vfp_init.c revision 1.41 1 1.41 matt /* $NetBSD: vfp_init.c,v 1.41 2014/07/18 22:54:53 matt Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.23 matt #include <arm/locore.h>
40 1.5 matt #include <arm/pcb.h>
41 1.1 rearnsha #include <arm/undefined.h>
42 1.1 rearnsha #include <arm/vfpreg.h>
43 1.8 matt #include <arm/mcontext.h>
44 1.1 rearnsha
45 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
46 1.12 matt
47 1.11 matt #ifdef FPU_VFP
48 1.11 matt
49 1.29 matt #ifdef CPU_CORTEX
50 1.29 matt __asm(".fpu\tvfpv4");
51 1.29 matt #else
52 1.29 matt __asm(".fpu\tvfp");
53 1.29 matt #endif
54 1.29 matt
55 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
56 1.11 matt static inline void
57 1.13 matt load_vfpregs_lo(const uint64_t *p)
58 1.10 matt {
59 1.29 matt __asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
60 1.10 matt }
61 1.10 matt
62 1.10 matt /* FSTMD <X>, {d0-d15} */
63 1.11 matt static inline void
64 1.10 matt save_vfpregs_lo(uint64_t *p)
65 1.10 matt {
66 1.29 matt __asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
67 1.10 matt }
68 1.10 matt
69 1.10 matt #ifdef CPU_CORTEX
70 1.10 matt /* FLDMD <X>, {d16-d31} */
71 1.11 matt static inline void
72 1.13 matt load_vfpregs_hi(const uint64_t *p)
73 1.10 matt {
74 1.29 matt __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
75 1.10 matt }
76 1.10 matt
77 1.10 matt /* FLDMD <X>, {d16-d31} */
78 1.11 matt static inline void
79 1.10 matt save_vfpregs_hi(uint64_t *p)
80 1.10 matt {
81 1.29 matt __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
82 1.10 matt }
83 1.10 matt #endif
84 1.1 rearnsha
85 1.13 matt static inline void
86 1.13 matt load_vfpregs(const struct vfpreg *fregs)
87 1.13 matt {
88 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
89 1.13 matt #ifdef CPU_CORTEX
90 1.13 matt #ifdef CPU_ARM11
91 1.13 matt switch (curcpu()->ci_vfp_id) {
92 1.13 matt case FPU_VFP_CORTEXA5:
93 1.13 matt case FPU_VFP_CORTEXA7:
94 1.13 matt case FPU_VFP_CORTEXA8:
95 1.13 matt case FPU_VFP_CORTEXA9:
96 1.20 matt case FPU_VFP_CORTEXA15:
97 1.13 matt #endif
98 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
99 1.13 matt #ifdef CPU_ARM11
100 1.13 matt break;
101 1.13 matt }
102 1.13 matt #endif
103 1.13 matt #endif
104 1.13 matt }
105 1.13 matt
106 1.13 matt static inline void
107 1.13 matt save_vfpregs(struct vfpreg *fregs)
108 1.13 matt {
109 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
110 1.13 matt #ifdef CPU_CORTEX
111 1.13 matt #ifdef CPU_ARM11
112 1.13 matt switch (curcpu()->ci_vfp_id) {
113 1.13 matt case FPU_VFP_CORTEXA5:
114 1.13 matt case FPU_VFP_CORTEXA7:
115 1.13 matt case FPU_VFP_CORTEXA8:
116 1.13 matt case FPU_VFP_CORTEXA9:
117 1.20 matt case FPU_VFP_CORTEXA15:
118 1.13 matt #endif
119 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
120 1.13 matt #ifdef CPU_ARM11
121 1.13 matt break;
122 1.13 matt }
123 1.13 matt #endif
124 1.13 matt #endif
125 1.13 matt }
126 1.13 matt
127 1.1 rearnsha /* The real handler for VFP bounces. */
128 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
129 1.13 matt #ifdef CPU_CORTEX
130 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
131 1.13 matt #endif
132 1.1 rearnsha
133 1.13 matt static void vfp_state_load(lwp_t *, u_int);
134 1.39 rmind static void vfp_state_save(lwp_t *);
135 1.39 rmind static void vfp_state_release(lwp_t *);
136 1.4 matt
137 1.4 matt const pcu_ops_t arm_vfp_ops = {
138 1.4 matt .pcu_id = PCU_FPU,
139 1.13 matt .pcu_state_save = vfp_state_save,
140 1.4 matt .pcu_state_load = vfp_state_load,
141 1.4 matt .pcu_state_release = vfp_state_release,
142 1.4 matt };
143 1.1 rearnsha
144 1.34 matt /* determine what bits can be changed */
145 1.34 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
146 1.34 matt /* default to run fast */
147 1.34 matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
148 1.34 matt
149 1.1 rearnsha /*
150 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
151 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
152 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
153 1.1 rearnsha * the instruction so must be absent, or disabled.
154 1.1 rearnsha */
155 1.1 rearnsha
156 1.1 rearnsha static int undefined_test;
157 1.1 rearnsha
158 1.1 rearnsha static int
159 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
160 1.1 rearnsha {
161 1.1 rearnsha
162 1.1 rearnsha frame->tf_pc += INSN_SIZE;
163 1.1 rearnsha ++undefined_test;
164 1.4 matt return 0;
165 1.4 matt }
166 1.4 matt
167 1.35 matt #else
168 1.35 matt /* determine what bits can be changed */
169 1.35 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
170 1.4 matt #endif /* FPU_VFP */
171 1.4 matt
172 1.4 matt static int
173 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
174 1.4 matt {
175 1.4 matt struct lwp * const l = curlwp;
176 1.4 matt const u_int regno = (insn >> 12) & 0xf;
177 1.4 matt /*
178 1.4 matt * Only match move to/from the FPSCR register and we
179 1.4 matt * can't be using the SP,LR,PC as a source.
180 1.4 matt */
181 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
182 1.4 matt return 1;
183 1.4 matt
184 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
185 1.4 matt
186 1.4 matt #ifdef FPU_VFP
187 1.4 matt /*
188 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
189 1.4 matt * retry the instruction (only safe thing to do since the
190 1.4 matt * pcb has a stale copy).
191 1.4 matt */
192 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
193 1.4 matt return 1;
194 1.4 matt
195 1.25 matt if (__predict_false(!vfp_used_p())) {
196 1.35 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
197 1.4 matt }
198 1.26 matt #endif
199 1.4 matt
200 1.4 matt /*
201 1.30 skrll * We now know the pcb has the saved copy.
202 1.4 matt */
203 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
204 1.4 matt if (insn & 0x00100000) {
205 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
206 1.4 matt } else {
207 1.34 matt pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
208 1.34 matt pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
209 1.4 matt }
210 1.4 matt
211 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
212 1.4 matt
213 1.4 matt frame->tf_pc += INSN_SIZE;
214 1.4 matt return 0;
215 1.1 rearnsha }
216 1.1 rearnsha
217 1.4 matt #ifndef FPU_VFP
218 1.4 matt /*
219 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
220 1.4 matt * instructions.
221 1.4 matt */
222 1.4 matt void
223 1.37 matt vfp_attach(struct cpu_info *ci)
224 1.4 matt {
225 1.37 matt if (CPU_IS_PRIMARY(ci)) {
226 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
227 1.37 matt }
228 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
229 1.37 matt ci->ci_cpuname, "vfp fpscr traps");
230 1.4 matt }
231 1.4 matt
232 1.4 matt #else
233 1.1 rearnsha void
234 1.37 matt vfp_attach(struct cpu_info *ci)
235 1.1 rearnsha {
236 1.4 matt const char *model = NULL;
237 1.1 rearnsha
238 1.37 matt if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
239 1.37 matt || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
240 1.37 matt || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
241 1.37 matt #if 0
242 1.37 matt const uint32_t nsacr = armreg_nsacr_read();
243 1.37 matt const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
244 1.37 matt if ((nsacr & nsacr_vfp) != nsacr_vfp) {
245 1.40 matt aprint_normal_dev(ci->ci_dev,
246 1.40 matt "VFP access denied (NSACR=%#x)\n", nsacr);
247 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
248 1.37 matt ci->ci_vfp_id = 0;
249 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
250 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
251 1.37 matt "vfp fpscr traps");
252 1.37 matt return;
253 1.37 matt }
254 1.37 matt #endif
255 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
256 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
257 1.1 rearnsha
258 1.7 matt /*
259 1.7 matt * We first need to enable access to the coprocessors.
260 1.7 matt */
261 1.7 matt uint32_t cpacr = armreg_cpacr_read();
262 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
263 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
264 1.7 matt armreg_cpacr_write(cpacr);
265 1.1 rearnsha
266 1.7 matt /*
267 1.7 matt * If we could enable them, then they exist.
268 1.7 matt */
269 1.7 matt cpacr = armreg_cpacr_read();
270 1.40 matt bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
271 1.40 matt && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
272 1.28 matt if (!vfp_p) {
273 1.40 matt aprint_normal_dev(ci->ci_dev,
274 1.40 matt "VFP access denied (CPACR=%#x)\n", cpacr);
275 1.28 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
276 1.28 matt ci->ci_vfp_id = 0;
277 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
278 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
279 1.37 matt "vfp fpscr traps");
280 1.28 matt return;
281 1.28 matt }
282 1.6 matt }
283 1.6 matt
284 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
285 1.7 matt
286 1.7 matt undefined_test = 0;
287 1.7 matt
288 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
289 1.1 rearnsha
290 1.1 rearnsha remove_coproc_handler(uh);
291 1.1 rearnsha
292 1.1 rearnsha if (undefined_test != 0) {
293 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
294 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
295 1.4 matt ci->ci_vfp_id = 0;
296 1.1 rearnsha return;
297 1.1 rearnsha }
298 1.1 rearnsha
299 1.4 matt ci->ci_vfp_id = fpsid;
300 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
301 1.4 matt case FPU_VFP10_ARM10E:
302 1.4 matt model = "VFP10 R1";
303 1.4 matt break;
304 1.4 matt case FPU_VFP11_ARM11:
305 1.4 matt model = "VFP11";
306 1.4 matt break;
307 1.36 matt case FPU_VFP_MV88SV58XX:
308 1.36 matt model = "VFP3";
309 1.36 matt break;
310 1.7 matt case FPU_VFP_CORTEXA5:
311 1.7 matt case FPU_VFP_CORTEXA7:
312 1.7 matt case FPU_VFP_CORTEXA8:
313 1.7 matt case FPU_VFP_CORTEXA9:
314 1.20 matt case FPU_VFP_CORTEXA15:
315 1.37 matt if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
316 1.37 matt model = "VFP 4.0+";
317 1.37 matt } else {
318 1.37 matt model = "NEON MPE (VFP 3.0+)";
319 1.37 matt cpu_neon_present = 1;
320 1.37 matt }
321 1.6 matt break;
322 1.4 matt default:
323 1.36 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
324 1.4 matt fpsid);
325 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
326 1.35 matt vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
327 1.35 matt |VFP_FPSCR_RMODE;
328 1.35 matt vfp_fpscr_default = 0;
329 1.4 matt return;
330 1.4 matt }
331 1.1 rearnsha
332 1.17 matt cpu_fpu_present = 1;
333 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
334 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
335 1.1 rearnsha if (fpsid != 0) {
336 1.34 matt uint32_t f0 = armreg_mvfr0_read();
337 1.41 matt uint32_t f1 = armreg_mvfr1_read();
338 1.34 matt aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
339 1.37 matt device_unit(ci->ci_dev),
340 1.37 matt device_xname(ci->ci_dev),
341 1.34 matt model,
342 1.34 matt ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
343 1.34 matt ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
344 1.38 matt ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
345 1.34 matt ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
346 1.21 matt aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
347 1.37 matt device_unit(ci->ci_dev), f0, f1);
348 1.37 matt if (CPU_IS_PRIMARY(ci)) {
349 1.37 matt if (f0 & ARM_MVFR0_ROUNDING_MASK) {
350 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_RMODE;
351 1.37 matt }
352 1.37 matt if (f1 & ARM_MVFR0_EXCEPT_MASK) {
353 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_ESUM;
354 1.37 matt }
355 1.38 matt // If hardware supports propagation of NaNs, select it.
356 1.37 matt if (f1 & ARM_MVFR1_D_NAN_MASK) {
357 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_DN;
358 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_DN;
359 1.37 matt }
360 1.37 matt // If hardware supports denormalized numbers, use it.
361 1.37 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
362 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_FZ;
363 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_FZ;
364 1.37 matt }
365 1.37 matt }
366 1.37 matt }
367 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
368 1.37 matt ci->ci_cpuname, "vfp coproc use");
369 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
370 1.37 matt ci->ci_cpuname, "vfp coproc re-use");
371 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
372 1.37 matt ci->ci_cpuname, "vfp coproc fault");
373 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
374 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
375 1.13 matt #ifdef CPU_CORTEX
376 1.13 matt install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
377 1.13 matt #endif
378 1.1 rearnsha }
379 1.1 rearnsha
380 1.1 rearnsha /* The real handler for VFP bounces. */
381 1.4 matt static int
382 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
383 1.1 rearnsha {
384 1.4 matt struct cpu_info * const ci = curcpu();
385 1.1 rearnsha
386 1.1 rearnsha /* This shouldn't ever happen. */
387 1.1 rearnsha if (fault_code != FAULT_USER)
388 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
389 1.1 rearnsha
390 1.27 matt if (ci->ci_vfp_id == 0) {
391 1.1 rearnsha /* No VFP detected, just fault. */
392 1.1 rearnsha return 1;
393 1.27 matt }
394 1.27 matt
395 1.27 matt /*
396 1.27 matt * If we are just changing/fetching FPSCR, don't bother loading it.
397 1.27 matt */
398 1.27 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
399 1.27 matt return 0;
400 1.27 matt
401 1.27 matt /*
402 1.27 matt * Make sure we own the FP.
403 1.27 matt */
404 1.27 matt pcu_load(&arm_vfp_ops);
405 1.1 rearnsha
406 1.21 matt uint32_t fpexc = armreg_fpexc_read();
407 1.21 matt if (fpexc & VFP_FPEXC_EX) {
408 1.21 matt ksiginfo_t ksi;
409 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
410 1.21 matt
411 1.37 matt curcpu()->ci_vfp_evs[2].ev_count++;
412 1.21 matt
413 1.21 matt /*
414 1.21 matt * Need the clear the exception condition so any signal
415 1.33 skrll * and future use can proceed.
416 1.21 matt */
417 1.31 skrll armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
418 1.21 matt
419 1.33 skrll pcu_save(&arm_vfp_ops);
420 1.33 skrll
421 1.33 skrll /*
422 1.33 skrll * XXX Need to emulate bounce instructions here to get correct
423 1.33 skrll * XXX exception codes, etc.
424 1.33 skrll */
425 1.21 matt KSI_INIT_TRAP(&ksi);
426 1.21 matt ksi.ksi_signo = SIGFPE;
427 1.21 matt if (fpexc & VFP_FPEXC_IXF)
428 1.21 matt ksi.ksi_code = FPE_FLTRES;
429 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
430 1.21 matt ksi.ksi_code = FPE_FLTUND;
431 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
432 1.21 matt ksi.ksi_code = FPE_FLTOVF;
433 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
434 1.21 matt ksi.ksi_code = FPE_FLTDIV;
435 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
436 1.21 matt ksi.ksi_code = FPE_FLTINV;
437 1.21 matt ksi.ksi_addr = (uint32_t *)address;
438 1.21 matt ksi.ksi_trap = 0;
439 1.21 matt trapsignal(curlwp, &ksi);
440 1.21 matt return 0;
441 1.21 matt }
442 1.21 matt
443 1.4 matt /* Need to restart the faulted instruction. */
444 1.4 matt // frame->tf_pc -= INSN_SIZE;
445 1.4 matt return 0;
446 1.4 matt }
447 1.1 rearnsha
448 1.13 matt #ifdef CPU_CORTEX
449 1.13 matt /* The real handler for NEON bounces. */
450 1.13 matt static int
451 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
452 1.13 matt {
453 1.13 matt struct cpu_info * const ci = curcpu();
454 1.13 matt
455 1.13 matt if (ci->ci_vfp_id == 0)
456 1.13 matt /* No VFP detected, just fault. */
457 1.13 matt return 1;
458 1.13 matt
459 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
460 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
461 1.13 matt /* Not NEON instruction, just fault. */
462 1.13 matt return 1;
463 1.13 matt
464 1.13 matt /* This shouldn't ever happen. */
465 1.13 matt if (fault_code != FAULT_USER)
466 1.13 matt panic("NEON fault in non-user mode");
467 1.13 matt
468 1.13 matt pcu_load(&arm_vfp_ops);
469 1.13 matt
470 1.13 matt /* Need to restart the faulted instruction. */
471 1.13 matt // frame->tf_pc -= INSN_SIZE;
472 1.13 matt return 0;
473 1.13 matt }
474 1.13 matt #endif
475 1.13 matt
476 1.4 matt static void
477 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
478 1.4 matt {
479 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
480 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
481 1.1 rearnsha
482 1.1 rearnsha /*
483 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
484 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
485 1.1 rearnsha * and count this event.
486 1.1 rearnsha *
487 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
488 1.1 rearnsha * a trap to use it again" event.
489 1.1 rearnsha */
490 1.39 rmind if (__predict_false((flags & PCU_VALID) == 0)) {
491 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
492 1.34 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
493 1.4 matt } else {
494 1.37 matt curcpu()->ci_vfp_evs[1].ev_count++;
495 1.4 matt }
496 1.1 rearnsha
497 1.39 rmind /*
498 1.39 rmind * If the VFP is already enabled we must be bouncing an instruction.
499 1.39 rmind */
500 1.39 rmind if (flags & PCU_REENABLE) {
501 1.39 rmind uint32_t fpexc = armreg_fpexc_read();
502 1.39 rmind armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
503 1.39 rmind return;
504 1.39 rmind }
505 1.33 skrll
506 1.39 rmind /*
507 1.39 rmind * Load and Enable the VFP (so that we can write the registers).
508 1.39 rmind */
509 1.39 rmind bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
510 1.39 rmind fregs->vfp_fpexc |= VFP_FPEXC_EN;
511 1.39 rmind armreg_fpexc_write(fregs->vfp_fpexc);
512 1.39 rmind if (enabled) {
513 1.4 matt /*
514 1.39 rmind * If we think the VFP is enabled, it must have be
515 1.39 rmind * disabled by vfp_state_release for another LWP so
516 1.39 rmind * we can now just return.
517 1.4 matt */
518 1.39 rmind return;
519 1.39 rmind }
520 1.13 matt
521 1.39 rmind load_vfpregs(fregs);
522 1.39 rmind armreg_fpscr_write(fregs->vfp_fpscr);
523 1.13 matt
524 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
525 1.39 rmind /* Need to restore the exception handling state. */
526 1.39 rmind armreg_fpinst2_write(fregs->vfp_fpinst2);
527 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
528 1.39 rmind armreg_fpinst_write(fregs->vfp_fpinst);
529 1.1 rearnsha }
530 1.1 rearnsha }
531 1.1 rearnsha
532 1.1 rearnsha void
533 1.39 rmind vfp_state_save(lwp_t *l)
534 1.1 rearnsha {
535 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
536 1.39 rmind struct vfpreg * const fregs = &pcb->pcb_vfp;
537 1.21 matt uint32_t fpexc = armreg_fpexc_read();
538 1.33 skrll
539 1.33 skrll /*
540 1.33 skrll * Enable the VFP (so we can read the registers).
541 1.33 skrll * Make sure the exception bit is cleared so that we can
542 1.33 skrll * safely dump the registers.
543 1.33 skrll */
544 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
545 1.1 rearnsha
546 1.4 matt fregs->vfp_fpexc = fpexc;
547 1.4 matt if (fpexc & VFP_FPEXC_EX) {
548 1.4 matt /* Need to save the exception handling state */
549 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
550 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
551 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
552 1.1 rearnsha }
553 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
554 1.13 matt save_vfpregs(fregs);
555 1.4 matt
556 1.1 rearnsha /* Disable the VFP. */
557 1.33 skrll armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
558 1.1 rearnsha }
559 1.1 rearnsha
560 1.1 rearnsha void
561 1.39 rmind vfp_state_release(lwp_t *l)
562 1.1 rearnsha {
563 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
564 1.1 rearnsha
565 1.39 rmind /*
566 1.39 rmind * Now mark the VFP as disabled (and our state
567 1.39 rmind * has been already saved or is being discarded).
568 1.39 rmind */
569 1.39 rmind pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
570 1.1 rearnsha
571 1.1 rearnsha /*
572 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
573 1.4 matt * an exception happens. We don't know if this LWP's state was
574 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
575 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
576 1.13 matt * is still set so it just restore fpexc and return since its
577 1.4 matt * contents are still sitting in the VFP.
578 1.1 rearnsha */
579 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
580 1.1 rearnsha }
581 1.1 rearnsha
582 1.1 rearnsha void
583 1.2 cegger vfp_savecontext(void)
584 1.1 rearnsha {
585 1.4 matt pcu_save(&arm_vfp_ops);
586 1.1 rearnsha }
587 1.1 rearnsha
588 1.1 rearnsha void
589 1.25 matt vfp_discardcontext(bool used_p)
590 1.1 rearnsha {
591 1.25 matt pcu_discard(&arm_vfp_ops, used_p);
592 1.25 matt }
593 1.25 matt
594 1.25 matt bool
595 1.25 matt vfp_used_p(void)
596 1.25 matt {
597 1.39 rmind return pcu_valid_p(&arm_vfp_ops);
598 1.13 matt }
599 1.13 matt
600 1.13 matt void
601 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
602 1.8 matt {
603 1.25 matt if (vfp_used_p()) {
604 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
605 1.8 matt pcu_save(&arm_vfp_ops);
606 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
607 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
608 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
609 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
610 1.8 matt }
611 1.8 matt }
612 1.8 matt
613 1.8 matt void
614 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
615 1.8 matt {
616 1.24 drochner pcu_discard(&arm_vfp_ops, true);
617 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
618 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
619 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
620 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
621 1.8 matt }
622 1.8 matt
623 1.4 matt #endif /* FPU_VFP */
624