fpexc |= VFP_FPEXC_EN;
528 1.21 matt armreg_fpexc_write(fregs->vfp_fpexc);
529 1.1 rearnsha }
530 1.1 rearnsha
531 1.1 rearnsha void
532 1.13 matt vfp_state_save(lwp_t *l, u_int flags)
533 1.1 rearnsha {
534 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
535 1.21 matt uint32_t fpexc = armreg_fpexc_read();
536 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
537 1.1 rearnsha
538 1.13 matt if (flags & PCU_KERNEL) {
539 1.13 matt /*
540 1.13 matt * Save the kernel set of VFP registers.
541 1.13 matt * (just the first 16).
542 1.13 matt */
543 1.13 matt save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
544 1.1 rearnsha return;
545 1.13 matt }
546 1.13 matt
547 1.13 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
548 1.1 rearnsha
549 1.4 matt /*
550 1.4 matt * Enable the VFP (so we can read the registers).
551 1.4 matt * Make sure the exception bit is cleared so that we can
552 1.4 matt * safely dump the registers.
553 1.4 matt */
554 1.4 matt fregs->vfp_fpexc = fpexc;
555 1.4 matt if (fpexc & VFP_FPEXC_EX) {
556 1.4 matt /* Need to save the exception handling state */
557 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
558 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
559 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
560 1.1 rearnsha }
561 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
562 1.13 matt save_vfpregs(fregs);
563 1.4 matt
564 1.1 rearnsha /* Disable the VFP. */
565 1.21 matt armreg_fpexc_write(fpexc);
566 1.1 rearnsha }
567 1.1 rearnsha
568 1.1 rearnsha void
569 1.13 matt vfp_state_release(lwp_t *l, u_int flags)
570 1.1 rearnsha {
571 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
572 1.1 rearnsha
573 1.13 matt if (flags & PCU_KERNEL) {
574 1.13 matt /*
575 1.13 matt * Restore the FPEXC since we borrowed that field.
576 1.13 matt */
577 1.13 matt pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
578 1.13 matt } else {
579 1.13 matt /*
580 1.13 matt * Now mark the VFP as disabled (and our state
581 1.13 matt * has been already saved or is being discarded).
582 1.13 matt */
583 1.13 matt pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
584 1.13 matt }
585 1.1 rearnsha
586 1.1 rearnsha /*
587 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
588 1.4 matt * an exception happens. We don't know if this LWP's state was
589 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
590 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
591 1.13 matt * is still set so it just restore fpexc and return since its
592 1.4 matt * contents are still sitting in the VFP.
593 1.1 rearnsha */
594 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
595 1.1 rearnsha }
596 1.1 rearnsha
597 1.1 rearnsha void
598 1.2 cegger vfp_savecontext(void)
599 1.1 rearnsha {
600 1.4 matt pcu_save(&arm_vfp_ops);
601 1.1 rearnsha }
602 1.1 rearnsha
603 1.1 rearnsha void
604 1.25 matt vfp_discardcontext(bool used_p)
605 1.1 rearnsha {
606 1.25 matt pcu_discard(&arm_vfp_ops, used_p);
607 1.25 matt }
608 1.25 matt
609 1.25 matt bool
610 1.25 matt vfp_used_p(void)
611 1.25 matt {
612 1.25 matt return pcu_used_p(&arm_vfp_ops);
613 1.4 matt }
614 1.1 rearnsha
615 1.8 matt void
616 1.13 matt vfp_kernel_acquire(void)
617 1.13 matt {
618 1.13 matt if (__predict_false(cpu_intr_p())) {
619 1.21 matt armreg_fpexc_write(VFP_FPEXC_EN);
620 1.13 matt if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
621 1.13 matt lwp_t * const l = curlwp;
622 1.13 matt struct pcb * const pcb = lwp_getpcb(l);
623 1.13 matt KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
624 1.13 matt l->l_md.md_flags |= MDLWP_VFPINTR;
625 1.13 matt save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
626 1.13 matt }
627 1.13 matt } else {
628 1.13 matt pcu_kernel_acquire(&arm_vfp_ops);
629 1.13 matt }
630 1.13 matt }
631 1.13 matt
632 1.13 matt void
633 1.13 matt vfp_kernel_release(void)
634 1.13 matt {
635 1.13 matt if (__predict_false(cpu_intr_p())) {
636 1.13 matt uint32_t fpexc = 0;
637 1.13 matt if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
638 1.13 matt lwp_t * const l = curlwp;
639 1.13 matt struct pcb * const pcb = lwp_getpcb(l);
640 1.13 matt KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
641 1.13 matt load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
642 1.13 matt l->l_md.md_flags &= ~MDLWP_VFPINTR;
643 1.13 matt fpexc = pcb->pcb_vfp.vfp_fpexc;
644 1.13 matt }
645 1.21 matt armreg_fpexc_write(fpexc);
646 1.13 matt } else {
647 1.13 matt pcu_kernel_release(&arm_vfp_ops);
648 1.13 matt }
649 1.13 matt }
650 1.13 matt
651 1.13 matt void
652 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
653 1.8 matt {
654 1.25 matt if (vfp_used_p()) {
655 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
656 1.8 matt pcu_save(&arm_vfp_ops);
657 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
658 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
659 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
660 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
661 1.8 matt }
662 1.8 matt }
663 1.8 matt
664 1.8 matt void
665 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
666 1.8 matt {
667 1.24 drochner pcu_discard(&arm_vfp_ops, true);
668 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
669 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
670 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
671 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
672 1.8 matt }
673 1.8 matt
674 1.4 matt #endif /* FPU_VFP */
675