vfp_init.c revision 1.36 1 1.36 matt /* $NetBSD: vfp_init.c,v 1.36 2014/03/18 07:03:22 matt Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.23 matt #include <arm/locore.h>
40 1.5 matt #include <arm/pcb.h>
41 1.1 rearnsha #include <arm/undefined.h>
42 1.1 rearnsha #include <arm/vfpreg.h>
43 1.8 matt #include <arm/mcontext.h>
44 1.1 rearnsha
45 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
46 1.12 matt
47 1.11 matt #ifdef FPU_VFP
48 1.11 matt
49 1.29 matt #ifdef CPU_CORTEX
50 1.29 matt __asm(".fpu\tvfpv4");
51 1.29 matt #else
52 1.29 matt __asm(".fpu\tvfp");
53 1.29 matt #endif
54 1.29 matt
55 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
56 1.11 matt static inline void
57 1.13 matt load_vfpregs_lo(const uint64_t *p)
58 1.10 matt {
59 1.29 matt __asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
60 1.10 matt }
61 1.10 matt
62 1.10 matt /* FSTMD <X>, {d0-d15} */
63 1.11 matt static inline void
64 1.10 matt save_vfpregs_lo(uint64_t *p)
65 1.10 matt {
66 1.29 matt __asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
67 1.10 matt }
68 1.10 matt
69 1.10 matt #ifdef CPU_CORTEX
70 1.10 matt /* FLDMD <X>, {d16-d31} */
71 1.11 matt static inline void
72 1.13 matt load_vfpregs_hi(const uint64_t *p)
73 1.10 matt {
74 1.29 matt __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
75 1.10 matt }
76 1.10 matt
77 1.10 matt /* FLDMD <X>, {d16-d31} */
78 1.11 matt static inline void
79 1.10 matt save_vfpregs_hi(uint64_t *p)
80 1.10 matt {
81 1.29 matt __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
82 1.10 matt }
83 1.10 matt #endif
84 1.1 rearnsha
85 1.13 matt static inline void
86 1.13 matt load_vfpregs(const struct vfpreg *fregs)
87 1.13 matt {
88 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
89 1.13 matt #ifdef CPU_CORTEX
90 1.13 matt #ifdef CPU_ARM11
91 1.13 matt switch (curcpu()->ci_vfp_id) {
92 1.13 matt case FPU_VFP_CORTEXA5:
93 1.13 matt case FPU_VFP_CORTEXA7:
94 1.13 matt case FPU_VFP_CORTEXA8:
95 1.13 matt case FPU_VFP_CORTEXA9:
96 1.20 matt case FPU_VFP_CORTEXA15:
97 1.13 matt #endif
98 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
99 1.13 matt #ifdef CPU_ARM11
100 1.13 matt break;
101 1.13 matt }
102 1.13 matt #endif
103 1.13 matt #endif
104 1.13 matt }
105 1.13 matt
106 1.13 matt static inline void
107 1.13 matt save_vfpregs(struct vfpreg *fregs)
108 1.13 matt {
109 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
110 1.13 matt #ifdef CPU_CORTEX
111 1.13 matt #ifdef CPU_ARM11
112 1.13 matt switch (curcpu()->ci_vfp_id) {
113 1.13 matt case FPU_VFP_CORTEXA5:
114 1.13 matt case FPU_VFP_CORTEXA7:
115 1.13 matt case FPU_VFP_CORTEXA8:
116 1.13 matt case FPU_VFP_CORTEXA9:
117 1.20 matt case FPU_VFP_CORTEXA15:
118 1.13 matt #endif
119 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
120 1.13 matt #ifdef CPU_ARM11
121 1.13 matt break;
122 1.13 matt }
123 1.13 matt #endif
124 1.13 matt #endif
125 1.13 matt }
126 1.13 matt
127 1.1 rearnsha /* The real handler for VFP bounces. */
128 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
129 1.13 matt #ifdef CPU_CORTEX
130 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
131 1.13 matt #endif
132 1.1 rearnsha
133 1.13 matt static void vfp_state_load(lwp_t *, u_int);
134 1.13 matt static void vfp_state_save(lwp_t *, u_int);
135 1.13 matt static void vfp_state_release(lwp_t *, u_int);
136 1.4 matt
137 1.4 matt const pcu_ops_t arm_vfp_ops = {
138 1.4 matt .pcu_id = PCU_FPU,
139 1.13 matt .pcu_state_save = vfp_state_save,
140 1.4 matt .pcu_state_load = vfp_state_load,
141 1.4 matt .pcu_state_release = vfp_state_release,
142 1.4 matt };
143 1.1 rearnsha
144 1.1 rearnsha struct evcnt vfpevent_use;
145 1.1 rearnsha struct evcnt vfpevent_reuse;
146 1.21 matt struct evcnt vfpevent_fpe;
147 1.1 rearnsha
148 1.34 matt /* determine what bits can be changed */
149 1.34 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
150 1.34 matt /* default to run fast */
151 1.34 matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
152 1.34 matt
153 1.1 rearnsha /*
154 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
155 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
156 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
157 1.1 rearnsha * the instruction so must be absent, or disabled.
158 1.1 rearnsha */
159 1.1 rearnsha
160 1.1 rearnsha static int undefined_test;
161 1.1 rearnsha
162 1.1 rearnsha static int
163 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
164 1.1 rearnsha {
165 1.1 rearnsha
166 1.1 rearnsha frame->tf_pc += INSN_SIZE;
167 1.1 rearnsha ++undefined_test;
168 1.4 matt return 0;
169 1.4 matt }
170 1.4 matt
171 1.35 matt #else
172 1.35 matt /* determine what bits can be changed */
173 1.35 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
174 1.4 matt #endif /* FPU_VFP */
175 1.4 matt
176 1.4 matt struct evcnt vfp_fpscr_ev =
177 1.4 matt EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
178 1.4 matt EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
179 1.4 matt
180 1.4 matt static int
181 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
182 1.4 matt {
183 1.4 matt struct lwp * const l = curlwp;
184 1.4 matt const u_int regno = (insn >> 12) & 0xf;
185 1.4 matt /*
186 1.4 matt * Only match move to/from the FPSCR register and we
187 1.4 matt * can't be using the SP,LR,PC as a source.
188 1.4 matt */
189 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
190 1.4 matt return 1;
191 1.4 matt
192 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
193 1.4 matt
194 1.4 matt #ifdef FPU_VFP
195 1.4 matt /*
196 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
197 1.4 matt * retry the instruction (only safe thing to do since the
198 1.4 matt * pcb has a stale copy).
199 1.4 matt */
200 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
201 1.4 matt return 1;
202 1.4 matt
203 1.25 matt if (__predict_false(!vfp_used_p())) {
204 1.35 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
205 1.4 matt }
206 1.26 matt #endif
207 1.4 matt
208 1.4 matt /*
209 1.30 skrll * We now know the pcb has the saved copy.
210 1.4 matt */
211 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
212 1.4 matt if (insn & 0x00100000) {
213 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
214 1.4 matt } else {
215 1.34 matt pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
216 1.34 matt pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
217 1.4 matt }
218 1.4 matt
219 1.4 matt vfp_fpscr_ev.ev_count++;
220 1.4 matt
221 1.4 matt frame->tf_pc += INSN_SIZE;
222 1.4 matt return 0;
223 1.1 rearnsha }
224 1.1 rearnsha
225 1.4 matt #ifndef FPU_VFP
226 1.4 matt /*
227 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
228 1.4 matt * instructions.
229 1.4 matt */
230 1.4 matt void
231 1.4 matt vfp_attach(void)
232 1.4 matt {
233 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
234 1.4 matt }
235 1.4 matt
236 1.4 matt #else
237 1.16 matt #if 0
238 1.12 matt static bool
239 1.12 matt vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
240 1.12 matt {
241 1.12 matt for (;; code += sizeof(uint32_t)) {
242 1.12 matt uint32_t insn = *(uint32_t *)code;
243 1.12 matt if ((insn & 0xffd08000) == 0xe8908000) /* ldm ... { pc } */
244 1.12 matt return false;
245 1.12 matt if ((insn & 0xfffffff0) == 0xe12fff10) /* bx rN */
246 1.12 matt return false;
247 1.12 matt if ((insn & 0xf1a0f000) == 0xe1a0f000) /* mov pc, ... */
248 1.12 matt return false;
249 1.12 matt if ((insn >> 25) != 0x75) /* not b/bl insn */
250 1.12 matt continue;
251 1.12 matt intptr_t imm26 = ((int32_t)insn << 8) >> 6;
252 1.12 matt if (code + imm26 + 8 == func) {
253 1.12 matt int32_t imm24 = (newfunc - (code + 8)) >> 2;
254 1.12 matt uint32_t new_insn = (insn & 0xff000000)
255 1.12 matt | (imm24 & 0xffffff);
256 1.12 matt KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
257 1.12 matt ((imm24 >> 24) + 1));
258 1.12 matt *(uint32_t *)code = new_insn;
259 1.12 matt cpu_idcache_wbinv_range(code, sizeof(uint32_t));
260 1.12 matt return true;
261 1.12 matt }
262 1.12 matt }
263 1.12 matt }
264 1.16 matt #endif
265 1.12 matt
266 1.1 rearnsha void
267 1.2 cegger vfp_attach(void)
268 1.1 rearnsha {
269 1.4 matt struct cpu_info * const ci = curcpu();
270 1.4 matt const char *model = NULL;
271 1.1 rearnsha
272 1.7 matt if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
273 1.36 matt || CPU_ID_MV88SV58XX_P(curcpu()->ci_arm_cpuid)
274 1.7 matt || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
275 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
276 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
277 1.1 rearnsha
278 1.7 matt /*
279 1.7 matt * We first need to enable access to the coprocessors.
280 1.7 matt */
281 1.7 matt uint32_t cpacr = armreg_cpacr_read();
282 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
283 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
284 1.10 matt #if 0
285 1.9 matt if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
286 1.9 matt /*
287 1.10 matt * Disable access to the upper 16 FP registers and NEON.
288 1.9 matt */
289 1.9 matt cpacr |= CPACR_V7_D32DIS;
290 1.10 matt cpacr |= CPACR_V7_ASEDIS;
291 1.9 matt }
292 1.10 matt #endif
293 1.7 matt armreg_cpacr_write(cpacr);
294 1.1 rearnsha
295 1.7 matt /*
296 1.7 matt * If we could enable them, then they exist.
297 1.7 matt */
298 1.7 matt cpacr = armreg_cpacr_read();
299 1.28 matt bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
300 1.7 matt || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
301 1.28 matt if (!vfp_p) {
302 1.28 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
303 1.28 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
304 1.28 matt ci->ci_vfp_id = 0;
305 1.28 matt return;
306 1.28 matt }
307 1.6 matt }
308 1.6 matt
309 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
310 1.7 matt
311 1.7 matt undefined_test = 0;
312 1.7 matt
313 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
314 1.1 rearnsha
315 1.1 rearnsha remove_coproc_handler(uh);
316 1.1 rearnsha
317 1.1 rearnsha if (undefined_test != 0) {
318 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
319 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
320 1.4 matt ci->ci_vfp_id = 0;
321 1.1 rearnsha return;
322 1.1 rearnsha }
323 1.1 rearnsha
324 1.4 matt ci->ci_vfp_id = fpsid;
325 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
326 1.4 matt case FPU_VFP10_ARM10E:
327 1.4 matt model = "VFP10 R1";
328 1.4 matt break;
329 1.4 matt case FPU_VFP11_ARM11:
330 1.4 matt model = "VFP11";
331 1.4 matt break;
332 1.36 matt case FPU_VFP_MV88SV58XX:
333 1.36 matt model = "VFP3";
334 1.36 matt break;
335 1.7 matt case FPU_VFP_CORTEXA5:
336 1.7 matt case FPU_VFP_CORTEXA7:
337 1.7 matt case FPU_VFP_CORTEXA8:
338 1.7 matt case FPU_VFP_CORTEXA9:
339 1.20 matt case FPU_VFP_CORTEXA15:
340 1.7 matt model = "NEON MPE (VFP 3.0+)";
341 1.18 matt cpu_neon_present = 1;
342 1.6 matt break;
343 1.4 matt default:
344 1.36 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
345 1.4 matt fpsid);
346 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
347 1.35 matt vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
348 1.35 matt |VFP_FPSCR_RMODE;
349 1.35 matt vfp_fpscr_default = 0;
350 1.4 matt return;
351 1.4 matt }
352 1.1 rearnsha
353 1.17 matt cpu_fpu_present = 1;
354 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
355 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
356 1.1 rearnsha if (fpsid != 0) {
357 1.34 matt uint32_t f0 = armreg_mvfr0_read();
358 1.34 matt uint32_t f1 = armreg_mvfr0_read();
359 1.34 matt aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
360 1.21 matt device_unit(curcpu()->ci_dev),
361 1.21 matt device_xname(curcpu()->ci_dev),
362 1.34 matt model,
363 1.34 matt ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
364 1.34 matt ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
365 1.34 matt ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propogation" : ""),
366 1.34 matt ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
367 1.21 matt aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
368 1.34 matt device_unit(curcpu()->ci_dev), f0, f1);
369 1.34 matt if (cpu_media_and_vfp_features[0] & ARM_MVFR0_ROUNDING_MASK) {
370 1.34 matt vfp_fpscr_changable |= VFP_FPSCR_RMODE;
371 1.34 matt }
372 1.34 matt if (cpu_media_and_vfp_features[0] & ARM_MVFR0_EXCEPT_MASK) {
373 1.34 matt vfp_fpscr_changable |= VFP_FPSCR_ESUM;
374 1.34 matt }
375 1.34 matt // If hardware supports propogation of NaNs, select it.
376 1.34 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_D_NAN_MASK) {
377 1.34 matt vfp_fpscr_default &= ~VFP_FPSCR_DN;
378 1.34 matt vfp_fpscr_changable |= VFP_FPSCR_DN;
379 1.34 matt }
380 1.34 matt // If hardware supports denormalized numbers, use it.
381 1.34 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
382 1.34 matt vfp_fpscr_default &= ~VFP_FPSCR_FZ;
383 1.34 matt vfp_fpscr_changable |= VFP_FPSCR_FZ;
384 1.34 matt }
385 1.1 rearnsha }
386 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
387 1.12 matt "VFP", "coproc use");
388 1.1 rearnsha evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
389 1.12 matt "VFP", "coproc re-use");
390 1.21 matt evcnt_attach_dynamic(&vfpevent_fpe, EVCNT_TYPE_TRAP, NULL,
391 1.21 matt "VFP", "coproc fault");
392 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
393 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
394 1.13 matt #ifdef CPU_CORTEX
395 1.13 matt install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
396 1.13 matt #endif
397 1.12 matt
398 1.16 matt #if 0
399 1.12 matt vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
400 1.12 matt (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
401 1.12 matt vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
402 1.12 matt (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
403 1.16 matt #endif
404 1.1 rearnsha }
405 1.1 rearnsha
406 1.1 rearnsha /* The real handler for VFP bounces. */
407 1.4 matt static int
408 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
409 1.1 rearnsha {
410 1.4 matt struct cpu_info * const ci = curcpu();
411 1.1 rearnsha
412 1.1 rearnsha /* This shouldn't ever happen. */
413 1.1 rearnsha if (fault_code != FAULT_USER)
414 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
415 1.1 rearnsha
416 1.27 matt if (ci->ci_vfp_id == 0) {
417 1.1 rearnsha /* No VFP detected, just fault. */
418 1.1 rearnsha return 1;
419 1.27 matt }
420 1.27 matt
421 1.27 matt /*
422 1.27 matt * If we are just changing/fetching FPSCR, don't bother loading it.
423 1.27 matt */
424 1.27 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
425 1.27 matt return 0;
426 1.27 matt
427 1.27 matt /*
428 1.27 matt * Make sure we own the FP.
429 1.27 matt */
430 1.27 matt pcu_load(&arm_vfp_ops);
431 1.1 rearnsha
432 1.21 matt uint32_t fpexc = armreg_fpexc_read();
433 1.21 matt if (fpexc & VFP_FPEXC_EX) {
434 1.21 matt ksiginfo_t ksi;
435 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
436 1.21 matt
437 1.21 matt vfpevent_fpe.ev_count++;
438 1.21 matt
439 1.21 matt /*
440 1.21 matt * Need the clear the exception condition so any signal
441 1.33 skrll * and future use can proceed.
442 1.21 matt */
443 1.31 skrll armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
444 1.21 matt
445 1.33 skrll pcu_save(&arm_vfp_ops);
446 1.33 skrll
447 1.33 skrll /*
448 1.33 skrll * XXX Need to emulate bounce instructions here to get correct
449 1.33 skrll * XXX exception codes, etc.
450 1.33 skrll */
451 1.21 matt KSI_INIT_TRAP(&ksi);
452 1.21 matt ksi.ksi_signo = SIGFPE;
453 1.21 matt if (fpexc & VFP_FPEXC_IXF)
454 1.21 matt ksi.ksi_code = FPE_FLTRES;
455 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
456 1.21 matt ksi.ksi_code = FPE_FLTUND;
457 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
458 1.21 matt ksi.ksi_code = FPE_FLTOVF;
459 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
460 1.21 matt ksi.ksi_code = FPE_FLTDIV;
461 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
462 1.21 matt ksi.ksi_code = FPE_FLTINV;
463 1.21 matt ksi.ksi_addr = (uint32_t *)address;
464 1.21 matt ksi.ksi_trap = 0;
465 1.21 matt trapsignal(curlwp, &ksi);
466 1.21 matt return 0;
467 1.21 matt }
468 1.21 matt
469 1.4 matt /* Need to restart the faulted instruction. */
470 1.4 matt // frame->tf_pc -= INSN_SIZE;
471 1.4 matt return 0;
472 1.4 matt }
473 1.1 rearnsha
474 1.13 matt #ifdef CPU_CORTEX
475 1.13 matt /* The real handler for NEON bounces. */
476 1.13 matt static int
477 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
478 1.13 matt {
479 1.13 matt struct cpu_info * const ci = curcpu();
480 1.13 matt
481 1.13 matt if (ci->ci_vfp_id == 0)
482 1.13 matt /* No VFP detected, just fault. */
483 1.13 matt return 1;
484 1.13 matt
485 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
486 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
487 1.13 matt /* Not NEON instruction, just fault. */
488 1.13 matt return 1;
489 1.13 matt
490 1.13 matt /* This shouldn't ever happen. */
491 1.13 matt if (fault_code != FAULT_USER)
492 1.13 matt panic("NEON fault in non-user mode");
493 1.13 matt
494 1.13 matt pcu_load(&arm_vfp_ops);
495 1.13 matt
496 1.13 matt /* Need to restart the faulted instruction. */
497 1.13 matt // frame->tf_pc -= INSN_SIZE;
498 1.13 matt return 0;
499 1.13 matt }
500 1.13 matt #endif
501 1.13 matt
502 1.4 matt static void
503 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
504 1.4 matt {
505 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
506 1.13 matt
507 1.13 matt KASSERT(flags & PCU_ENABLE);
508 1.13 matt
509 1.13 matt if (flags & PCU_KERNEL) {
510 1.13 matt if ((flags & PCU_LOADED) == 0) {
511 1.13 matt pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
512 1.13 matt }
513 1.15 matt pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
514 1.21 matt armreg_fpexc_write(pcb->pcb_vfp.vfp_fpexc);
515 1.13 matt /*
516 1.13 matt * Load the kernel registers (just the first 16) if they've
517 1.13 matt * been used..
518 1.13 matt */
519 1.13 matt if (flags & PCU_LOADED) {
520 1.13 matt load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
521 1.13 matt }
522 1.13 matt return;
523 1.13 matt }
524 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
525 1.1 rearnsha
526 1.1 rearnsha /*
527 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
528 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
529 1.1 rearnsha * and count this event.
530 1.1 rearnsha *
531 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
532 1.1 rearnsha * a trap to use it again" event.
533 1.1 rearnsha */
534 1.25 matt if (__predict_false((flags & PCU_LOADED) == 0)) {
535 1.33 skrll KASSERT(flags & PCU_RELOAD);
536 1.1 rearnsha vfpevent_use.ev_count++;
537 1.34 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
538 1.4 matt } else {
539 1.1 rearnsha vfpevent_reuse.ev_count++;
540 1.4 matt }
541 1.1 rearnsha
542 1.33 skrll uint32_t fpexc = armreg_fpexc_read();
543 1.33 skrll if (flags & PCU_RELOAD) {
544 1.33 skrll bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
545 1.33 skrll
546 1.4 matt /*
547 1.33 skrll * Load and Enable the VFP (so that we can write the
548 1.33 skrll * registers).
549 1.4 matt */
550 1.33 skrll fregs->vfp_fpexc |= VFP_FPEXC_EN;
551 1.21 matt armreg_fpexc_write(fregs->vfp_fpexc);
552 1.33 skrll if (enabled) {
553 1.33 skrll /*
554 1.33 skrll * If we think the VFP is enabled, it must have be
555 1.33 skrll * disabled by vfp_state_release for another LWP so
556 1.33 skrll * we can now just return.
557 1.33 skrll */
558 1.33 skrll return;
559 1.33 skrll }
560 1.13 matt
561 1.13 matt load_vfpregs(fregs);
562 1.21 matt armreg_fpscr_write(fregs->vfp_fpscr);
563 1.13 matt
564 1.13 matt if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
565 1.13 matt /* Need to restore the exception handling state. */
566 1.21 matt armreg_fpinst2_write(fregs->vfp_fpinst2);
567 1.21 matt if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
568 1.21 matt armreg_fpinst_write(fregs->vfp_fpinst);
569 1.1 rearnsha }
570 1.33 skrll } else {
571 1.33 skrll /*
572 1.33 skrll * If the VFP is already enabled we must be bouncing an
573 1.33 skrll * instruction.
574 1.33 skrll */
575 1.33 skrll armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
576 1.1 rearnsha }
577 1.1 rearnsha }
578 1.1 rearnsha
579 1.1 rearnsha void
580 1.13 matt vfp_state_save(lwp_t *l, u_int flags)
581 1.1 rearnsha {
582 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
583 1.21 matt uint32_t fpexc = armreg_fpexc_read();
584 1.33 skrll
585 1.33 skrll /*
586 1.33 skrll * Enable the VFP (so we can read the registers).
587 1.33 skrll * Make sure the exception bit is cleared so that we can
588 1.33 skrll * safely dump the registers.
589 1.33 skrll */
590 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
591 1.1 rearnsha
592 1.13 matt if (flags & PCU_KERNEL) {
593 1.13 matt /*
594 1.13 matt * Save the kernel set of VFP registers.
595 1.13 matt * (just the first 16).
596 1.13 matt */
597 1.13 matt save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
598 1.1 rearnsha return;
599 1.13 matt }
600 1.13 matt
601 1.13 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
602 1.1 rearnsha
603 1.4 matt fregs->vfp_fpexc = fpexc;
604 1.4 matt if (fpexc & VFP_FPEXC_EX) {
605 1.4 matt /* Need to save the exception handling state */
606 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
607 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
608 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
609 1.1 rearnsha }
610 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
611 1.13 matt save_vfpregs(fregs);
612 1.4 matt
613 1.1 rearnsha /* Disable the VFP. */
614 1.33 skrll armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
615 1.1 rearnsha }
616 1.1 rearnsha
617 1.1 rearnsha void
618 1.13 matt vfp_state_release(lwp_t *l, u_int flags)
619 1.1 rearnsha {
620 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
621 1.1 rearnsha
622 1.13 matt if (flags & PCU_KERNEL) {
623 1.13 matt /*
624 1.13 matt * Restore the FPEXC since we borrowed that field.
625 1.13 matt */
626 1.13 matt pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
627 1.13 matt } else {
628 1.13 matt /*
629 1.13 matt * Now mark the VFP as disabled (and our state
630 1.13 matt * has been already saved or is being discarded).
631 1.13 matt */
632 1.13 matt pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
633 1.13 matt }
634 1.1 rearnsha
635 1.1 rearnsha /*
636 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
637 1.4 matt * an exception happens. We don't know if this LWP's state was
638 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
639 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
640 1.13 matt * is still set so it just restore fpexc and return since its
641 1.4 matt * contents are still sitting in the VFP.
642 1.1 rearnsha */
643 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
644 1.1 rearnsha }
645 1.1 rearnsha
646 1.1 rearnsha void
647 1.2 cegger vfp_savecontext(void)
648 1.1 rearnsha {
649 1.4 matt pcu_save(&arm_vfp_ops);
650 1.1 rearnsha }
651 1.1 rearnsha
652 1.1 rearnsha void
653 1.25 matt vfp_discardcontext(bool used_p)
654 1.1 rearnsha {
655 1.25 matt pcu_discard(&arm_vfp_ops, used_p);
656 1.25 matt }
657 1.25 matt
658 1.25 matt bool
659 1.25 matt vfp_used_p(void)
660 1.25 matt {
661 1.25 matt return pcu_used_p(&arm_vfp_ops);
662 1.4 matt }
663 1.1 rearnsha
664 1.8 matt void
665 1.13 matt vfp_kernel_acquire(void)
666 1.13 matt {
667 1.13 matt if (__predict_false(cpu_intr_p())) {
668 1.21 matt armreg_fpexc_write(VFP_FPEXC_EN);
669 1.13 matt if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
670 1.13 matt lwp_t * const l = curlwp;
671 1.13 matt struct pcb * const pcb = lwp_getpcb(l);
672 1.13 matt KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
673 1.13 matt l->l_md.md_flags |= MDLWP_VFPINTR;
674 1.13 matt save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
675 1.13 matt }
676 1.13 matt } else {
677 1.13 matt pcu_kernel_acquire(&arm_vfp_ops);
678 1.13 matt }
679 1.13 matt }
680 1.13 matt
681 1.13 matt void
682 1.13 matt vfp_kernel_release(void)
683 1.13 matt {
684 1.13 matt if (__predict_false(cpu_intr_p())) {
685 1.13 matt uint32_t fpexc = 0;
686 1.13 matt if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
687 1.13 matt lwp_t * const l = curlwp;
688 1.13 matt struct pcb * const pcb = lwp_getpcb(l);
689 1.13 matt KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
690 1.13 matt load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
691 1.13 matt l->l_md.md_flags &= ~MDLWP_VFPINTR;
692 1.13 matt fpexc = pcb->pcb_vfp.vfp_fpexc;
693 1.13 matt }
694 1.21 matt armreg_fpexc_write(fpexc);
695 1.13 matt } else {
696 1.13 matt pcu_kernel_release(&arm_vfp_ops);
697 1.13 matt }
698 1.13 matt }
699 1.13 matt
700 1.13 matt void
701 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
702 1.8 matt {
703 1.25 matt if (vfp_used_p()) {
704 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
705 1.8 matt pcu_save(&arm_vfp_ops);
706 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
707 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
708 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
709 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
710 1.8 matt }
711 1.8 matt }
712 1.8 matt
713 1.8 matt void
714 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
715 1.8 matt {
716 1.24 drochner pcu_discard(&arm_vfp_ops, true);
717 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
718 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
719 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
720 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
721 1.8 matt }
722 1.8 matt
723 1.4 matt #endif /* FPU_VFP */
724