vfp_init.c revision 1.48 1 1.48 jmcneill /* $NetBSD: vfp_init.c,v 1.48 2015/04/28 17:14:21 jmcneill Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.23 matt #include <arm/locore.h>
40 1.5 matt #include <arm/pcb.h>
41 1.1 rearnsha #include <arm/undefined.h>
42 1.1 rearnsha #include <arm/vfpreg.h>
43 1.8 matt #include <arm/mcontext.h>
44 1.1 rearnsha
45 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
46 1.12 matt
47 1.11 matt #ifdef FPU_VFP
48 1.11 matt
49 1.29 matt #ifdef CPU_CORTEX
50 1.29 matt __asm(".fpu\tvfpv4");
51 1.29 matt #else
52 1.29 matt __asm(".fpu\tvfp");
53 1.29 matt #endif
54 1.29 matt
55 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
56 1.11 matt static inline void
57 1.13 matt load_vfpregs_lo(const uint64_t *p)
58 1.10 matt {
59 1.29 matt __asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
60 1.10 matt }
61 1.10 matt
62 1.10 matt /* FSTMD <X>, {d0-d15} */
63 1.11 matt static inline void
64 1.10 matt save_vfpregs_lo(uint64_t *p)
65 1.10 matt {
66 1.29 matt __asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
67 1.10 matt }
68 1.10 matt
69 1.10 matt #ifdef CPU_CORTEX
70 1.10 matt /* FLDMD <X>, {d16-d31} */
71 1.11 matt static inline void
72 1.13 matt load_vfpregs_hi(const uint64_t *p)
73 1.10 matt {
74 1.29 matt __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
75 1.10 matt }
76 1.10 matt
77 1.10 matt /* FLDMD <X>, {d16-d31} */
78 1.11 matt static inline void
79 1.10 matt save_vfpregs_hi(uint64_t *p)
80 1.10 matt {
81 1.29 matt __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
82 1.10 matt }
83 1.10 matt #endif
84 1.1 rearnsha
85 1.13 matt static inline void
86 1.13 matt load_vfpregs(const struct vfpreg *fregs)
87 1.13 matt {
88 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
89 1.13 matt #ifdef CPU_CORTEX
90 1.13 matt #ifdef CPU_ARM11
91 1.13 matt switch (curcpu()->ci_vfp_id) {
92 1.13 matt case FPU_VFP_CORTEXA5:
93 1.13 matt case FPU_VFP_CORTEXA7:
94 1.13 matt case FPU_VFP_CORTEXA8:
95 1.13 matt case FPU_VFP_CORTEXA9:
96 1.20 matt case FPU_VFP_CORTEXA15:
97 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
98 1.13 matt #endif
99 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
100 1.13 matt #ifdef CPU_ARM11
101 1.13 matt break;
102 1.13 matt }
103 1.13 matt #endif
104 1.13 matt #endif
105 1.13 matt }
106 1.13 matt
107 1.13 matt static inline void
108 1.13 matt save_vfpregs(struct vfpreg *fregs)
109 1.13 matt {
110 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
111 1.13 matt #ifdef CPU_CORTEX
112 1.13 matt #ifdef CPU_ARM11
113 1.13 matt switch (curcpu()->ci_vfp_id) {
114 1.13 matt case FPU_VFP_CORTEXA5:
115 1.13 matt case FPU_VFP_CORTEXA7:
116 1.13 matt case FPU_VFP_CORTEXA8:
117 1.13 matt case FPU_VFP_CORTEXA9:
118 1.20 matt case FPU_VFP_CORTEXA15:
119 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
120 1.13 matt #endif
121 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
122 1.13 matt #ifdef CPU_ARM11
123 1.13 matt break;
124 1.13 matt }
125 1.13 matt #endif
126 1.13 matt #endif
127 1.13 matt }
128 1.13 matt
129 1.1 rearnsha /* The real handler for VFP bounces. */
130 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
131 1.13 matt #ifdef CPU_CORTEX
132 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
133 1.13 matt #endif
134 1.1 rearnsha
135 1.13 matt static void vfp_state_load(lwp_t *, u_int);
136 1.39 rmind static void vfp_state_save(lwp_t *);
137 1.39 rmind static void vfp_state_release(lwp_t *);
138 1.4 matt
139 1.4 matt const pcu_ops_t arm_vfp_ops = {
140 1.4 matt .pcu_id = PCU_FPU,
141 1.13 matt .pcu_state_save = vfp_state_save,
142 1.4 matt .pcu_state_load = vfp_state_load,
143 1.4 matt .pcu_state_release = vfp_state_release,
144 1.4 matt };
145 1.1 rearnsha
146 1.34 matt /* determine what bits can be changed */
147 1.34 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
148 1.34 matt /* default to run fast */
149 1.34 matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
150 1.34 matt
151 1.1 rearnsha /*
152 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
153 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
154 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
155 1.1 rearnsha * the instruction so must be absent, or disabled.
156 1.1 rearnsha */
157 1.1 rearnsha
158 1.1 rearnsha static int undefined_test;
159 1.1 rearnsha
160 1.1 rearnsha static int
161 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
162 1.1 rearnsha {
163 1.1 rearnsha
164 1.1 rearnsha frame->tf_pc += INSN_SIZE;
165 1.1 rearnsha ++undefined_test;
166 1.4 matt return 0;
167 1.4 matt }
168 1.4 matt
169 1.35 matt #else
170 1.35 matt /* determine what bits can be changed */
171 1.35 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
172 1.4 matt #endif /* FPU_VFP */
173 1.4 matt
174 1.4 matt static int
175 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
176 1.4 matt {
177 1.4 matt struct lwp * const l = curlwp;
178 1.4 matt const u_int regno = (insn >> 12) & 0xf;
179 1.4 matt /*
180 1.4 matt * Only match move to/from the FPSCR register and we
181 1.4 matt * can't be using the SP,LR,PC as a source.
182 1.4 matt */
183 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
184 1.4 matt return 1;
185 1.4 matt
186 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
187 1.4 matt
188 1.4 matt #ifdef FPU_VFP
189 1.4 matt /*
190 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
191 1.4 matt * retry the instruction (only safe thing to do since the
192 1.4 matt * pcb has a stale copy).
193 1.4 matt */
194 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
195 1.4 matt return 1;
196 1.4 matt
197 1.25 matt if (__predict_false(!vfp_used_p())) {
198 1.35 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
199 1.4 matt }
200 1.26 matt #endif
201 1.4 matt
202 1.4 matt /*
203 1.30 skrll * We now know the pcb has the saved copy.
204 1.4 matt */
205 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
206 1.4 matt if (insn & 0x00100000) {
207 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
208 1.4 matt } else {
209 1.34 matt pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
210 1.34 matt pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
211 1.4 matt }
212 1.4 matt
213 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
214 1.4 matt
215 1.4 matt frame->tf_pc += INSN_SIZE;
216 1.4 matt return 0;
217 1.1 rearnsha }
218 1.1 rearnsha
219 1.4 matt #ifndef FPU_VFP
220 1.4 matt /*
221 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
222 1.4 matt * instructions.
223 1.4 matt */
224 1.4 matt void
225 1.37 matt vfp_attach(struct cpu_info *ci)
226 1.4 matt {
227 1.37 matt if (CPU_IS_PRIMARY(ci)) {
228 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
229 1.37 matt }
230 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
231 1.37 matt ci->ci_cpuname, "vfp fpscr traps");
232 1.4 matt }
233 1.4 matt
234 1.4 matt #else
235 1.1 rearnsha void
236 1.37 matt vfp_attach(struct cpu_info *ci)
237 1.1 rearnsha {
238 1.4 matt const char *model = NULL;
239 1.1 rearnsha
240 1.37 matt if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
241 1.37 matt || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
242 1.37 matt || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
243 1.37 matt #if 0
244 1.37 matt const uint32_t nsacr = armreg_nsacr_read();
245 1.37 matt const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
246 1.37 matt if ((nsacr & nsacr_vfp) != nsacr_vfp) {
247 1.40 matt aprint_normal_dev(ci->ci_dev,
248 1.40 matt "VFP access denied (NSACR=%#x)\n", nsacr);
249 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
250 1.37 matt ci->ci_vfp_id = 0;
251 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
252 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
253 1.37 matt "vfp fpscr traps");
254 1.37 matt return;
255 1.37 matt }
256 1.37 matt #endif
257 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
258 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
259 1.1 rearnsha
260 1.7 matt /*
261 1.7 matt * We first need to enable access to the coprocessors.
262 1.7 matt */
263 1.7 matt uint32_t cpacr = armreg_cpacr_read();
264 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
265 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
266 1.7 matt armreg_cpacr_write(cpacr);
267 1.1 rearnsha
268 1.48 jmcneill arm_isb();
269 1.48 jmcneill
270 1.7 matt /*
271 1.7 matt * If we could enable them, then they exist.
272 1.7 matt */
273 1.7 matt cpacr = armreg_cpacr_read();
274 1.40 matt bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
275 1.40 matt && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
276 1.28 matt if (!vfp_p) {
277 1.40 matt aprint_normal_dev(ci->ci_dev,
278 1.40 matt "VFP access denied (CPACR=%#x)\n", cpacr);
279 1.28 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
280 1.28 matt ci->ci_vfp_id = 0;
281 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
282 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
283 1.37 matt "vfp fpscr traps");
284 1.28 matt return;
285 1.28 matt }
286 1.6 matt }
287 1.6 matt
288 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
289 1.7 matt
290 1.7 matt undefined_test = 0;
291 1.7 matt
292 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
293 1.1 rearnsha
294 1.1 rearnsha remove_coproc_handler(uh);
295 1.1 rearnsha
296 1.1 rearnsha if (undefined_test != 0) {
297 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
298 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
299 1.4 matt ci->ci_vfp_id = 0;
300 1.1 rearnsha return;
301 1.1 rearnsha }
302 1.1 rearnsha
303 1.4 matt ci->ci_vfp_id = fpsid;
304 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
305 1.4 matt case FPU_VFP10_ARM10E:
306 1.4 matt model = "VFP10 R1";
307 1.4 matt break;
308 1.4 matt case FPU_VFP11_ARM11:
309 1.4 matt model = "VFP11";
310 1.4 matt break;
311 1.36 matt case FPU_VFP_MV88SV58XX:
312 1.36 matt model = "VFP3";
313 1.36 matt break;
314 1.7 matt case FPU_VFP_CORTEXA5:
315 1.7 matt case FPU_VFP_CORTEXA7:
316 1.7 matt case FPU_VFP_CORTEXA8:
317 1.7 matt case FPU_VFP_CORTEXA9:
318 1.20 matt case FPU_VFP_CORTEXA15:
319 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
320 1.37 matt if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
321 1.37 matt model = "VFP 4.0+";
322 1.37 matt } else {
323 1.37 matt model = "NEON MPE (VFP 3.0+)";
324 1.37 matt cpu_neon_present = 1;
325 1.37 matt }
326 1.6 matt break;
327 1.4 matt default:
328 1.36 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
329 1.4 matt fpsid);
330 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
331 1.35 matt vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
332 1.35 matt |VFP_FPSCR_RMODE;
333 1.35 matt vfp_fpscr_default = 0;
334 1.4 matt return;
335 1.4 matt }
336 1.1 rearnsha
337 1.17 matt cpu_fpu_present = 1;
338 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
339 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
340 1.1 rearnsha if (fpsid != 0) {
341 1.34 matt uint32_t f0 = armreg_mvfr0_read();
342 1.41 matt uint32_t f1 = armreg_mvfr1_read();
343 1.34 matt aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
344 1.37 matt device_unit(ci->ci_dev),
345 1.37 matt device_xname(ci->ci_dev),
346 1.34 matt model,
347 1.34 matt ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
348 1.34 matt ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
349 1.38 matt ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
350 1.34 matt ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
351 1.21 matt aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
352 1.37 matt device_unit(ci->ci_dev), f0, f1);
353 1.37 matt if (CPU_IS_PRIMARY(ci)) {
354 1.37 matt if (f0 & ARM_MVFR0_ROUNDING_MASK) {
355 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_RMODE;
356 1.37 matt }
357 1.37 matt if (f1 & ARM_MVFR0_EXCEPT_MASK) {
358 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_ESUM;
359 1.37 matt }
360 1.38 matt // If hardware supports propagation of NaNs, select it.
361 1.37 matt if (f1 & ARM_MVFR1_D_NAN_MASK) {
362 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_DN;
363 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_DN;
364 1.37 matt }
365 1.37 matt // If hardware supports denormalized numbers, use it.
366 1.37 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
367 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_FZ;
368 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_FZ;
369 1.37 matt }
370 1.37 matt }
371 1.37 matt }
372 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
373 1.37 matt ci->ci_cpuname, "vfp coproc use");
374 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
375 1.37 matt ci->ci_cpuname, "vfp coproc re-use");
376 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
377 1.37 matt ci->ci_cpuname, "vfp coproc fault");
378 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
379 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
380 1.13 matt #ifdef CPU_CORTEX
381 1.43 matt if (cpu_neon_present)
382 1.43 matt install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
383 1.13 matt #endif
384 1.1 rearnsha }
385 1.1 rearnsha
386 1.1 rearnsha /* The real handler for VFP bounces. */
387 1.4 matt static int
388 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
389 1.1 rearnsha {
390 1.4 matt struct cpu_info * const ci = curcpu();
391 1.1 rearnsha
392 1.1 rearnsha /* This shouldn't ever happen. */
393 1.1 rearnsha if (fault_code != FAULT_USER)
394 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
395 1.1 rearnsha
396 1.27 matt if (ci->ci_vfp_id == 0) {
397 1.1 rearnsha /* No VFP detected, just fault. */
398 1.1 rearnsha return 1;
399 1.27 matt }
400 1.27 matt
401 1.27 matt /*
402 1.47 matt * If we are just changing/fetching FPSCR, don't bother loading it
403 1.47 matt * just emulate the instruction.
404 1.27 matt */
405 1.27 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
406 1.47 matt return 0;
407 1.27 matt
408 1.47 matt /*
409 1.47 matt * If we already own the FPU and it's enabled (and no exception), raise
410 1.47 matt * SIGILL. If there is an exception, drop through to raise a SIGFPE.
411 1.47 matt */
412 1.46 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
413 1.47 matt && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
414 1.47 matt return 1;
415 1.44 matt
416 1.27 matt /*
417 1.27 matt * Make sure we own the FP.
418 1.27 matt */
419 1.27 matt pcu_load(&arm_vfp_ops);
420 1.1 rearnsha
421 1.21 matt uint32_t fpexc = armreg_fpexc_read();
422 1.21 matt if (fpexc & VFP_FPEXC_EX) {
423 1.21 matt ksiginfo_t ksi;
424 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
425 1.21 matt
426 1.37 matt curcpu()->ci_vfp_evs[2].ev_count++;
427 1.21 matt
428 1.21 matt /*
429 1.21 matt * Need the clear the exception condition so any signal
430 1.33 skrll * and future use can proceed.
431 1.21 matt */
432 1.31 skrll armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
433 1.21 matt
434 1.33 skrll pcu_save(&arm_vfp_ops);
435 1.33 skrll
436 1.33 skrll /*
437 1.33 skrll * XXX Need to emulate bounce instructions here to get correct
438 1.33 skrll * XXX exception codes, etc.
439 1.33 skrll */
440 1.21 matt KSI_INIT_TRAP(&ksi);
441 1.21 matt ksi.ksi_signo = SIGFPE;
442 1.21 matt if (fpexc & VFP_FPEXC_IXF)
443 1.21 matt ksi.ksi_code = FPE_FLTRES;
444 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
445 1.21 matt ksi.ksi_code = FPE_FLTUND;
446 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
447 1.21 matt ksi.ksi_code = FPE_FLTOVF;
448 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
449 1.21 matt ksi.ksi_code = FPE_FLTDIV;
450 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
451 1.21 matt ksi.ksi_code = FPE_FLTINV;
452 1.21 matt ksi.ksi_addr = (uint32_t *)address;
453 1.21 matt ksi.ksi_trap = 0;
454 1.21 matt trapsignal(curlwp, &ksi);
455 1.21 matt return 0;
456 1.21 matt }
457 1.21 matt
458 1.4 matt /* Need to restart the faulted instruction. */
459 1.4 matt // frame->tf_pc -= INSN_SIZE;
460 1.4 matt return 0;
461 1.4 matt }
462 1.1 rearnsha
463 1.13 matt #ifdef CPU_CORTEX
464 1.13 matt /* The real handler for NEON bounces. */
465 1.13 matt static int
466 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
467 1.13 matt {
468 1.13 matt struct cpu_info * const ci = curcpu();
469 1.13 matt
470 1.13 matt if (ci->ci_vfp_id == 0)
471 1.13 matt /* No VFP detected, just fault. */
472 1.13 matt return 1;
473 1.13 matt
474 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
475 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
476 1.13 matt /* Not NEON instruction, just fault. */
477 1.13 matt return 1;
478 1.13 matt
479 1.13 matt /* This shouldn't ever happen. */
480 1.13 matt if (fault_code != FAULT_USER)
481 1.13 matt panic("NEON fault in non-user mode");
482 1.13 matt
483 1.45 matt /* if we already own the FPU and it's enabled, raise SIGILL */
484 1.45 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
485 1.45 matt && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
486 1.47 matt return 1;
487 1.43 matt
488 1.13 matt pcu_load(&arm_vfp_ops);
489 1.13 matt
490 1.13 matt /* Need to restart the faulted instruction. */
491 1.13 matt // frame->tf_pc -= INSN_SIZE;
492 1.13 matt return 0;
493 1.13 matt }
494 1.13 matt #endif
495 1.13 matt
496 1.4 matt static void
497 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
498 1.4 matt {
499 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
500 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
501 1.1 rearnsha
502 1.1 rearnsha /*
503 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
504 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
505 1.1 rearnsha * and count this event.
506 1.1 rearnsha *
507 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
508 1.1 rearnsha * a trap to use it again" event.
509 1.1 rearnsha */
510 1.39 rmind if (__predict_false((flags & PCU_VALID) == 0)) {
511 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
512 1.34 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
513 1.4 matt } else {
514 1.37 matt curcpu()->ci_vfp_evs[1].ev_count++;
515 1.4 matt }
516 1.1 rearnsha
517 1.39 rmind /*
518 1.39 rmind * If the VFP is already enabled we must be bouncing an instruction.
519 1.39 rmind */
520 1.39 rmind if (flags & PCU_REENABLE) {
521 1.39 rmind uint32_t fpexc = armreg_fpexc_read();
522 1.39 rmind armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
523 1.39 rmind return;
524 1.39 rmind }
525 1.33 skrll
526 1.39 rmind /*
527 1.39 rmind * Load and Enable the VFP (so that we can write the registers).
528 1.39 rmind */
529 1.39 rmind bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
530 1.39 rmind fregs->vfp_fpexc |= VFP_FPEXC_EN;
531 1.39 rmind armreg_fpexc_write(fregs->vfp_fpexc);
532 1.39 rmind if (enabled) {
533 1.4 matt /*
534 1.39 rmind * If we think the VFP is enabled, it must have be
535 1.39 rmind * disabled by vfp_state_release for another LWP so
536 1.39 rmind * we can now just return.
537 1.4 matt */
538 1.39 rmind return;
539 1.39 rmind }
540 1.13 matt
541 1.39 rmind load_vfpregs(fregs);
542 1.39 rmind armreg_fpscr_write(fregs->vfp_fpscr);
543 1.13 matt
544 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
545 1.39 rmind /* Need to restore the exception handling state. */
546 1.39 rmind armreg_fpinst2_write(fregs->vfp_fpinst2);
547 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
548 1.39 rmind armreg_fpinst_write(fregs->vfp_fpinst);
549 1.1 rearnsha }
550 1.1 rearnsha }
551 1.1 rearnsha
552 1.1 rearnsha void
553 1.39 rmind vfp_state_save(lwp_t *l)
554 1.1 rearnsha {
555 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
556 1.39 rmind struct vfpreg * const fregs = &pcb->pcb_vfp;
557 1.21 matt uint32_t fpexc = armreg_fpexc_read();
558 1.33 skrll
559 1.33 skrll /*
560 1.33 skrll * Enable the VFP (so we can read the registers).
561 1.33 skrll * Make sure the exception bit is cleared so that we can
562 1.33 skrll * safely dump the registers.
563 1.33 skrll */
564 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
565 1.1 rearnsha
566 1.4 matt fregs->vfp_fpexc = fpexc;
567 1.4 matt if (fpexc & VFP_FPEXC_EX) {
568 1.4 matt /* Need to save the exception handling state */
569 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
570 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
571 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
572 1.1 rearnsha }
573 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
574 1.13 matt save_vfpregs(fregs);
575 1.4 matt
576 1.1 rearnsha /* Disable the VFP. */
577 1.33 skrll armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
578 1.1 rearnsha }
579 1.1 rearnsha
580 1.1 rearnsha void
581 1.39 rmind vfp_state_release(lwp_t *l)
582 1.1 rearnsha {
583 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
584 1.1 rearnsha
585 1.39 rmind /*
586 1.39 rmind * Now mark the VFP as disabled (and our state
587 1.39 rmind * has been already saved or is being discarded).
588 1.39 rmind */
589 1.39 rmind pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
590 1.1 rearnsha
591 1.1 rearnsha /*
592 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
593 1.4 matt * an exception happens. We don't know if this LWP's state was
594 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
595 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
596 1.13 matt * is still set so it just restore fpexc and return since its
597 1.4 matt * contents are still sitting in the VFP.
598 1.1 rearnsha */
599 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
600 1.1 rearnsha }
601 1.1 rearnsha
602 1.1 rearnsha void
603 1.2 cegger vfp_savecontext(void)
604 1.1 rearnsha {
605 1.4 matt pcu_save(&arm_vfp_ops);
606 1.1 rearnsha }
607 1.1 rearnsha
608 1.1 rearnsha void
609 1.25 matt vfp_discardcontext(bool used_p)
610 1.1 rearnsha {
611 1.25 matt pcu_discard(&arm_vfp_ops, used_p);
612 1.25 matt }
613 1.25 matt
614 1.25 matt bool
615 1.25 matt vfp_used_p(void)
616 1.25 matt {
617 1.39 rmind return pcu_valid_p(&arm_vfp_ops);
618 1.13 matt }
619 1.13 matt
620 1.13 matt void
621 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
622 1.8 matt {
623 1.25 matt if (vfp_used_p()) {
624 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
625 1.8 matt pcu_save(&arm_vfp_ops);
626 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
627 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
628 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
629 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
630 1.8 matt }
631 1.8 matt }
632 1.8 matt
633 1.8 matt void
634 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
635 1.8 matt {
636 1.24 drochner pcu_discard(&arm_vfp_ops, true);
637 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
638 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
639 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
640 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
641 1.8 matt }
642 1.8 matt
643 1.4 matt #endif /* FPU_VFP */
644