vfp_init.c revision 1.39 1 1.39 rmind /* $NetBSD: vfp_init.c,v 1.39 2014/05/16 00:48:41 rmind Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.23 matt #include <arm/locore.h>
40 1.5 matt #include <arm/pcb.h>
41 1.1 rearnsha #include <arm/undefined.h>
42 1.1 rearnsha #include <arm/vfpreg.h>
43 1.8 matt #include <arm/mcontext.h>
44 1.1 rearnsha
45 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
46 1.12 matt
47 1.11 matt #ifdef FPU_VFP
48 1.11 matt
49 1.29 matt #ifdef CPU_CORTEX
50 1.29 matt __asm(".fpu\tvfpv4");
51 1.29 matt #else
52 1.29 matt __asm(".fpu\tvfp");
53 1.29 matt #endif
54 1.29 matt
55 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
56 1.11 matt static inline void
57 1.13 matt load_vfpregs_lo(const uint64_t *p)
58 1.10 matt {
59 1.29 matt __asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
60 1.10 matt }
61 1.10 matt
62 1.10 matt /* FSTMD <X>, {d0-d15} */
63 1.11 matt static inline void
64 1.10 matt save_vfpregs_lo(uint64_t *p)
65 1.10 matt {
66 1.29 matt __asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
67 1.10 matt }
68 1.10 matt
69 1.10 matt #ifdef CPU_CORTEX
70 1.10 matt /* FLDMD <X>, {d16-d31} */
71 1.11 matt static inline void
72 1.13 matt load_vfpregs_hi(const uint64_t *p)
73 1.10 matt {
74 1.29 matt __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
75 1.10 matt }
76 1.10 matt
77 1.10 matt /* FLDMD <X>, {d16-d31} */
78 1.11 matt static inline void
79 1.10 matt save_vfpregs_hi(uint64_t *p)
80 1.10 matt {
81 1.29 matt __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
82 1.10 matt }
83 1.10 matt #endif
84 1.1 rearnsha
85 1.13 matt static inline void
86 1.13 matt load_vfpregs(const struct vfpreg *fregs)
87 1.13 matt {
88 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
89 1.13 matt #ifdef CPU_CORTEX
90 1.13 matt #ifdef CPU_ARM11
91 1.13 matt switch (curcpu()->ci_vfp_id) {
92 1.13 matt case FPU_VFP_CORTEXA5:
93 1.13 matt case FPU_VFP_CORTEXA7:
94 1.13 matt case FPU_VFP_CORTEXA8:
95 1.13 matt case FPU_VFP_CORTEXA9:
96 1.20 matt case FPU_VFP_CORTEXA15:
97 1.13 matt #endif
98 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
99 1.13 matt #ifdef CPU_ARM11
100 1.13 matt break;
101 1.13 matt }
102 1.13 matt #endif
103 1.13 matt #endif
104 1.13 matt }
105 1.13 matt
106 1.13 matt static inline void
107 1.13 matt save_vfpregs(struct vfpreg *fregs)
108 1.13 matt {
109 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
110 1.13 matt #ifdef CPU_CORTEX
111 1.13 matt #ifdef CPU_ARM11
112 1.13 matt switch (curcpu()->ci_vfp_id) {
113 1.13 matt case FPU_VFP_CORTEXA5:
114 1.13 matt case FPU_VFP_CORTEXA7:
115 1.13 matt case FPU_VFP_CORTEXA8:
116 1.13 matt case FPU_VFP_CORTEXA9:
117 1.20 matt case FPU_VFP_CORTEXA15:
118 1.13 matt #endif
119 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
120 1.13 matt #ifdef CPU_ARM11
121 1.13 matt break;
122 1.13 matt }
123 1.13 matt #endif
124 1.13 matt #endif
125 1.13 matt }
126 1.13 matt
127 1.1 rearnsha /* The real handler for VFP bounces. */
128 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
129 1.13 matt #ifdef CPU_CORTEX
130 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
131 1.13 matt #endif
132 1.1 rearnsha
133 1.13 matt static void vfp_state_load(lwp_t *, u_int);
134 1.39 rmind static void vfp_state_save(lwp_t *);
135 1.39 rmind static void vfp_state_release(lwp_t *);
136 1.4 matt
137 1.4 matt const pcu_ops_t arm_vfp_ops = {
138 1.4 matt .pcu_id = PCU_FPU,
139 1.13 matt .pcu_state_save = vfp_state_save,
140 1.4 matt .pcu_state_load = vfp_state_load,
141 1.4 matt .pcu_state_release = vfp_state_release,
142 1.4 matt };
143 1.1 rearnsha
144 1.34 matt /* determine what bits can be changed */
145 1.34 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
146 1.34 matt /* default to run fast */
147 1.34 matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
148 1.34 matt
149 1.1 rearnsha /*
150 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
151 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
152 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
153 1.1 rearnsha * the instruction so must be absent, or disabled.
154 1.1 rearnsha */
155 1.1 rearnsha
156 1.1 rearnsha static int undefined_test;
157 1.1 rearnsha
158 1.1 rearnsha static int
159 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
160 1.1 rearnsha {
161 1.1 rearnsha
162 1.1 rearnsha frame->tf_pc += INSN_SIZE;
163 1.1 rearnsha ++undefined_test;
164 1.4 matt return 0;
165 1.4 matt }
166 1.4 matt
167 1.35 matt #else
168 1.35 matt /* determine what bits can be changed */
169 1.35 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
170 1.4 matt #endif /* FPU_VFP */
171 1.4 matt
172 1.4 matt static int
173 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
174 1.4 matt {
175 1.4 matt struct lwp * const l = curlwp;
176 1.4 matt const u_int regno = (insn >> 12) & 0xf;
177 1.4 matt /*
178 1.4 matt * Only match move to/from the FPSCR register and we
179 1.4 matt * can't be using the SP,LR,PC as a source.
180 1.4 matt */
181 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
182 1.4 matt return 1;
183 1.4 matt
184 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
185 1.4 matt
186 1.4 matt #ifdef FPU_VFP
187 1.4 matt /*
188 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
189 1.4 matt * retry the instruction (only safe thing to do since the
190 1.4 matt * pcb has a stale copy).
191 1.4 matt */
192 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
193 1.4 matt return 1;
194 1.4 matt
195 1.25 matt if (__predict_false(!vfp_used_p())) {
196 1.35 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
197 1.4 matt }
198 1.26 matt #endif
199 1.4 matt
200 1.4 matt /*
201 1.30 skrll * We now know the pcb has the saved copy.
202 1.4 matt */
203 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
204 1.4 matt if (insn & 0x00100000) {
205 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
206 1.4 matt } else {
207 1.34 matt pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
208 1.34 matt pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
209 1.4 matt }
210 1.4 matt
211 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
212 1.4 matt
213 1.4 matt frame->tf_pc += INSN_SIZE;
214 1.4 matt return 0;
215 1.1 rearnsha }
216 1.1 rearnsha
217 1.4 matt #ifndef FPU_VFP
218 1.4 matt /*
219 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
220 1.4 matt * instructions.
221 1.4 matt */
222 1.4 matt void
223 1.37 matt vfp_attach(struct cpu_info *ci)
224 1.4 matt {
225 1.37 matt if (CPU_IS_PRIMARY(ci)) {
226 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
227 1.37 matt }
228 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
229 1.37 matt ci->ci_cpuname, "vfp fpscr traps");
230 1.4 matt }
231 1.4 matt
232 1.4 matt #else
233 1.1 rearnsha void
234 1.37 matt vfp_attach(struct cpu_info *ci)
235 1.1 rearnsha {
236 1.4 matt const char *model = NULL;
237 1.1 rearnsha
238 1.37 matt if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
239 1.37 matt || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
240 1.37 matt || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
241 1.37 matt #if 0
242 1.37 matt const uint32_t nsacr = armreg_nsacr_read();
243 1.37 matt const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
244 1.37 matt if ((nsacr & nsacr_vfp) != nsacr_vfp) {
245 1.37 matt aprint_normal_dev(ci->ci_dev, "VFP access denied\n");
246 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
247 1.37 matt ci->ci_vfp_id = 0;
248 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
249 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
250 1.37 matt "vfp fpscr traps");
251 1.37 matt return;
252 1.37 matt }
253 1.37 matt #endif
254 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
255 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
256 1.1 rearnsha
257 1.7 matt /*
258 1.7 matt * We first need to enable access to the coprocessors.
259 1.7 matt */
260 1.7 matt uint32_t cpacr = armreg_cpacr_read();
261 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
262 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
263 1.7 matt armreg_cpacr_write(cpacr);
264 1.1 rearnsha
265 1.7 matt /*
266 1.7 matt * If we could enable them, then they exist.
267 1.7 matt */
268 1.7 matt cpacr = armreg_cpacr_read();
269 1.28 matt bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
270 1.7 matt || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
271 1.28 matt if (!vfp_p) {
272 1.28 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
273 1.28 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
274 1.28 matt ci->ci_vfp_id = 0;
275 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
276 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
277 1.37 matt "vfp fpscr traps");
278 1.28 matt return;
279 1.28 matt }
280 1.6 matt }
281 1.6 matt
282 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
283 1.7 matt
284 1.7 matt undefined_test = 0;
285 1.7 matt
286 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
287 1.1 rearnsha
288 1.1 rearnsha remove_coproc_handler(uh);
289 1.1 rearnsha
290 1.1 rearnsha if (undefined_test != 0) {
291 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
292 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
293 1.4 matt ci->ci_vfp_id = 0;
294 1.1 rearnsha return;
295 1.1 rearnsha }
296 1.1 rearnsha
297 1.4 matt ci->ci_vfp_id = fpsid;
298 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
299 1.4 matt case FPU_VFP10_ARM10E:
300 1.4 matt model = "VFP10 R1";
301 1.4 matt break;
302 1.4 matt case FPU_VFP11_ARM11:
303 1.4 matt model = "VFP11";
304 1.4 matt break;
305 1.36 matt case FPU_VFP_MV88SV58XX:
306 1.36 matt model = "VFP3";
307 1.36 matt break;
308 1.7 matt case FPU_VFP_CORTEXA5:
309 1.7 matt case FPU_VFP_CORTEXA7:
310 1.7 matt case FPU_VFP_CORTEXA8:
311 1.7 matt case FPU_VFP_CORTEXA9:
312 1.20 matt case FPU_VFP_CORTEXA15:
313 1.37 matt if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
314 1.37 matt model = "VFP 4.0+";
315 1.37 matt } else {
316 1.37 matt model = "NEON MPE (VFP 3.0+)";
317 1.37 matt cpu_neon_present = 1;
318 1.37 matt }
319 1.6 matt break;
320 1.4 matt default:
321 1.36 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
322 1.4 matt fpsid);
323 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
324 1.35 matt vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
325 1.35 matt |VFP_FPSCR_RMODE;
326 1.35 matt vfp_fpscr_default = 0;
327 1.4 matt return;
328 1.4 matt }
329 1.1 rearnsha
330 1.17 matt cpu_fpu_present = 1;
331 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
332 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
333 1.1 rearnsha if (fpsid != 0) {
334 1.34 matt uint32_t f0 = armreg_mvfr0_read();
335 1.34 matt uint32_t f1 = armreg_mvfr0_read();
336 1.34 matt aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
337 1.37 matt device_unit(ci->ci_dev),
338 1.37 matt device_xname(ci->ci_dev),
339 1.34 matt model,
340 1.34 matt ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
341 1.34 matt ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
342 1.38 matt ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
343 1.34 matt ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
344 1.21 matt aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
345 1.37 matt device_unit(ci->ci_dev), f0, f1);
346 1.37 matt if (CPU_IS_PRIMARY(ci)) {
347 1.37 matt if (f0 & ARM_MVFR0_ROUNDING_MASK) {
348 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_RMODE;
349 1.37 matt }
350 1.37 matt if (f1 & ARM_MVFR0_EXCEPT_MASK) {
351 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_ESUM;
352 1.37 matt }
353 1.38 matt // If hardware supports propagation of NaNs, select it.
354 1.37 matt if (f1 & ARM_MVFR1_D_NAN_MASK) {
355 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_DN;
356 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_DN;
357 1.37 matt }
358 1.37 matt // If hardware supports denormalized numbers, use it.
359 1.37 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
360 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_FZ;
361 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_FZ;
362 1.37 matt }
363 1.37 matt }
364 1.37 matt }
365 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
366 1.37 matt ci->ci_cpuname, "vfp coproc use");
367 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
368 1.37 matt ci->ci_cpuname, "vfp coproc re-use");
369 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
370 1.37 matt ci->ci_cpuname, "vfp coproc fault");
371 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
372 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
373 1.13 matt #ifdef CPU_CORTEX
374 1.13 matt install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
375 1.13 matt #endif
376 1.1 rearnsha }
377 1.1 rearnsha
378 1.1 rearnsha /* The real handler for VFP bounces. */
379 1.4 matt static int
380 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
381 1.1 rearnsha {
382 1.4 matt struct cpu_info * const ci = curcpu();
383 1.1 rearnsha
384 1.1 rearnsha /* This shouldn't ever happen. */
385 1.1 rearnsha if (fault_code != FAULT_USER)
386 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
387 1.1 rearnsha
388 1.27 matt if (ci->ci_vfp_id == 0) {
389 1.1 rearnsha /* No VFP detected, just fault. */
390 1.1 rearnsha return 1;
391 1.27 matt }
392 1.27 matt
393 1.27 matt /*
394 1.27 matt * If we are just changing/fetching FPSCR, don't bother loading it.
395 1.27 matt */
396 1.27 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
397 1.27 matt return 0;
398 1.27 matt
399 1.27 matt /*
400 1.27 matt * Make sure we own the FP.
401 1.27 matt */
402 1.27 matt pcu_load(&arm_vfp_ops);
403 1.1 rearnsha
404 1.21 matt uint32_t fpexc = armreg_fpexc_read();
405 1.21 matt if (fpexc & VFP_FPEXC_EX) {
406 1.21 matt ksiginfo_t ksi;
407 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
408 1.21 matt
409 1.37 matt curcpu()->ci_vfp_evs[2].ev_count++;
410 1.21 matt
411 1.21 matt /*
412 1.21 matt * Need the clear the exception condition so any signal
413 1.33 skrll * and future use can proceed.
414 1.21 matt */
415 1.31 skrll armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
416 1.21 matt
417 1.33 skrll pcu_save(&arm_vfp_ops);
418 1.33 skrll
419 1.33 skrll /*
420 1.33 skrll * XXX Need to emulate bounce instructions here to get correct
421 1.33 skrll * XXX exception codes, etc.
422 1.33 skrll */
423 1.21 matt KSI_INIT_TRAP(&ksi);
424 1.21 matt ksi.ksi_signo = SIGFPE;
425 1.21 matt if (fpexc & VFP_FPEXC_IXF)
426 1.21 matt ksi.ksi_code = FPE_FLTRES;
427 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
428 1.21 matt ksi.ksi_code = FPE_FLTUND;
429 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
430 1.21 matt ksi.ksi_code = FPE_FLTOVF;
431 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
432 1.21 matt ksi.ksi_code = FPE_FLTDIV;
433 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
434 1.21 matt ksi.ksi_code = FPE_FLTINV;
435 1.21 matt ksi.ksi_addr = (uint32_t *)address;
436 1.21 matt ksi.ksi_trap = 0;
437 1.21 matt trapsignal(curlwp, &ksi);
438 1.21 matt return 0;
439 1.21 matt }
440 1.21 matt
441 1.4 matt /* Need to restart the faulted instruction. */
442 1.4 matt // frame->tf_pc -= INSN_SIZE;
443 1.4 matt return 0;
444 1.4 matt }
445 1.1 rearnsha
446 1.13 matt #ifdef CPU_CORTEX
447 1.13 matt /* The real handler for NEON bounces. */
448 1.13 matt static int
449 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
450 1.13 matt {
451 1.13 matt struct cpu_info * const ci = curcpu();
452 1.13 matt
453 1.13 matt if (ci->ci_vfp_id == 0)
454 1.13 matt /* No VFP detected, just fault. */
455 1.13 matt return 1;
456 1.13 matt
457 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
458 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
459 1.13 matt /* Not NEON instruction, just fault. */
460 1.13 matt return 1;
461 1.13 matt
462 1.13 matt /* This shouldn't ever happen. */
463 1.13 matt if (fault_code != FAULT_USER)
464 1.13 matt panic("NEON fault in non-user mode");
465 1.13 matt
466 1.13 matt pcu_load(&arm_vfp_ops);
467 1.13 matt
468 1.13 matt /* Need to restart the faulted instruction. */
469 1.13 matt // frame->tf_pc -= INSN_SIZE;
470 1.13 matt return 0;
471 1.13 matt }
472 1.13 matt #endif
473 1.13 matt
474 1.4 matt static void
475 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
476 1.4 matt {
477 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
478 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
479 1.1 rearnsha
480 1.1 rearnsha /*
481 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
482 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
483 1.1 rearnsha * and count this event.
484 1.1 rearnsha *
485 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
486 1.1 rearnsha * a trap to use it again" event.
487 1.1 rearnsha */
488 1.39 rmind if (__predict_false((flags & PCU_VALID) == 0)) {
489 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
490 1.34 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
491 1.4 matt } else {
492 1.37 matt curcpu()->ci_vfp_evs[1].ev_count++;
493 1.4 matt }
494 1.1 rearnsha
495 1.39 rmind /*
496 1.39 rmind * If the VFP is already enabled we must be bouncing an instruction.
497 1.39 rmind */
498 1.39 rmind if (flags & PCU_REENABLE) {
499 1.39 rmind uint32_t fpexc = armreg_fpexc_read();
500 1.39 rmind armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
501 1.39 rmind return;
502 1.39 rmind }
503 1.33 skrll
504 1.39 rmind /*
505 1.39 rmind * Load and Enable the VFP (so that we can write the registers).
506 1.39 rmind */
507 1.39 rmind bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
508 1.39 rmind fregs->vfp_fpexc |= VFP_FPEXC_EN;
509 1.39 rmind armreg_fpexc_write(fregs->vfp_fpexc);
510 1.39 rmind if (enabled) {
511 1.4 matt /*
512 1.39 rmind * If we think the VFP is enabled, it must have be
513 1.39 rmind * disabled by vfp_state_release for another LWP so
514 1.39 rmind * we can now just return.
515 1.4 matt */
516 1.39 rmind return;
517 1.39 rmind }
518 1.13 matt
519 1.39 rmind load_vfpregs(fregs);
520 1.39 rmind armreg_fpscr_write(fregs->vfp_fpscr);
521 1.13 matt
522 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
523 1.39 rmind /* Need to restore the exception handling state. */
524 1.39 rmind armreg_fpinst2_write(fregs->vfp_fpinst2);
525 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
526 1.39 rmind armreg_fpinst_write(fregs->vfp_fpinst);
527 1.1 rearnsha }
528 1.1 rearnsha }
529 1.1 rearnsha
530 1.1 rearnsha void
531 1.39 rmind vfp_state_save(lwp_t *l)
532 1.1 rearnsha {
533 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
534 1.39 rmind struct vfpreg * const fregs = &pcb->pcb_vfp;
535 1.21 matt uint32_t fpexc = armreg_fpexc_read();
536 1.33 skrll
537 1.33 skrll /*
538 1.33 skrll * Enable the VFP (so we can read the registers).
539 1.33 skrll * Make sure the exception bit is cleared so that we can
540 1.33 skrll * safely dump the registers.
541 1.33 skrll */
542 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
543 1.1 rearnsha
544 1.4 matt fregs->vfp_fpexc = fpexc;
545 1.4 matt if (fpexc & VFP_FPEXC_EX) {
546 1.4 matt /* Need to save the exception handling state */
547 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
548 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
549 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
550 1.1 rearnsha }
551 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
552 1.13 matt save_vfpregs(fregs);
553 1.4 matt
554 1.1 rearnsha /* Disable the VFP. */
555 1.33 skrll armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
556 1.1 rearnsha }
557 1.1 rearnsha
558 1.1 rearnsha void
559 1.39 rmind vfp_state_release(lwp_t *l)
560 1.1 rearnsha {
561 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
562 1.1 rearnsha
563 1.39 rmind /*
564 1.39 rmind * Now mark the VFP as disabled (and our state
565 1.39 rmind * has been already saved or is being discarded).
566 1.39 rmind */
567 1.39 rmind pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
568 1.1 rearnsha
569 1.1 rearnsha /*
570 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
571 1.4 matt * an exception happens. We don't know if this LWP's state was
572 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
573 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
574 1.13 matt * is still set so it just restore fpexc and return since its
575 1.4 matt * contents are still sitting in the VFP.
576 1.1 rearnsha */
577 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
578 1.1 rearnsha }
579 1.1 rearnsha
580 1.1 rearnsha void
581 1.2 cegger vfp_savecontext(void)
582 1.1 rearnsha {
583 1.4 matt pcu_save(&arm_vfp_ops);
584 1.1 rearnsha }
585 1.1 rearnsha
586 1.1 rearnsha void
587 1.25 matt vfp_discardcontext(bool used_p)
588 1.1 rearnsha {
589 1.25 matt pcu_discard(&arm_vfp_ops, used_p);
590 1.25 matt }
591 1.25 matt
592 1.25 matt bool
593 1.25 matt vfp_used_p(void)
594 1.25 matt {
595 1.39 rmind return pcu_valid_p(&arm_vfp_ops);
596 1.13 matt }
597 1.13 matt
598 1.13 matt void
599 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
600 1.8 matt {
601 1.25 matt if (vfp_used_p()) {
602 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
603 1.8 matt pcu_save(&arm_vfp_ops);
604 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
605 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
606 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
607 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
608 1.8 matt }
609 1.8 matt }
610 1.8 matt
611 1.8 matt void
612 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
613 1.8 matt {
614 1.24 drochner pcu_discard(&arm_vfp_ops, true);
615 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
616 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
617 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
618 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
619 1.8 matt }
620 1.8 matt
621 1.4 matt #endif /* FPU_VFP */
622