vfp_init.c revision 1.52 1 1.52 chs /* $NetBSD: vfp_init.c,v 1.52 2017/03/22 23:36:02 chs Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2008 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 1.1 rearnsha * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rearnsha * ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 1.1 rearnsha * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rearnsha * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 1.1 rearnsha * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 rearnsha * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 1.1 rearnsha * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 1.1 rearnsha * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha #include <sys/param.h>
33 1.1 rearnsha #include <sys/types.h>
34 1.1 rearnsha #include <sys/systm.h>
35 1.1 rearnsha #include <sys/device.h>
36 1.1 rearnsha #include <sys/proc.h>
37 1.4 matt #include <sys/cpu.h>
38 1.1 rearnsha
39 1.23 matt #include <arm/locore.h>
40 1.5 matt #include <arm/pcb.h>
41 1.1 rearnsha #include <arm/undefined.h>
42 1.1 rearnsha #include <arm/vfpreg.h>
43 1.8 matt #include <arm/mcontext.h>
44 1.1 rearnsha
45 1.12 matt #include <uvm/uvm_extern.h> /* for pmap.h */
46 1.12 matt
47 1.11 matt #ifdef FPU_VFP
48 1.11 matt
49 1.29 matt #ifdef CPU_CORTEX
50 1.29 matt __asm(".fpu\tvfpv4");
51 1.29 matt #else
52 1.29 matt __asm(".fpu\tvfp");
53 1.29 matt #endif
54 1.29 matt
55 1.1 rearnsha /* FLDMD <X>, {d0-d15} */
56 1.11 matt static inline void
57 1.13 matt load_vfpregs_lo(const uint64_t *p)
58 1.10 matt {
59 1.29 matt __asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
60 1.10 matt }
61 1.10 matt
62 1.10 matt /* FSTMD <X>, {d0-d15} */
63 1.11 matt static inline void
64 1.10 matt save_vfpregs_lo(uint64_t *p)
65 1.10 matt {
66 1.29 matt __asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
67 1.10 matt }
68 1.10 matt
69 1.10 matt #ifdef CPU_CORTEX
70 1.10 matt /* FLDMD <X>, {d16-d31} */
71 1.11 matt static inline void
72 1.13 matt load_vfpregs_hi(const uint64_t *p)
73 1.10 matt {
74 1.29 matt __asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
75 1.10 matt }
76 1.10 matt
77 1.10 matt /* FLDMD <X>, {d16-d31} */
78 1.11 matt static inline void
79 1.10 matt save_vfpregs_hi(uint64_t *p)
80 1.10 matt {
81 1.29 matt __asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
82 1.10 matt }
83 1.10 matt #endif
84 1.1 rearnsha
85 1.13 matt static inline void
86 1.13 matt load_vfpregs(const struct vfpreg *fregs)
87 1.13 matt {
88 1.13 matt load_vfpregs_lo(fregs->vfp_regs);
89 1.13 matt #ifdef CPU_CORTEX
90 1.13 matt #ifdef CPU_ARM11
91 1.13 matt switch (curcpu()->ci_vfp_id) {
92 1.13 matt case FPU_VFP_CORTEXA5:
93 1.13 matt case FPU_VFP_CORTEXA7:
94 1.13 matt case FPU_VFP_CORTEXA8:
95 1.13 matt case FPU_VFP_CORTEXA9:
96 1.20 matt case FPU_VFP_CORTEXA15:
97 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
98 1.50 skrll case FPU_VFP_CORTEXA53:
99 1.13 matt #endif
100 1.13 matt load_vfpregs_hi(fregs->vfp_regs);
101 1.13 matt #ifdef CPU_ARM11
102 1.13 matt break;
103 1.13 matt }
104 1.13 matt #endif
105 1.13 matt #endif
106 1.13 matt }
107 1.13 matt
108 1.13 matt static inline void
109 1.13 matt save_vfpregs(struct vfpreg *fregs)
110 1.13 matt {
111 1.13 matt save_vfpregs_lo(fregs->vfp_regs);
112 1.13 matt #ifdef CPU_CORTEX
113 1.13 matt #ifdef CPU_ARM11
114 1.13 matt switch (curcpu()->ci_vfp_id) {
115 1.13 matt case FPU_VFP_CORTEXA5:
116 1.13 matt case FPU_VFP_CORTEXA7:
117 1.13 matt case FPU_VFP_CORTEXA8:
118 1.13 matt case FPU_VFP_CORTEXA9:
119 1.20 matt case FPU_VFP_CORTEXA15:
120 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
121 1.50 skrll case FPU_VFP_CORTEXA53:
122 1.13 matt #endif
123 1.13 matt save_vfpregs_hi(fregs->vfp_regs);
124 1.13 matt #ifdef CPU_ARM11
125 1.13 matt break;
126 1.13 matt }
127 1.13 matt #endif
128 1.13 matt #endif
129 1.13 matt }
130 1.13 matt
131 1.1 rearnsha /* The real handler for VFP bounces. */
132 1.1 rearnsha static int vfp_handler(u_int, u_int, trapframe_t *, int);
133 1.13 matt #ifdef CPU_CORTEX
134 1.13 matt static int neon_handler(u_int, u_int, trapframe_t *, int);
135 1.13 matt #endif
136 1.1 rearnsha
137 1.13 matt static void vfp_state_load(lwp_t *, u_int);
138 1.39 rmind static void vfp_state_save(lwp_t *);
139 1.39 rmind static void vfp_state_release(lwp_t *);
140 1.4 matt
141 1.4 matt const pcu_ops_t arm_vfp_ops = {
142 1.4 matt .pcu_id = PCU_FPU,
143 1.13 matt .pcu_state_save = vfp_state_save,
144 1.4 matt .pcu_state_load = vfp_state_load,
145 1.4 matt .pcu_state_release = vfp_state_release,
146 1.4 matt };
147 1.1 rearnsha
148 1.34 matt /* determine what bits can be changed */
149 1.34 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
150 1.34 matt /* default to run fast */
151 1.34 matt uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
152 1.34 matt
153 1.1 rearnsha /*
154 1.1 rearnsha * Used to test for a VFP. The following function is installed as a coproc10
155 1.1 rearnsha * handler on the undefined instruction vector and then we issue a VFP
156 1.1 rearnsha * instruction. If undefined_test is non zero then the VFP did not handle
157 1.1 rearnsha * the instruction so must be absent, or disabled.
158 1.1 rearnsha */
159 1.1 rearnsha
160 1.1 rearnsha static int undefined_test;
161 1.1 rearnsha
162 1.1 rearnsha static int
163 1.4 matt vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
164 1.1 rearnsha {
165 1.1 rearnsha
166 1.1 rearnsha frame->tf_pc += INSN_SIZE;
167 1.1 rearnsha ++undefined_test;
168 1.4 matt return 0;
169 1.4 matt }
170 1.4 matt
171 1.35 matt #else
172 1.35 matt /* determine what bits can be changed */
173 1.35 matt uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
174 1.4 matt #endif /* FPU_VFP */
175 1.4 matt
176 1.4 matt static int
177 1.4 matt vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
178 1.4 matt {
179 1.4 matt struct lwp * const l = curlwp;
180 1.4 matt const u_int regno = (insn >> 12) & 0xf;
181 1.4 matt /*
182 1.4 matt * Only match move to/from the FPSCR register and we
183 1.4 matt * can't be using the SP,LR,PC as a source.
184 1.4 matt */
185 1.4 matt if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
186 1.4 matt return 1;
187 1.4 matt
188 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
189 1.4 matt
190 1.4 matt #ifdef FPU_VFP
191 1.4 matt /*
192 1.4 matt * If FPU is valid somewhere, let's just reenable VFP and
193 1.4 matt * retry the instruction (only safe thing to do since the
194 1.4 matt * pcb has a stale copy).
195 1.4 matt */
196 1.4 matt if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
197 1.4 matt return 1;
198 1.4 matt
199 1.51 chs if (__predict_false(!vfp_used_p(l))) {
200 1.35 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
201 1.4 matt }
202 1.26 matt #endif
203 1.4 matt
204 1.4 matt /*
205 1.30 skrll * We now know the pcb has the saved copy.
206 1.4 matt */
207 1.4 matt register_t * const regp = &frame->tf_r0 + regno;
208 1.4 matt if (insn & 0x00100000) {
209 1.4 matt *regp = pcb->pcb_vfp.vfp_fpscr;
210 1.4 matt } else {
211 1.34 matt pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
212 1.34 matt pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
213 1.4 matt }
214 1.4 matt
215 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
216 1.4 matt
217 1.4 matt frame->tf_pc += INSN_SIZE;
218 1.4 matt return 0;
219 1.1 rearnsha }
220 1.1 rearnsha
221 1.4 matt #ifndef FPU_VFP
222 1.4 matt /*
223 1.4 matt * If we don't want VFP support, we still need to handle emulating VFP FPSCR
224 1.4 matt * instructions.
225 1.4 matt */
226 1.4 matt void
227 1.37 matt vfp_attach(struct cpu_info *ci)
228 1.4 matt {
229 1.37 matt if (CPU_IS_PRIMARY(ci)) {
230 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
231 1.37 matt }
232 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
233 1.37 matt ci->ci_cpuname, "vfp fpscr traps");
234 1.4 matt }
235 1.4 matt
236 1.4 matt #else
237 1.1 rearnsha void
238 1.37 matt vfp_attach(struct cpu_info *ci)
239 1.1 rearnsha {
240 1.4 matt const char *model = NULL;
241 1.1 rearnsha
242 1.37 matt if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
243 1.37 matt || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
244 1.37 matt || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
245 1.37 matt #if 0
246 1.37 matt const uint32_t nsacr = armreg_nsacr_read();
247 1.37 matt const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
248 1.37 matt if ((nsacr & nsacr_vfp) != nsacr_vfp) {
249 1.40 matt aprint_normal_dev(ci->ci_dev,
250 1.40 matt "VFP access denied (NSACR=%#x)\n", nsacr);
251 1.37 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
252 1.37 matt ci->ci_vfp_id = 0;
253 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
254 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
255 1.37 matt "vfp fpscr traps");
256 1.37 matt return;
257 1.37 matt }
258 1.37 matt #endif
259 1.7 matt const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
260 1.7 matt const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
261 1.1 rearnsha
262 1.7 matt /*
263 1.7 matt * We first need to enable access to the coprocessors.
264 1.7 matt */
265 1.7 matt uint32_t cpacr = armreg_cpacr_read();
266 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
267 1.7 matt cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
268 1.7 matt armreg_cpacr_write(cpacr);
269 1.1 rearnsha
270 1.48 jmcneill arm_isb();
271 1.48 jmcneill
272 1.7 matt /*
273 1.7 matt * If we could enable them, then they exist.
274 1.7 matt */
275 1.7 matt cpacr = armreg_cpacr_read();
276 1.40 matt bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
277 1.40 matt && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
278 1.28 matt if (!vfp_p) {
279 1.40 matt aprint_normal_dev(ci->ci_dev,
280 1.40 matt "VFP access denied (CPACR=%#x)\n", cpacr);
281 1.28 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
282 1.28 matt ci->ci_vfp_id = 0;
283 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
284 1.37 matt EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
285 1.37 matt "vfp fpscr traps");
286 1.28 matt return;
287 1.28 matt }
288 1.6 matt }
289 1.6 matt
290 1.7 matt void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
291 1.7 matt
292 1.7 matt undefined_test = 0;
293 1.7 matt
294 1.21 matt const uint32_t fpsid = armreg_fpsid_read();
295 1.1 rearnsha
296 1.1 rearnsha remove_coproc_handler(uh);
297 1.1 rearnsha
298 1.1 rearnsha if (undefined_test != 0) {
299 1.4 matt aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
300 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
301 1.4 matt ci->ci_vfp_id = 0;
302 1.1 rearnsha return;
303 1.1 rearnsha }
304 1.1 rearnsha
305 1.4 matt ci->ci_vfp_id = fpsid;
306 1.4 matt switch (fpsid & ~ VFP_FPSID_REV_MSK) {
307 1.4 matt case FPU_VFP10_ARM10E:
308 1.4 matt model = "VFP10 R1";
309 1.4 matt break;
310 1.4 matt case FPU_VFP11_ARM11:
311 1.4 matt model = "VFP11";
312 1.4 matt break;
313 1.36 matt case FPU_VFP_MV88SV58XX:
314 1.36 matt model = "VFP3";
315 1.36 matt break;
316 1.7 matt case FPU_VFP_CORTEXA5:
317 1.7 matt case FPU_VFP_CORTEXA7:
318 1.7 matt case FPU_VFP_CORTEXA8:
319 1.7 matt case FPU_VFP_CORTEXA9:
320 1.20 matt case FPU_VFP_CORTEXA15:
321 1.42 slp case FPU_VFP_CORTEXA15_QEMU:
322 1.50 skrll case FPU_VFP_CORTEXA53:
323 1.37 matt if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
324 1.37 matt model = "VFP 4.0+";
325 1.37 matt } else {
326 1.37 matt model = "NEON MPE (VFP 3.0+)";
327 1.37 matt cpu_neon_present = 1;
328 1.37 matt }
329 1.6 matt break;
330 1.4 matt default:
331 1.36 matt aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
332 1.4 matt fpsid);
333 1.4 matt install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
334 1.35 matt vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
335 1.35 matt |VFP_FPSCR_RMODE;
336 1.35 matt vfp_fpscr_default = 0;
337 1.4 matt return;
338 1.4 matt }
339 1.1 rearnsha
340 1.17 matt cpu_fpu_present = 1;
341 1.21 matt cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
342 1.21 matt cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
343 1.1 rearnsha if (fpsid != 0) {
344 1.34 matt uint32_t f0 = armreg_mvfr0_read();
345 1.41 matt uint32_t f1 = armreg_mvfr1_read();
346 1.34 matt aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
347 1.37 matt device_unit(ci->ci_dev),
348 1.37 matt device_xname(ci->ci_dev),
349 1.34 matt model,
350 1.34 matt ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
351 1.34 matt ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
352 1.38 matt ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
353 1.34 matt ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
354 1.49 jmcneill aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
355 1.37 matt device_unit(ci->ci_dev), f0, f1);
356 1.37 matt if (CPU_IS_PRIMARY(ci)) {
357 1.37 matt if (f0 & ARM_MVFR0_ROUNDING_MASK) {
358 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_RMODE;
359 1.37 matt }
360 1.37 matt if (f1 & ARM_MVFR0_EXCEPT_MASK) {
361 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_ESUM;
362 1.37 matt }
363 1.38 matt // If hardware supports propagation of NaNs, select it.
364 1.37 matt if (f1 & ARM_MVFR1_D_NAN_MASK) {
365 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_DN;
366 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_DN;
367 1.37 matt }
368 1.37 matt // If hardware supports denormalized numbers, use it.
369 1.37 matt if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
370 1.37 matt vfp_fpscr_default &= ~VFP_FPSCR_FZ;
371 1.37 matt vfp_fpscr_changable |= VFP_FPSCR_FZ;
372 1.37 matt }
373 1.37 matt }
374 1.37 matt }
375 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
376 1.37 matt ci->ci_cpuname, "vfp coproc use");
377 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
378 1.37 matt ci->ci_cpuname, "vfp coproc re-use");
379 1.37 matt evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
380 1.37 matt ci->ci_cpuname, "vfp coproc fault");
381 1.1 rearnsha install_coproc_handler(VFP_COPROC, vfp_handler);
382 1.1 rearnsha install_coproc_handler(VFP_COPROC2, vfp_handler);
383 1.13 matt #ifdef CPU_CORTEX
384 1.43 matt if (cpu_neon_present)
385 1.43 matt install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
386 1.13 matt #endif
387 1.1 rearnsha }
388 1.1 rearnsha
389 1.1 rearnsha /* The real handler for VFP bounces. */
390 1.4 matt static int
391 1.21 matt vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
392 1.1 rearnsha {
393 1.4 matt struct cpu_info * const ci = curcpu();
394 1.1 rearnsha
395 1.1 rearnsha /* This shouldn't ever happen. */
396 1.1 rearnsha if (fault_code != FAULT_USER)
397 1.14 matt panic("VFP fault at %#x in non-user mode", frame->tf_pc);
398 1.1 rearnsha
399 1.27 matt if (ci->ci_vfp_id == 0) {
400 1.1 rearnsha /* No VFP detected, just fault. */
401 1.1 rearnsha return 1;
402 1.27 matt }
403 1.27 matt
404 1.27 matt /*
405 1.47 matt * If we are just changing/fetching FPSCR, don't bother loading it
406 1.47 matt * just emulate the instruction.
407 1.27 matt */
408 1.27 matt if (!vfp_fpscr_handler(address, insn, frame, fault_code))
409 1.47 matt return 0;
410 1.27 matt
411 1.47 matt /*
412 1.47 matt * If we already own the FPU and it's enabled (and no exception), raise
413 1.47 matt * SIGILL. If there is an exception, drop through to raise a SIGFPE.
414 1.47 matt */
415 1.46 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
416 1.47 matt && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
417 1.47 matt return 1;
418 1.44 matt
419 1.27 matt /*
420 1.27 matt * Make sure we own the FP.
421 1.27 matt */
422 1.27 matt pcu_load(&arm_vfp_ops);
423 1.1 rearnsha
424 1.21 matt uint32_t fpexc = armreg_fpexc_read();
425 1.21 matt if (fpexc & VFP_FPEXC_EX) {
426 1.21 matt ksiginfo_t ksi;
427 1.21 matt KASSERT(fpexc & VFP_FPEXC_EN);
428 1.21 matt
429 1.37 matt curcpu()->ci_vfp_evs[2].ev_count++;
430 1.21 matt
431 1.21 matt /*
432 1.21 matt * Need the clear the exception condition so any signal
433 1.33 skrll * and future use can proceed.
434 1.21 matt */
435 1.31 skrll armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
436 1.21 matt
437 1.51 chs pcu_save(&arm_vfp_ops, curlwp);
438 1.33 skrll
439 1.33 skrll /*
440 1.33 skrll * XXX Need to emulate bounce instructions here to get correct
441 1.33 skrll * XXX exception codes, etc.
442 1.33 skrll */
443 1.21 matt KSI_INIT_TRAP(&ksi);
444 1.21 matt ksi.ksi_signo = SIGFPE;
445 1.21 matt if (fpexc & VFP_FPEXC_IXF)
446 1.21 matt ksi.ksi_code = FPE_FLTRES;
447 1.21 matt else if (fpexc & VFP_FPEXC_UFF)
448 1.21 matt ksi.ksi_code = FPE_FLTUND;
449 1.21 matt else if (fpexc & VFP_FPEXC_OFF)
450 1.21 matt ksi.ksi_code = FPE_FLTOVF;
451 1.21 matt else if (fpexc & VFP_FPEXC_DZF)
452 1.21 matt ksi.ksi_code = FPE_FLTDIV;
453 1.21 matt else if (fpexc & VFP_FPEXC_IOF)
454 1.21 matt ksi.ksi_code = FPE_FLTINV;
455 1.21 matt ksi.ksi_addr = (uint32_t *)address;
456 1.21 matt ksi.ksi_trap = 0;
457 1.21 matt trapsignal(curlwp, &ksi);
458 1.21 matt return 0;
459 1.21 matt }
460 1.21 matt
461 1.4 matt /* Need to restart the faulted instruction. */
462 1.4 matt // frame->tf_pc -= INSN_SIZE;
463 1.4 matt return 0;
464 1.4 matt }
465 1.1 rearnsha
466 1.13 matt #ifdef CPU_CORTEX
467 1.13 matt /* The real handler for NEON bounces. */
468 1.13 matt static int
469 1.21 matt neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
470 1.13 matt {
471 1.13 matt struct cpu_info * const ci = curcpu();
472 1.13 matt
473 1.13 matt if (ci->ci_vfp_id == 0)
474 1.13 matt /* No VFP detected, just fault. */
475 1.13 matt return 1;
476 1.13 matt
477 1.13 matt if ((insn & 0xfe000000) != 0xf2000000
478 1.13 matt && (insn & 0xfe000000) != 0xf4000000)
479 1.13 matt /* Not NEON instruction, just fault. */
480 1.13 matt return 1;
481 1.13 matt
482 1.13 matt /* This shouldn't ever happen. */
483 1.13 matt if (fault_code != FAULT_USER)
484 1.13 matt panic("NEON fault in non-user mode");
485 1.13 matt
486 1.45 matt /* if we already own the FPU and it's enabled, raise SIGILL */
487 1.45 matt if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
488 1.45 matt && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
489 1.47 matt return 1;
490 1.43 matt
491 1.13 matt pcu_load(&arm_vfp_ops);
492 1.13 matt
493 1.13 matt /* Need to restart the faulted instruction. */
494 1.13 matt // frame->tf_pc -= INSN_SIZE;
495 1.13 matt return 0;
496 1.13 matt }
497 1.13 matt #endif
498 1.13 matt
499 1.4 matt static void
500 1.13 matt vfp_state_load(lwp_t *l, u_int flags)
501 1.4 matt {
502 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
503 1.4 matt struct vfpreg * const fregs = &pcb->pcb_vfp;
504 1.1 rearnsha
505 1.1 rearnsha /*
506 1.1 rearnsha * Instrument VFP usage -- if a process has not previously
507 1.1 rearnsha * used the VFP, mark it as having used VFP for the first time,
508 1.1 rearnsha * and count this event.
509 1.1 rearnsha *
510 1.1 rearnsha * If a process has used the VFP, count a "used VFP, and took
511 1.1 rearnsha * a trap to use it again" event.
512 1.1 rearnsha */
513 1.39 rmind if (__predict_false((flags & PCU_VALID) == 0)) {
514 1.37 matt curcpu()->ci_vfp_evs[0].ev_count++;
515 1.34 matt pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
516 1.4 matt } else {
517 1.37 matt curcpu()->ci_vfp_evs[1].ev_count++;
518 1.4 matt }
519 1.1 rearnsha
520 1.39 rmind /*
521 1.39 rmind * If the VFP is already enabled we must be bouncing an instruction.
522 1.39 rmind */
523 1.39 rmind if (flags & PCU_REENABLE) {
524 1.39 rmind uint32_t fpexc = armreg_fpexc_read();
525 1.39 rmind armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
526 1.39 rmind return;
527 1.39 rmind }
528 1.33 skrll
529 1.39 rmind /*
530 1.39 rmind * Load and Enable the VFP (so that we can write the registers).
531 1.39 rmind */
532 1.39 rmind bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
533 1.39 rmind fregs->vfp_fpexc |= VFP_FPEXC_EN;
534 1.39 rmind armreg_fpexc_write(fregs->vfp_fpexc);
535 1.39 rmind if (enabled) {
536 1.4 matt /*
537 1.39 rmind * If we think the VFP is enabled, it must have be
538 1.39 rmind * disabled by vfp_state_release for another LWP so
539 1.39 rmind * we can now just return.
540 1.4 matt */
541 1.39 rmind return;
542 1.39 rmind }
543 1.13 matt
544 1.39 rmind load_vfpregs(fregs);
545 1.39 rmind armreg_fpscr_write(fregs->vfp_fpscr);
546 1.13 matt
547 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
548 1.39 rmind /* Need to restore the exception handling state. */
549 1.52 chs armreg_fpinst_write(fregs->vfp_fpinst);
550 1.39 rmind if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
551 1.52 chs armreg_fpinst2_write(fregs->vfp_fpinst2);
552 1.1 rearnsha }
553 1.1 rearnsha }
554 1.1 rearnsha
555 1.1 rearnsha void
556 1.39 rmind vfp_state_save(lwp_t *l)
557 1.1 rearnsha {
558 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
559 1.39 rmind struct vfpreg * const fregs = &pcb->pcb_vfp;
560 1.21 matt uint32_t fpexc = armreg_fpexc_read();
561 1.33 skrll
562 1.33 skrll /*
563 1.33 skrll * Enable the VFP (so we can read the registers).
564 1.33 skrll * Make sure the exception bit is cleared so that we can
565 1.33 skrll * safely dump the registers.
566 1.33 skrll */
567 1.21 matt armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
568 1.1 rearnsha
569 1.4 matt fregs->vfp_fpexc = fpexc;
570 1.4 matt if (fpexc & VFP_FPEXC_EX) {
571 1.4 matt /* Need to save the exception handling state */
572 1.21 matt fregs->vfp_fpinst = armreg_fpinst_read();
573 1.21 matt if (fpexc & VFP_FPEXC_FP2V)
574 1.21 matt fregs->vfp_fpinst2 = armreg_fpinst2_read();
575 1.1 rearnsha }
576 1.21 matt fregs->vfp_fpscr = armreg_fpscr_read();
577 1.13 matt save_vfpregs(fregs);
578 1.4 matt
579 1.1 rearnsha /* Disable the VFP. */
580 1.33 skrll armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
581 1.1 rearnsha }
582 1.1 rearnsha
583 1.1 rearnsha void
584 1.39 rmind vfp_state_release(lwp_t *l)
585 1.1 rearnsha {
586 1.4 matt struct pcb * const pcb = lwp_getpcb(l);
587 1.1 rearnsha
588 1.39 rmind /*
589 1.39 rmind * Now mark the VFP as disabled (and our state
590 1.39 rmind * has been already saved or is being discarded).
591 1.39 rmind */
592 1.39 rmind pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
593 1.1 rearnsha
594 1.1 rearnsha /*
595 1.4 matt * Turn off the FPU so the next time a VFP instruction is issued
596 1.4 matt * an exception happens. We don't know if this LWP's state was
597 1.4 matt * loaded but if we turned off the FPU for some other LWP, when
598 1.4 matt * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
599 1.13 matt * is still set so it just restore fpexc and return since its
600 1.4 matt * contents are still sitting in the VFP.
601 1.1 rearnsha */
602 1.21 matt armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
603 1.1 rearnsha }
604 1.1 rearnsha
605 1.1 rearnsha void
606 1.51 chs vfp_savecontext(lwp_t *l)
607 1.1 rearnsha {
608 1.51 chs pcu_save(&arm_vfp_ops, l);
609 1.1 rearnsha }
610 1.1 rearnsha
611 1.1 rearnsha void
612 1.51 chs vfp_discardcontext(lwp_t *l, bool used_p)
613 1.1 rearnsha {
614 1.51 chs pcu_discard(&arm_vfp_ops, l, used_p);
615 1.25 matt }
616 1.25 matt
617 1.25 matt bool
618 1.51 chs vfp_used_p(const lwp_t *l)
619 1.25 matt {
620 1.51 chs return pcu_valid_p(&arm_vfp_ops, l);
621 1.13 matt }
622 1.13 matt
623 1.13 matt void
624 1.8 matt vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
625 1.8 matt {
626 1.51 chs if (vfp_used_p(l)) {
627 1.8 matt const struct pcb * const pcb = lwp_getpcb(l);
628 1.51 chs
629 1.51 chs pcu_save(&arm_vfp_ops, l);
630 1.8 matt mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
631 1.8 matt memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
632 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
633 1.10 matt *flagsp |= _UC_FPU|_UC_ARM_VFP;
634 1.8 matt }
635 1.8 matt }
636 1.8 matt
637 1.8 matt void
638 1.8 matt vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
639 1.8 matt {
640 1.8 matt struct pcb * const pcb = lwp_getpcb(l);
641 1.51 chs
642 1.51 chs pcu_discard(&arm_vfp_ops, l, true);
643 1.8 matt pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
644 1.8 matt memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
645 1.8 matt sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
646 1.8 matt }
647 1.8 matt
648 1.4 matt #endif /* FPU_VFP */
649