Home | History | Annotate | Line # | Download | only in vfp
vfp_init.c revision 1.34
      1  1.34      matt /*      $NetBSD: vfp_init.c,v 1.34 2014/03/03 08:45:18 matt Exp $ */
      2   1.1  rearnsha 
      3   1.1  rearnsha /*
      4   1.1  rearnsha  * Copyright (c) 2008 ARM Ltd
      5   1.1  rearnsha  * All rights reserved.
      6   1.1  rearnsha  *
      7   1.1  rearnsha  * Redistribution and use in source and binary forms, with or without
      8   1.1  rearnsha  * modification, are permitted provided that the following conditions
      9   1.1  rearnsha  * are met:
     10   1.1  rearnsha  * 1. Redistributions of source code must retain the above copyright
     11   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer.
     12   1.1  rearnsha  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  rearnsha  *    documentation and/or other materials provided with the distribution.
     15   1.1  rearnsha  * 3. The name of the company may not be used to endorse or promote
     16   1.1  rearnsha  *    products derived from this software without specific prior written
     17   1.1  rearnsha  *    permission.
     18   1.1  rearnsha  *
     19   1.1  rearnsha  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
     20   1.1  rearnsha  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21   1.1  rearnsha  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22   1.1  rearnsha  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
     23   1.1  rearnsha  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1  rearnsha  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     25   1.1  rearnsha  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1  rearnsha  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27   1.1  rearnsha  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28   1.1  rearnsha  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29   1.1  rearnsha  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30   1.1  rearnsha  */
     31   1.1  rearnsha 
     32   1.1  rearnsha #include <sys/param.h>
     33   1.1  rearnsha #include <sys/types.h>
     34   1.1  rearnsha #include <sys/systm.h>
     35   1.1  rearnsha #include <sys/device.h>
     36   1.1  rearnsha #include <sys/proc.h>
     37   1.4      matt #include <sys/cpu.h>
     38   1.1  rearnsha 
     39  1.23      matt #include <arm/locore.h>
     40   1.5      matt #include <arm/pcb.h>
     41   1.1  rearnsha #include <arm/undefined.h>
     42   1.1  rearnsha #include <arm/vfpreg.h>
     43   1.8      matt #include <arm/mcontext.h>
     44   1.1  rearnsha 
     45  1.12      matt #include <uvm/uvm_extern.h>		/* for pmap.h */
     46  1.12      matt 
     47  1.18      matt extern int cpu_media_and_vfp_features[];
     48  1.18      matt extern int cpu_neon_present;
     49  1.18      matt 
     50  1.11      matt #ifdef FPU_VFP
     51  1.11      matt 
     52  1.29      matt #ifdef CPU_CORTEX
     53  1.29      matt __asm(".fpu\tvfpv4");
     54  1.29      matt #else
     55  1.29      matt __asm(".fpu\tvfp");
     56  1.29      matt #endif
     57  1.29      matt 
     58   1.1  rearnsha /* FLDMD <X>, {d0-d15} */
     59  1.11      matt static inline void
     60  1.13      matt load_vfpregs_lo(const uint64_t *p)
     61  1.10      matt {
     62  1.29      matt 	__asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
     63  1.10      matt }
     64  1.10      matt 
     65  1.10      matt /* FSTMD <X>, {d0-d15} */
     66  1.11      matt static inline void
     67  1.10      matt save_vfpregs_lo(uint64_t *p)
     68  1.10      matt {
     69  1.29      matt 	__asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
     70  1.10      matt }
     71  1.10      matt 
     72  1.10      matt #ifdef CPU_CORTEX
     73  1.10      matt /* FLDMD <X>, {d16-d31} */
     74  1.11      matt static inline void
     75  1.13      matt load_vfpregs_hi(const uint64_t *p)
     76  1.10      matt {
     77  1.29      matt 	__asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     78  1.10      matt }
     79  1.10      matt 
     80  1.10      matt /* FLDMD <X>, {d16-d31} */
     81  1.11      matt static inline void
     82  1.10      matt save_vfpregs_hi(uint64_t *p)
     83  1.10      matt {
     84  1.29      matt 	__asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
     85  1.10      matt }
     86  1.10      matt #endif
     87   1.1  rearnsha 
     88  1.13      matt static inline void
     89  1.13      matt load_vfpregs(const struct vfpreg *fregs)
     90  1.13      matt {
     91  1.13      matt 	load_vfpregs_lo(fregs->vfp_regs);
     92  1.13      matt #ifdef CPU_CORTEX
     93  1.13      matt #ifdef CPU_ARM11
     94  1.13      matt 	switch (curcpu()->ci_vfp_id) {
     95  1.13      matt 	case FPU_VFP_CORTEXA5:
     96  1.13      matt 	case FPU_VFP_CORTEXA7:
     97  1.13      matt 	case FPU_VFP_CORTEXA8:
     98  1.13      matt 	case FPU_VFP_CORTEXA9:
     99  1.20      matt 	case FPU_VFP_CORTEXA15:
    100  1.13      matt #endif
    101  1.13      matt 		load_vfpregs_hi(fregs->vfp_regs);
    102  1.13      matt #ifdef CPU_ARM11
    103  1.13      matt 		break;
    104  1.13      matt 	}
    105  1.13      matt #endif
    106  1.13      matt #endif
    107  1.13      matt }
    108  1.13      matt 
    109  1.13      matt static inline void
    110  1.13      matt save_vfpregs(struct vfpreg *fregs)
    111  1.13      matt {
    112  1.13      matt 	save_vfpregs_lo(fregs->vfp_regs);
    113  1.13      matt #ifdef CPU_CORTEX
    114  1.13      matt #ifdef CPU_ARM11
    115  1.13      matt 	switch (curcpu()->ci_vfp_id) {
    116  1.13      matt 	case FPU_VFP_CORTEXA5:
    117  1.13      matt 	case FPU_VFP_CORTEXA7:
    118  1.13      matt 	case FPU_VFP_CORTEXA8:
    119  1.13      matt 	case FPU_VFP_CORTEXA9:
    120  1.20      matt 	case FPU_VFP_CORTEXA15:
    121  1.13      matt #endif
    122  1.13      matt 		save_vfpregs_hi(fregs->vfp_regs);
    123  1.13      matt #ifdef CPU_ARM11
    124  1.13      matt 		break;
    125  1.13      matt 	}
    126  1.13      matt #endif
    127  1.13      matt #endif
    128  1.13      matt }
    129  1.13      matt 
    130   1.1  rearnsha /* The real handler for VFP bounces.  */
    131   1.1  rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
    132  1.13      matt #ifdef CPU_CORTEX
    133  1.13      matt static int neon_handler(u_int, u_int, trapframe_t *, int);
    134  1.13      matt #endif
    135   1.1  rearnsha 
    136  1.13      matt static void vfp_state_load(lwp_t *, u_int);
    137  1.13      matt static void vfp_state_save(lwp_t *, u_int);
    138  1.13      matt static void vfp_state_release(lwp_t *, u_int);
    139   1.4      matt 
    140   1.4      matt const pcu_ops_t arm_vfp_ops = {
    141   1.4      matt 	.pcu_id = PCU_FPU,
    142  1.13      matt 	.pcu_state_save = vfp_state_save,
    143   1.4      matt 	.pcu_state_load = vfp_state_load,
    144   1.4      matt 	.pcu_state_release = vfp_state_release,
    145   1.4      matt };
    146   1.1  rearnsha 
    147   1.1  rearnsha struct evcnt vfpevent_use;
    148   1.1  rearnsha struct evcnt vfpevent_reuse;
    149  1.21      matt struct evcnt vfpevent_fpe;
    150   1.1  rearnsha 
    151  1.34      matt /* determine what bits can be changed */
    152  1.34      matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
    153  1.34      matt /* default to run fast */
    154  1.34      matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
    155  1.34      matt 
    156   1.1  rearnsha /*
    157   1.1  rearnsha  * Used to test for a VFP. The following function is installed as a coproc10
    158   1.1  rearnsha  * handler on the undefined instruction vector and then we issue a VFP
    159   1.1  rearnsha  * instruction. If undefined_test is non zero then the VFP did not handle
    160   1.1  rearnsha  * the instruction so must be absent, or disabled.
    161   1.1  rearnsha  */
    162   1.1  rearnsha 
    163   1.1  rearnsha static int undefined_test;
    164   1.1  rearnsha 
    165   1.1  rearnsha static int
    166   1.4      matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    167   1.1  rearnsha {
    168   1.1  rearnsha 
    169   1.1  rearnsha 	frame->tf_pc += INSN_SIZE;
    170   1.1  rearnsha 	++undefined_test;
    171   1.4      matt 	return 0;
    172   1.4      matt }
    173   1.4      matt 
    174   1.4      matt #endif /* FPU_VFP */
    175   1.4      matt 
    176   1.4      matt struct evcnt vfp_fpscr_ev =
    177   1.4      matt     EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
    178   1.4      matt EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
    179   1.4      matt 
    180   1.4      matt static int
    181   1.4      matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    182   1.4      matt {
    183   1.4      matt 	struct lwp * const l = curlwp;
    184   1.4      matt 	const u_int regno = (insn >> 12) & 0xf;
    185   1.4      matt 	/*
    186   1.4      matt 	 * Only match move to/from the FPSCR register and we
    187   1.4      matt 	 * can't be using the SP,LR,PC as a source.
    188   1.4      matt 	 */
    189   1.4      matt 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
    190   1.4      matt 		return 1;
    191   1.4      matt 
    192   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    193   1.4      matt 
    194   1.4      matt #ifdef FPU_VFP
    195   1.4      matt 	/*
    196   1.4      matt 	 * If FPU is valid somewhere, let's just reenable VFP and
    197   1.4      matt 	 * retry the instruction (only safe thing to do since the
    198   1.4      matt 	 * pcb has a stale copy).
    199   1.4      matt 	 */
    200   1.4      matt 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
    201   1.4      matt 		return 1;
    202   1.4      matt 
    203  1.25      matt 	if (__predict_false(!vfp_used_p())) {
    204   1.4      matt 		pcb->pcb_vfp.vfp_fpscr =
    205  1.32     skrll 		    (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN); /* Runfast */
    206   1.4      matt 	}
    207  1.26      matt #endif
    208   1.4      matt 
    209   1.4      matt 	/*
    210  1.30     skrll 	 * We now know the pcb has the saved copy.
    211   1.4      matt 	 */
    212   1.4      matt 	register_t * const regp = &frame->tf_r0 + regno;
    213   1.4      matt 	if (insn & 0x00100000) {
    214   1.4      matt 		*regp = pcb->pcb_vfp.vfp_fpscr;
    215   1.4      matt 	} else {
    216  1.34      matt 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
    217  1.34      matt 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
    218   1.4      matt 	}
    219   1.4      matt 
    220   1.4      matt 	vfp_fpscr_ev.ev_count++;
    221   1.4      matt 
    222   1.4      matt 	frame->tf_pc += INSN_SIZE;
    223   1.4      matt 	return 0;
    224   1.1  rearnsha }
    225   1.1  rearnsha 
    226   1.4      matt #ifndef FPU_VFP
    227   1.4      matt /*
    228   1.4      matt  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
    229   1.4      matt  * instructions.
    230   1.4      matt  */
    231   1.4      matt void
    232   1.4      matt vfp_attach(void)
    233   1.4      matt {
    234   1.4      matt 	install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    235   1.4      matt }
    236   1.4      matt 
    237   1.4      matt #else
    238  1.16      matt #if 0
    239  1.12      matt static bool
    240  1.12      matt vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
    241  1.12      matt {
    242  1.12      matt 	for (;; code += sizeof(uint32_t)) {
    243  1.12      matt 		uint32_t insn = *(uint32_t *)code;
    244  1.12      matt 		if ((insn & 0xffd08000) == 0xe8908000)	/* ldm ... { pc } */
    245  1.12      matt 			return false;
    246  1.12      matt 		if ((insn & 0xfffffff0) == 0xe12fff10)	/* bx rN */
    247  1.12      matt 			return false;
    248  1.12      matt 		if ((insn & 0xf1a0f000) == 0xe1a0f000)	/* mov pc, ... */
    249  1.12      matt 			return false;
    250  1.12      matt 		if ((insn >> 25) != 0x75)		/* not b/bl insn */
    251  1.12      matt 			continue;
    252  1.12      matt 		intptr_t imm26 = ((int32_t)insn << 8) >> 6;
    253  1.12      matt 		if (code + imm26 + 8 == func) {
    254  1.12      matt 			int32_t imm24 = (newfunc - (code + 8)) >> 2;
    255  1.12      matt 			uint32_t new_insn = (insn & 0xff000000)
    256  1.12      matt 			   | (imm24 & 0xffffff);
    257  1.12      matt 			KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
    258  1.12      matt 			    ((imm24 >> 24) + 1));
    259  1.12      matt 			*(uint32_t *)code = new_insn;
    260  1.12      matt 			cpu_idcache_wbinv_range(code, sizeof(uint32_t));
    261  1.12      matt 			return true;
    262  1.12      matt 		}
    263  1.12      matt 	}
    264  1.12      matt }
    265  1.16      matt #endif
    266  1.12      matt 
    267   1.1  rearnsha void
    268   1.2    cegger vfp_attach(void)
    269   1.1  rearnsha {
    270   1.4      matt 	struct cpu_info * const ci = curcpu();
    271   1.4      matt 	const char *model = NULL;
    272   1.1  rearnsha 
    273   1.7      matt 	if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
    274   1.7      matt 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
    275   1.7      matt 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
    276   1.7      matt 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
    277   1.1  rearnsha 
    278   1.7      matt 		/*
    279   1.7      matt 		 * We first need to enable access to the coprocessors.
    280   1.7      matt 		 */
    281   1.7      matt 		uint32_t cpacr = armreg_cpacr_read();
    282   1.7      matt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
    283   1.7      matt 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
    284  1.10      matt #if 0
    285   1.9      matt 		if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
    286   1.9      matt 			/*
    287  1.10      matt 			 * Disable access to the upper 16 FP registers and NEON.
    288   1.9      matt 			 */
    289   1.9      matt 			cpacr |= CPACR_V7_D32DIS;
    290  1.10      matt 			cpacr |= CPACR_V7_ASEDIS;
    291   1.9      matt 		}
    292  1.10      matt #endif
    293   1.7      matt 		armreg_cpacr_write(cpacr);
    294   1.1  rearnsha 
    295   1.7      matt 		/*
    296   1.7      matt 		 * If we could enable them, then they exist.
    297   1.7      matt 		 */
    298   1.7      matt 		cpacr = armreg_cpacr_read();
    299  1.28      matt 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
    300   1.7      matt 		    || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
    301  1.28      matt 		if (!vfp_p) {
    302  1.28      matt 			aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    303  1.28      matt 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    304  1.28      matt 			ci->ci_vfp_id = 0;
    305  1.28      matt 			return;
    306  1.28      matt 		}
    307   1.6      matt 	}
    308   1.6      matt 
    309   1.7      matt 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
    310   1.7      matt 
    311   1.7      matt 	undefined_test = 0;
    312   1.7      matt 
    313  1.21      matt 	const uint32_t fpsid = armreg_fpsid_read();
    314   1.1  rearnsha 
    315   1.1  rearnsha 	remove_coproc_handler(uh);
    316   1.1  rearnsha 
    317   1.1  rearnsha 	if (undefined_test != 0) {
    318   1.4      matt 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
    319   1.4      matt 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    320   1.4      matt 		ci->ci_vfp_id = 0;
    321   1.1  rearnsha 		return;
    322   1.1  rearnsha 	}
    323   1.1  rearnsha 
    324   1.4      matt 	ci->ci_vfp_id = fpsid;
    325   1.4      matt 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
    326   1.4      matt 	case FPU_VFP10_ARM10E:
    327   1.4      matt 		model = "VFP10 R1";
    328   1.4      matt 		break;
    329   1.4      matt 	case FPU_VFP11_ARM11:
    330   1.4      matt 		model = "VFP11";
    331   1.4      matt 		break;
    332   1.7      matt 	case FPU_VFP_CORTEXA5:
    333   1.7      matt 	case FPU_VFP_CORTEXA7:
    334   1.7      matt 	case FPU_VFP_CORTEXA8:
    335   1.7      matt 	case FPU_VFP_CORTEXA9:
    336  1.20      matt 	case FPU_VFP_CORTEXA15:
    337   1.7      matt 		model = "NEON MPE (VFP 3.0+)";
    338  1.18      matt 		cpu_neon_present = 1;
    339   1.6      matt 		break;
    340   1.4      matt 	default:
    341   1.4      matt 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
    342   1.4      matt 		    fpsid);
    343   1.4      matt 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
    344   1.4      matt 		return;
    345   1.4      matt 	}
    346   1.1  rearnsha 
    347  1.17      matt 	cpu_fpu_present = 1;
    348  1.21      matt 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
    349  1.21      matt 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
    350   1.1  rearnsha 	if (fpsid != 0) {
    351  1.34      matt 		uint32_t f0 = armreg_mvfr0_read();
    352  1.34      matt 		uint32_t f1 = armreg_mvfr0_read();
    353  1.34      matt 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
    354  1.21      matt 		    device_unit(curcpu()->ci_dev),
    355  1.21      matt 		    device_xname(curcpu()->ci_dev),
    356  1.34      matt 		    model,
    357  1.34      matt 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
    358  1.34      matt 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
    359  1.34      matt 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propogation" : ""),
    360  1.34      matt 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
    361  1.21      matt 		aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
    362  1.34      matt 		    device_unit(curcpu()->ci_dev), f0, f1);
    363  1.34      matt 		if (cpu_media_and_vfp_features[0] & ARM_MVFR0_ROUNDING_MASK) {
    364  1.34      matt 			vfp_fpscr_changable |= VFP_FPSCR_RMODE;
    365  1.34      matt 		}
    366  1.34      matt 		if (cpu_media_and_vfp_features[0] & ARM_MVFR0_EXCEPT_MASK) {
    367  1.34      matt 			vfp_fpscr_changable |= VFP_FPSCR_ESUM;
    368  1.34      matt 		}
    369  1.34      matt 		// If hardware supports propogation of NaNs, select it.
    370  1.34      matt 		if (cpu_media_and_vfp_features[1] & ARM_MVFR1_D_NAN_MASK) {
    371  1.34      matt 			vfp_fpscr_default &= ~VFP_FPSCR_DN;
    372  1.34      matt 			vfp_fpscr_changable |= VFP_FPSCR_DN;
    373  1.34      matt 		}
    374  1.34      matt 		// If hardware supports denormalized numbers, use it.
    375  1.34      matt 		if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
    376  1.34      matt 			vfp_fpscr_default &= ~VFP_FPSCR_FZ;
    377  1.34      matt 			vfp_fpscr_changable |= VFP_FPSCR_FZ;
    378  1.34      matt 		}
    379   1.1  rearnsha 	}
    380   1.1  rearnsha 	evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
    381  1.12      matt 	    "VFP", "coproc use");
    382   1.1  rearnsha 	evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
    383  1.12      matt 	    "VFP", "coproc re-use");
    384  1.21      matt 	evcnt_attach_dynamic(&vfpevent_fpe, EVCNT_TYPE_TRAP, NULL,
    385  1.21      matt 	    "VFP", "coproc fault");
    386   1.1  rearnsha 	install_coproc_handler(VFP_COPROC, vfp_handler);
    387   1.1  rearnsha 	install_coproc_handler(VFP_COPROC2, vfp_handler);
    388  1.13      matt #ifdef CPU_CORTEX
    389  1.13      matt 	install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
    390  1.13      matt #endif
    391  1.12      matt 
    392  1.16      matt #if 0
    393  1.12      matt 	vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
    394  1.12      matt 	   (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
    395  1.12      matt 	vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
    396  1.12      matt 	   (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
    397  1.16      matt #endif
    398   1.1  rearnsha }
    399   1.1  rearnsha 
    400   1.1  rearnsha /* The real handler for VFP bounces.  */
    401   1.4      matt static int
    402  1.21      matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    403   1.1  rearnsha {
    404   1.4      matt 	struct cpu_info * const ci = curcpu();
    405   1.1  rearnsha 
    406   1.1  rearnsha 	/* This shouldn't ever happen.  */
    407   1.1  rearnsha 	if (fault_code != FAULT_USER)
    408  1.14      matt 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
    409   1.1  rearnsha 
    410  1.27      matt 	if (ci->ci_vfp_id == 0) {
    411   1.1  rearnsha 		/* No VFP detected, just fault.  */
    412   1.1  rearnsha 		return 1;
    413  1.27      matt 	}
    414  1.27      matt 
    415  1.27      matt 	/*
    416  1.27      matt 	 * If we are just changing/fetching FPSCR, don't bother loading it.
    417  1.27      matt 	 */
    418  1.27      matt 	if (!vfp_fpscr_handler(address, insn, frame, fault_code))
    419  1.27      matt 		return 0;
    420  1.27      matt 
    421  1.27      matt 	/*
    422  1.27      matt 	 * Make sure we own the FP.
    423  1.27      matt 	 */
    424  1.27      matt 	pcu_load(&arm_vfp_ops);
    425   1.1  rearnsha 
    426  1.21      matt 	uint32_t fpexc = armreg_fpexc_read();
    427  1.21      matt 	if (fpexc & VFP_FPEXC_EX) {
    428  1.21      matt 		ksiginfo_t ksi;
    429  1.21      matt 		KASSERT(fpexc & VFP_FPEXC_EN);
    430  1.21      matt 
    431  1.21      matt 		vfpevent_fpe.ev_count++;
    432  1.21      matt 
    433  1.21      matt 		/*
    434  1.21      matt 		 * Need the clear the exception condition so any signal
    435  1.33     skrll 		 * and future use can proceed.
    436  1.21      matt 		 */
    437  1.31     skrll 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
    438  1.21      matt 
    439  1.33     skrll 		pcu_save(&arm_vfp_ops);
    440  1.33     skrll 
    441  1.33     skrll 		/*
    442  1.33     skrll 		 * XXX Need to emulate bounce instructions here to get correct
    443  1.33     skrll 		 * XXX exception codes, etc.
    444  1.33     skrll 		 */
    445  1.21      matt 		KSI_INIT_TRAP(&ksi);
    446  1.21      matt 		ksi.ksi_signo = SIGFPE;
    447  1.21      matt 		if (fpexc & VFP_FPEXC_IXF)
    448  1.21      matt 			ksi.ksi_code = FPE_FLTRES;
    449  1.21      matt 		else if (fpexc & VFP_FPEXC_UFF)
    450  1.21      matt 			ksi.ksi_code = FPE_FLTUND;
    451  1.21      matt 		else if (fpexc & VFP_FPEXC_OFF)
    452  1.21      matt 			ksi.ksi_code = FPE_FLTOVF;
    453  1.21      matt 		else if (fpexc & VFP_FPEXC_DZF)
    454  1.21      matt 			ksi.ksi_code = FPE_FLTDIV;
    455  1.21      matt 		else if (fpexc & VFP_FPEXC_IOF)
    456  1.21      matt 			ksi.ksi_code = FPE_FLTINV;
    457  1.21      matt 		ksi.ksi_addr = (uint32_t *)address;
    458  1.21      matt 		ksi.ksi_trap = 0;
    459  1.21      matt 		trapsignal(curlwp, &ksi);
    460  1.21      matt 		return 0;
    461  1.21      matt 	}
    462  1.21      matt 
    463   1.4      matt 	/* Need to restart the faulted instruction.  */
    464   1.4      matt //	frame->tf_pc -= INSN_SIZE;
    465   1.4      matt 	return 0;
    466   1.4      matt }
    467   1.1  rearnsha 
    468  1.13      matt #ifdef CPU_CORTEX
    469  1.13      matt /* The real handler for NEON bounces.  */
    470  1.13      matt static int
    471  1.21      matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
    472  1.13      matt {
    473  1.13      matt 	struct cpu_info * const ci = curcpu();
    474  1.13      matt 
    475  1.13      matt 	if (ci->ci_vfp_id == 0)
    476  1.13      matt 		/* No VFP detected, just fault.  */
    477  1.13      matt 		return 1;
    478  1.13      matt 
    479  1.13      matt 	if ((insn & 0xfe000000) != 0xf2000000
    480  1.13      matt 	    && (insn & 0xfe000000) != 0xf4000000)
    481  1.13      matt 		/* Not NEON instruction, just fault.  */
    482  1.13      matt 		return 1;
    483  1.13      matt 
    484  1.13      matt 	/* This shouldn't ever happen.  */
    485  1.13      matt 	if (fault_code != FAULT_USER)
    486  1.13      matt 		panic("NEON fault in non-user mode");
    487  1.13      matt 
    488  1.13      matt 	pcu_load(&arm_vfp_ops);
    489  1.13      matt 
    490  1.13      matt 	/* Need to restart the faulted instruction.  */
    491  1.13      matt //	frame->tf_pc -= INSN_SIZE;
    492  1.13      matt 	return 0;
    493  1.13      matt }
    494  1.13      matt #endif
    495  1.13      matt 
    496   1.4      matt static void
    497  1.13      matt vfp_state_load(lwp_t *l, u_int flags)
    498   1.4      matt {
    499   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    500  1.13      matt 
    501  1.13      matt 	KASSERT(flags & PCU_ENABLE);
    502  1.13      matt 
    503  1.13      matt 	if (flags & PCU_KERNEL) {
    504  1.13      matt 		if ((flags & PCU_LOADED) == 0) {
    505  1.13      matt 			pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
    506  1.13      matt 		}
    507  1.15      matt 		pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
    508  1.21      matt 		armreg_fpexc_write(pcb->pcb_vfp.vfp_fpexc);
    509  1.13      matt 		/*
    510  1.13      matt 		 * Load the kernel registers (just the first 16) if they've
    511  1.13      matt 		 * been used..
    512  1.13      matt 		 */
    513  1.13      matt 		if (flags & PCU_LOADED) {
    514  1.13      matt 			load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
    515  1.13      matt 		}
    516  1.13      matt 		return;
    517  1.13      matt 	}
    518   1.4      matt 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    519   1.1  rearnsha 
    520   1.1  rearnsha 	/*
    521   1.1  rearnsha 	 * Instrument VFP usage -- if a process has not previously
    522   1.1  rearnsha 	 * used the VFP, mark it as having used VFP for the first time,
    523   1.1  rearnsha 	 * and count this event.
    524   1.1  rearnsha 	 *
    525   1.1  rearnsha 	 * If a process has used the VFP, count a "used VFP, and took
    526   1.1  rearnsha 	 * a trap to use it again" event.
    527   1.1  rearnsha 	 */
    528  1.25      matt 	if (__predict_false((flags & PCU_LOADED) == 0)) {
    529  1.33     skrll 		KASSERT(flags & PCU_RELOAD);
    530   1.1  rearnsha 		vfpevent_use.ev_count++;
    531  1.34      matt 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
    532   1.4      matt 	} else {
    533   1.1  rearnsha 		vfpevent_reuse.ev_count++;
    534   1.4      matt 	}
    535   1.1  rearnsha 
    536  1.33     skrll 	uint32_t fpexc = armreg_fpexc_read();
    537  1.33     skrll 	if (flags & PCU_RELOAD) {
    538  1.33     skrll 		bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
    539  1.33     skrll 
    540   1.4      matt 		/*
    541  1.33     skrll 		 * Load and Enable the VFP (so that we can write the
    542  1.33     skrll 		 * registers).
    543   1.4      matt 		 */
    544  1.33     skrll 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
    545  1.21      matt 		armreg_fpexc_write(fregs->vfp_fpexc);
    546  1.33     skrll 		if (enabled) {
    547  1.33     skrll 			/*
    548  1.33     skrll 			 * If we think the VFP is enabled, it must have be
    549  1.33     skrll 			 * disabled by vfp_state_release for another LWP so
    550  1.33     skrll 			 * we can now just return.
    551  1.33     skrll 			 */
    552  1.33     skrll 			return;
    553  1.33     skrll 		}
    554  1.13      matt 
    555  1.13      matt 		load_vfpregs(fregs);
    556  1.21      matt 		armreg_fpscr_write(fregs->vfp_fpscr);
    557  1.13      matt 
    558  1.13      matt 		if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
    559  1.13      matt 			/* Need to restore the exception handling state.  */
    560  1.21      matt 			armreg_fpinst2_write(fregs->vfp_fpinst2);
    561  1.21      matt 			if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
    562  1.21      matt 				armreg_fpinst_write(fregs->vfp_fpinst);
    563   1.1  rearnsha 		}
    564  1.33     skrll 	} else {
    565  1.33     skrll 		/*
    566  1.33     skrll 		 * If the VFP is already enabled we must be bouncing an
    567  1.33     skrll 		 * instruction.
    568  1.33     skrll 		 */
    569  1.33     skrll 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
    570   1.1  rearnsha 	}
    571   1.1  rearnsha }
    572   1.1  rearnsha 
    573   1.1  rearnsha void
    574  1.13      matt vfp_state_save(lwp_t *l, u_int flags)
    575   1.1  rearnsha {
    576   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    577  1.21      matt 	uint32_t fpexc = armreg_fpexc_read();
    578  1.33     skrll 
    579  1.33     skrll 	/*
    580  1.33     skrll 	 * Enable the VFP (so we can read the registers).
    581  1.33     skrll 	 * Make sure the exception bit is cleared so that we can
    582  1.33     skrll 	 * safely dump the registers.
    583  1.33     skrll 	 */
    584  1.21      matt 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
    585   1.1  rearnsha 
    586  1.13      matt 	if (flags & PCU_KERNEL) {
    587  1.13      matt 		/*
    588  1.13      matt 		 * Save the kernel set of VFP registers.
    589  1.13      matt 		 * (just the first 16).
    590  1.13      matt 		 */
    591  1.13      matt 		save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
    592   1.1  rearnsha 		return;
    593  1.13      matt 	}
    594  1.13      matt 
    595  1.13      matt 	struct vfpreg * const fregs = &pcb->pcb_vfp;
    596   1.1  rearnsha 
    597   1.4      matt 	fregs->vfp_fpexc = fpexc;
    598   1.4      matt 	if (fpexc & VFP_FPEXC_EX) {
    599   1.4      matt 		/* Need to save the exception handling state */
    600  1.21      matt 		fregs->vfp_fpinst = armreg_fpinst_read();
    601  1.21      matt 		if (fpexc & VFP_FPEXC_FP2V)
    602  1.21      matt 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
    603   1.1  rearnsha 	}
    604  1.21      matt 	fregs->vfp_fpscr = armreg_fpscr_read();
    605  1.13      matt 	save_vfpregs(fregs);
    606   1.4      matt 
    607   1.1  rearnsha 	/* Disable the VFP.  */
    608  1.33     skrll 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
    609   1.1  rearnsha }
    610   1.1  rearnsha 
    611   1.1  rearnsha void
    612  1.13      matt vfp_state_release(lwp_t *l, u_int flags)
    613   1.1  rearnsha {
    614   1.4      matt 	struct pcb * const pcb = lwp_getpcb(l);
    615   1.1  rearnsha 
    616  1.13      matt 	if (flags & PCU_KERNEL) {
    617  1.13      matt 		/*
    618  1.13      matt 		 * Restore the FPEXC since we borrowed that field.
    619  1.13      matt 		 */
    620  1.13      matt 		pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
    621  1.13      matt 	} else {
    622  1.13      matt 		/*
    623  1.13      matt 		 * Now mark the VFP as disabled (and our state
    624  1.13      matt 		 * has been already saved or is being discarded).
    625  1.13      matt 		 */
    626  1.13      matt 		pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
    627  1.13      matt 	}
    628   1.1  rearnsha 
    629   1.1  rearnsha 	/*
    630   1.4      matt 	 * Turn off the FPU so the next time a VFP instruction is issued
    631   1.4      matt 	 * an exception happens.  We don't know if this LWP's state was
    632   1.4      matt 	 * loaded but if we turned off the FPU for some other LWP, when
    633   1.4      matt 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
    634  1.13      matt 	 * is still set so it just restore fpexc and return since its
    635   1.4      matt 	 * contents are still sitting in the VFP.
    636   1.1  rearnsha 	 */
    637  1.21      matt 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
    638   1.1  rearnsha }
    639   1.1  rearnsha 
    640   1.1  rearnsha void
    641   1.2    cegger vfp_savecontext(void)
    642   1.1  rearnsha {
    643   1.4      matt 	pcu_save(&arm_vfp_ops);
    644   1.1  rearnsha }
    645   1.1  rearnsha 
    646   1.1  rearnsha void
    647  1.25      matt vfp_discardcontext(bool used_p)
    648   1.1  rearnsha {
    649  1.25      matt 	pcu_discard(&arm_vfp_ops, used_p);
    650  1.25      matt }
    651  1.25      matt 
    652  1.25      matt bool
    653  1.25      matt vfp_used_p(void)
    654  1.25      matt {
    655  1.25      matt 	return pcu_used_p(&arm_vfp_ops);
    656   1.4      matt }
    657   1.1  rearnsha 
    658   1.8      matt void
    659  1.13      matt vfp_kernel_acquire(void)
    660  1.13      matt {
    661  1.13      matt 	if (__predict_false(cpu_intr_p())) {
    662  1.21      matt 		armreg_fpexc_write(VFP_FPEXC_EN);
    663  1.13      matt 		if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
    664  1.13      matt 			lwp_t * const l = curlwp;
    665  1.13      matt 			struct pcb * const pcb = lwp_getpcb(l);
    666  1.13      matt 			KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
    667  1.13      matt 			l->l_md.md_flags |= MDLWP_VFPINTR;
    668  1.13      matt 			save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
    669  1.13      matt 		}
    670  1.13      matt 	} else {
    671  1.13      matt 		pcu_kernel_acquire(&arm_vfp_ops);
    672  1.13      matt 	}
    673  1.13      matt }
    674  1.13      matt 
    675  1.13      matt void
    676  1.13      matt vfp_kernel_release(void)
    677  1.13      matt {
    678  1.13      matt 	if (__predict_false(cpu_intr_p())) {
    679  1.13      matt 		uint32_t fpexc = 0;
    680  1.13      matt 		if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
    681  1.13      matt 			lwp_t * const l = curlwp;
    682  1.13      matt 			struct pcb * const pcb = lwp_getpcb(l);
    683  1.13      matt 			KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
    684  1.13      matt 			load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
    685  1.13      matt 			l->l_md.md_flags &= ~MDLWP_VFPINTR;
    686  1.13      matt 			fpexc = pcb->pcb_vfp.vfp_fpexc;
    687  1.13      matt 		}
    688  1.21      matt 		armreg_fpexc_write(fpexc);
    689  1.13      matt 	} else {
    690  1.13      matt 		pcu_kernel_release(&arm_vfp_ops);
    691  1.13      matt 	}
    692  1.13      matt }
    693  1.13      matt 
    694  1.13      matt void
    695   1.8      matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
    696   1.8      matt {
    697  1.25      matt 	if (vfp_used_p()) {
    698   1.8      matt 		const struct pcb * const pcb = lwp_getpcb(l);
    699   1.8      matt 		pcu_save(&arm_vfp_ops);
    700   1.8      matt 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
    701   1.8      matt 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
    702   1.8      matt 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    703  1.10      matt 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
    704   1.8      matt 	}
    705   1.8      matt }
    706   1.8      matt 
    707   1.8      matt void
    708   1.8      matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
    709   1.8      matt {
    710  1.24  drochner 	pcu_discard(&arm_vfp_ops, true);
    711   1.8      matt 	struct pcb * const pcb = lwp_getpcb(l);
    712   1.8      matt 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
    713   1.8      matt 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
    714   1.8      matt 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
    715   1.8      matt }
    716   1.8      matt 
    717   1.4      matt #endif /* FPU_VFP */
    718